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Geostatistical methods have rarely been applied to area-level offense data. This article

demonstrates their potential for improving the interpretation and understanding

of crime patterns using previously analyzed data about car-related thefts for Estonia,

Latvia, and Lithuania in 2000. The variogram is used to inform about the scales of

variation in offense, social, and economic data. Area-to-area and area-to-point Poisson

kriging are used to filter the noise caused by the small number problem. The latter is

also used to produce continuous maps of the estimated crime risk (expected number of

crimes per 10,000 habitants), thereby reducing the visual bias of large spatial units. In

seeking to detect the most likely crime clusters, the uncertainty attached to crime risk

estimates is handled through a local cluster analysis using stochastic simulation.

Factorial kriging analysis is used to estimate the local- and regional-scale spatial

components of the crime risk and explanatory variables. Then regression modeling is

used to determine which factors are associated with the risk of car-related theft at

different scales.

Introduction

Quantitative analyses of area crime data often focus on the identification of areas of

extreme criminality, such as areas with high rates or counts of offenses (crime hot

spots). Hot spot detection is often undertaken using any one of a number of ad hoc

techniques (e.g., Sherman, Gartin, and Buerger 1989) or statistical cluster detection

methods drawn either from spatial epidemiology (e.g., Kulldorff 1997) or quanti-

tative geography (e.g., Messner et al. 1999; Anselin et al. 2000; Haining 2003).

Ecological modeling to explain spatial variation in counts or rates is usually un-

dertaken using regression (e.g., Ceccato and Haining 2008; Haining, Law, and

Griffith 2009).
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Several authors suggest the use of geostatistical methods for the investigation of

crime data (Anselin et al. 2000; Krivoruchko and Gotway 2003; Krivoruchko, Got-

way, and Zhigimont 2003; Getis 2004), but we are aware of only one application.

Camara et al. (2004) use ordinary kriging based on centroids of administrative

units to produce a surface of homicide rates in Brazil and to identify clusters.

However, recent advances in geostatistical methodology, such as area-to-area

(ATA) and area-to-point (ATP) kriging (Kyriakidis 2004) and Poisson kriging (Goo-

vaerts 2005; Monestiez et al. 2005), have opened up new opportunities.

We demonstrate in this article the application of geostatistical methods for an-

alyzing the geography of offenses and for identifying significant clusters of crimes.

Data about car-related thefts in the Baltic states (Estonia, Latvia, and Lithuania) in

2000, a data set previously analyzed by Ceccato and Haining (2008), are used. This

article contrasts the insights obtained using geostatistical methodology with those

reported by Ceccato and Haining.

Acquisitive crime in the Baltic states: an earlier study

A conceptual framework

Since the collapse of the Soviet Union in 1991, the three Baltic states of Estonia,

Latvia, and Lithuania have undergone profound political change and associated

social and economic change as their economies have become more market ori-

ented. The conceptual framework developed by Ceccato and Haining (2008, p.

216) to explain the geography of acquisitive crime emphasizes the role of both

medium- and short-term dynamics. In the medium term, citizens of countries ex-

periencing profound socioeconomic change are subject to uncertainty and insta-

bility that create anomic conditions leading to increased rates of crime and

violence (Durkheim 1897). However, effects are moderated where strong social

institutions exist (Messner and Rosenfeld 1997; Kim and Pridemore 2005). Ceccato

and Haining (2008) measure medium-term effects using ‘‘economic, social and

welfare change’’ over the period 1993–2000. All the change variables were cal-

culated so that more change (e.g., increasing unemployment) would be expected

to produce more offenses.

In the short term, the incidence of acquisitive offenses at the area level reflects a

rational choice theory trade-off made by a motivated offender in terms of current

‘‘risk and reward.’’ Motivated offenders not only assess an area’s attractiveness

(reward to the offender) but also the probability of getting caught (risk to the

offender). Geographical variation in rates of acquisitive crime depends on prevail-

ing economic conditions, the social context (strength of social institutions; quality

of welfare provision), and demographic structure. Periods of high unemployment

may have more motivated offenders. A strong economy is more likely to have more

targets for acquisitive crimes. If economic performance is geographically and sect-

orally uneven, motivated offenders may be more drawn to better-off regions than to

poorer regions. However, the literature about social cohesion has long suggested

Geographical Analysis

54



the importance of strong social institutions in moderating the negative effects of

economic problems in society (Sampson 1986) and in discouraging would-be

offenders. Lack of social cohesion in an area reduces the risk to the offender to

commit an offense there because fewer ‘‘capable guardians’’ are present. Demo-

graphic structure is important because areas with relatively large numbers of young

males or with an overrepresentation of certain marginalized non-national ethnic

groups (Lehti 2001) tend to experience higher rates of offending.

Although the three Baltic states have experienced the effects of transition, these

effects have played out differently across the states and the subregions into which

they are subdivided. Other place-specific variables were added to the set of

covariates that are known to correlate with offense rates: whether areas are at

national political borders (‘‘border’’) and whether they are urban or rural areas

(‘‘population density’’). A list of the variables used is given in Table 1. For full de-

tails and a graphical representation of the conceptual framework used, see Ceccato

and Haining (2008).

Ceccato and Haining’s methodology and findings

Using the statistical software package STATA, the negative binomial regression

model was fitted to counts of car-related thefts for 107 administrative units (Osgood

2000; Osgood and Chambers 2000). Dummy variables were introduced to allow

parameters to vary between the three countries. However, statistically significant

spatial autocorrelation was identified in the generalized linear model (GLM) resid-

uals (Lin and Zhang 2007). Because the counts for this offense were large, they

were converted to standardized offense ratios, log transformed (Ceccato and Hain-

ing 2008, p. 227), and a normal linear regression model was fitted with first-order

simultaneous autoregressive errors to model the residual spatial autocorrelation.

Also, because the residuals from this model were not spatially autocorrelated (and

other diagnostics were satisfactory), this was the model used for hypothesis testing.

The final model of Ceccato and Haining (2008), summarized in Table 1, ex-

plains just under 67% of the variation in the log-transformed dependent variable

(pseudo-R2). Short-term dynamics dominate the final model and show the impor-

tance of target area attractiveness (higher levels of the variable gross domestic

product [GDP], lower levels of ‘‘infant mortality’’ indicative of a higher standard of

living, and higher levels of ‘‘population density’’) and social disorganization asso-

ciated with areas with high rates of family breakdown (higher ‘‘divorce rate’’).

Ceccato and Haining (2008) found no convincing evidence of medium-term effects

being important except in Latvia, where ‘‘social change’’ is statistically significant

and its coefficient has the ‘‘correct’’ (i.e., expected) sign, although in Lithuania and

Estonia the coefficient for the same variable, while again statistically significant, has

the ‘‘wrong’’ sign. Table 1 summarizes their main results.

As Ceccato and Haining (2008) observe, one of the problems with this type of

small-area analysis is how to deal with the scale effects associated with different

explanatory variables. Areas are not sealed units and ‘‘economic disadvantage in
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one region may trigger higher rates of offending and offence rates in other areas as mo-

tivated offenders travel or migrate to find suitable targets’’ (Ceccato 2007, p. 141). The

identification and mapping of these scales of variability and their association with offense

rates is not straightforward in the types of models used by Ceccato and Haining (2008),

which is one of the reasons to investigate the use of geostatistical methods, including

factorial kriging analysis (FKA). However, another important set of reasons is that

geostatistics also provides an analyst with a much wider range of models for descri-

bing spatial structure in data, and recent developments now allow the analyst of area

data to account for the spatial support of the measurements (i.e., size and shape of

administrative units), as well as the population size, which can vary greatly among units.

Revisiting car-related thefts in the Baltic states: methods

Data

Car-related theft counts refer to the 107 administrative units in Estonia, Latvia, and

Lithuania in 2000 (Fig. 1a). The average population size of the areas in 2000 was

just under 70,000, making them large heterogeneous spatial units. Data about de-

mographic, social, economic, and welfare variables refer to the same spatial units.

Quality issues arise with this data, including underreporting of offenses (Del Frate

and van Kesteren 2004; see also European Sourcebook of Crime and Criminal Jus-

tice Statistics 1996, 2003). (For an extended overview of database construction and

data quality issues, see Ceccato and Haining (2008) and Ceccato (2008).)

Geostatistical methodology

Crime rates for an administrative unit va are the number of crimes in that unit d(va)

divided by its population n(va) and then multiplied by 10,000. When n(va) is small,

rates z(va) 5 d(va)/n(va) may appear unrealistically large or small (the small number

problem). Variogram and spatial predictions need to be adapted to counter this

source of noise.

Variogram computation

First, the usual variogram estimator (equation 4 in Haining, Kerry, and Oliver

2010), must be adapted to characterize the spatial variability in the data. The fol-

lowing population-weighted estimator adjusts for the small number problem:

ĝRvðhÞ ¼
1

2
PNðhÞ
a;b

nðvaÞnðvbÞ
nðvaÞþnðvbÞ

XNðhÞ
a;b

nðvaÞnðvbÞ
nðvaÞ þ nðvbÞ

zðvaÞ � zðvbÞ
� �2 �m�

� �
ð1Þ

where N(h) is the number of pairs of areas (va ,vb) whose population-weighted cen-

troids are separated by the vector h, and m� is the population-weighted mean of the

N area rates. The usual squared differences, [z(va)� z(vb)]
2, are weighted by a func-

tion of their respective population sizes, n(va)n(vb)/[n(va)1n(vb)], a term inversely

proportional to their standard errors, thus giving more importance to more reliable

data pairs (Monestiez et al. 2006). More importance is given to data values based on
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57



(d
) P
o

p
u

la
ti

o
n

 

(h
) C
ar

 r
el

at
ed

 t
h

ef
t 

ra
te

p
er

 1
0,

00
0 

p
o

p
u

la
ti

o
n

 

(a
)

(g
)

(f
) 

(e
)

(c
)

(b
)

E
S

T
O

N
IA

 

L
IT

H
U

A
N

IA
 

L
A

T
V

IA
 

20
0,

00
0 

to
 2

99
,9

99
 

30
0,

00
0 

to
 7

49
,9

99
 

10
0,

00
0 

to
 1

99
,9

99
 

50
,0

00
 t

o
 9

9,
99

9 
25

,0
00

 t
o

 4
9,

99
9 

0 
to

 2
4,

99
9 

30
 t

o
 3

9.
9 

40
 t

o
 1

49
.9

 

20
 t

o
 2

9.
9 

10
 t

o
 1

9.
9 

0 
to

 9
.9

 

Fi
gu

re
1
.

(a
)
M

u
n
ic

ip
al

(w
h
it

e
d
o
t)

an
d

ci
ty

(b
la

ck
d
o
t)

ce
n
tr

o
id

s.
(b

)
D

is
cr

et
iz

at
io

n
gr

id
(5

km
u
se

d
fo

r
p
o
p
u
la

ti
o
n

w
ei

gh
t
se

t
an

d
2

km
gr

id
u
se

d

fo
r

ar
ea

-t
o
-p

o
in

t
(A

T
P
)

kr
ig

in
g)

.
(c

)
P
o
p
u
la

ti
o
n

in
2
0
0
0

w
ei

gh
t

d
at

as
et

(5
km

gr
id

).
(d

)
K

ey
fo

r
(c

).
(e

)
C

ru
d
e

ca
r-

re
la

te
d

th
ef

t
ra

te
.

(f
)

A
re

a-
to

-a
re

a

P
o
is

so
n

kr
ig

ed
ca

r-
re

la
te

d
th

ef
t

ra
te

.
(g

)
A

T
P

P
o
is

so
n

kr
ig

ed
ca

r-
re

la
te

d
th

ef
t

ra
te

p
er

1
0
,0

0
0

p
o
p
u
la

ti
o
n

in
2
0
0
0
.

(h
)

K
ey

fo
r

(e
)–

(g
).

Geographical Analysis

58



larger populations, which have smaller standard errors. In analyses where the

areal units are small, this adjustment is particularly important but is not likely

to make a major difference to the results here. This adjustment should also be

made when considerable heterogeneity exists in population size across a set of areal

units.

An important step in the application of the kriging techniques described in this

article is inference about the point-support variogram gR(h) or, equivalently, the

point-support covariance CR(h) defined as CR(0)� gR(h). The major difficulty here is

that this function cannot be estimated directly from the experimental variogram

[equation (1)] because the latter is computed from areal rate data. Therefore, the

model fitted to (1) using weighted least squares (see, e.g., Haining, Kerry, and Ol-

iver 2010) needs to be deconvoluted. We adopt an iterative deconvolution proce-

dure whereby the point-support model is chosen that, once regularized, is the

closest to the model fitted to the areal data. See Goovaerts (2006b, 2008) for more

details about this approach and simulation studies that illustrate the reliability of

this method in proceeding from areal to point support. Unlike conventional decon-

volution methods developed for regular mining blocks, this approach takes into

account the irregular shape and size of areal units, and the nonuniform distribution

of population within those units if those data are available.

Spatial prediction

Adaptation of kriging as outlined by Haining, Kerry, and Oliver (2010) for use with

crime data should proceed as follows. The crime count d(va) is interpreted as a

realization of a random variable D(va) that is Poisson distributed with a parameter

(expected number of crimes) that is the product of the population size n(va) and the

local crime risk R(va). R(va) might be thought of as a noise-filtered crime rate for

area va, which we also refer to as the crime risk. It is estimated by using a variant of

kriging with nonsystematic errors, known as Poisson kriging (Monestiez et al.

2005). Choropleth mapping of crime rates creates visual bias as large units dom-

inate. ATP kriging (Kyriakidis 2004; Goovaerts 2006b) is used to create isopleth

maps of the estimated crime risk to reduce this bias.

The crime risk and the associated kriging variance for a unit X are estimated as

r̂ðXÞ ¼
XK

i¼1

lizðviÞ and ð2Þ

s2ðXÞ ¼ �CRðX;XÞ �
XK

i¼1

li
�CRðvi;XÞ � mðXÞ ð3Þ

where X represents either an area va (ATA kriging) or a point us within that

area (ATP kriging). The kriging weights (li) and the Lagrange parameter m(X) are
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computed by solving the Poisson kriging system of equations:

XK

j¼1

lj
�CRðvi; vjÞ þ dij

m�

nðviÞ

� �
þ mðXÞ ¼ �CRðvi;XÞ; i ¼ 1; . . . ;K ;

XK

j¼1

lj ¼ 1

ð4Þ

where dij 5 1 if i 5 j and 0 otherwise. The error variance term, m�/n(vi), leads to

smaller weights for rates measured over smaller populations. The ATA covariances

CRðvi; vjÞ and ATP covariances CRðvi ; X ¼ usÞ are approximated as the popula-

tion-weighted average of the point-support covariance CR(h) computed between

any two locations discretizing the areas vi and vj, or vi and us. An important prop-

erty of the ATP kriging estimator is its coherence: the population-weighted average

of the risk values estimated at the Pa points us discretizing a given entity va yields

the ATA risk estimate for this entity:

r̂ðvaÞ ¼
1

nðvaÞ
XPa
s¼1

nðusÞr̂ðusÞ ð5Þ

where usAva with s 5 1,. . ., Pa, and n(us) is the population count assigned to the

interpolation grid node us (e.g., centroids of 25 km2 cells in this study). Constraint

(5) is satisfied if the same K areal data are used for the ATA kriging of r̂ðvaÞ and the

ATP kriging of the Pa risk values.

Local cluster analysis

A common task in crime analysis is the identification of regions where rates mea-

sured in adjacent geographical units are either significantly similar (i.e., positive

autocorrelation that may produce local clusters) or different (i.e., negative auto-

correlation that may produce local outliers). Similarity between the crime rate

measured within area va and those recorded in the J(va) neighbouring areas vb (e.g.,

which share a common border with va) can be quantified by the local Moran sta-

tistic (Anselin 1995):

IðvaÞ ¼
zðvaÞ �m

s

� �
�

XJðvaÞ
j¼1

1

JðvaÞ
�

zðvjÞ �m

s

� �0
@

1
A ð6Þ

where m and s are the mean and standard deviation of the set of N area rates.

This local indicator of spatial association (LISA) is simply the product of the

kernel rate and the average of the neighboring rates. Camara et al. (2004) use it to

identify significant clusters of crimes, (I(va)40), along with spatial outliers of high

or low crime rates, (I(va)o0). The distribution of the local Moran statistic under the

null hypothesis of complete spatial randomness is usually derived by (repeatedly)

randomly shuffling all the rates except at va, each time computing (6), thus obtain-

ing the distribution of simulated LISA values. The empirical value of (6) is compared
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with this distribution to compute the P value for the test. This randomization

ignores the population size associated with each areal unit (Goovaerts and Jacquez

2005). To address this, we randomly sample a Poisson distribution, Po(n(vj) � m�),
where n(vj) is the size of the population at risk and m� is the population-weighted

mean of the N rates.

The impact of population size on the reliability of crime rates also needs to be

incorporated into the computation of the local Moran statistic. Although Poisson

kriging provides a measure of rate uncertainty in the form of the kriging variance,

this information cannot be used directly in (6) to derive a measure of uncertainty for

the LISA statistic. Following Goovaerts (2006a), the uncertainty attached to crime

rates is carried through a local cluster analysis by conducting this analysis with a set

of L-simulated crime rate maps. Differences between the resulting L maps of LISA

statistics illustrate how the uncertainty about crime rates impacts the results of a

local cluster analysis. The correlation of each area with adjacent areas is tested L

times, enabling the computation of the probability that an area either belongs to a

local cluster or is a spatial outlier. Goovaerts (2006a) proposes the use of p-field

simulation to circumvent the problem that no risk data, only risk estimates and thus

no reference histogram, are available to condition the simulation. According to this

procedure the lth realization of the crime rate for unit va is computed from the

Poisson kriging estimate and the square root of the kriging variance s2(va) as

r ðlÞðvaÞ ¼ r̂ðvaÞ þ sðvaÞwðlÞðvaÞ ð7Þ

and the L sets of random deviates, fw(l)(va), a5 1, . . . Ng, are generated using

nonconditional sequential Gaussian simulation and the semivariogram of the risk,

gR(h), rescaled to a unit sill; see Goovaerts (2006a) for a detailed description of the

p-field simulation algorithm.

Scale dependent correlation and regression

Many factors explain the variation in crime rates in the Baltic states but over differ-

ent time scales and probably at different spatial scales (Ceccato and Haining 2008).

These scales could be distinguished from the variogram, which would then be

modeled. For the variable ‘‘car-related thefts,’’ the point-support model uses

the sum of two cubic models: gR(h) 5 glocal(h)1gregional(h) or, equivalently,

CR(h) 5 Clocal(h)1Cregional(h). The local model range of the autocorrelation estimate

(140 km) is one order of magnitude smaller than for the regional model (1130 km).

Based on the nested variogram model, the risk estimate can be decomposed into the

sum of a local and a regional component, plus a trend component (TC)

r̂ðvaÞ ¼ r̂localðvaÞ þ r̂regionalðvaÞ þ TCðvaÞ ¼ E1ðvaÞ þ E2ðvaÞ þ TCðvaÞ ð8Þ

The spatial components are still estimated as linear combinations of crime rates

recorded in neighboring counties (equation (2)), but the weights are computed by
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solving the following system of equations:

XK

j¼1

llocal
j

�CRðvi ; vjÞ þ dij
m�

nðviÞ

� �
þ mðvaÞ ¼ �Clocalðvi; vaÞ i ¼ 1; . . . ;K

XK

j¼1

llocal
j ¼ 0

ð9Þ

XK

j¼1

lregional
j

�CRðvi ; vjÞ þ dij
m�

nðviÞ

� �
þ mðvaÞ ¼ �Cregionalðvi ; vaÞ i ¼ 1; :::;K

XK

j¼1

lregional
j ¼ 0

ð10Þ

The only differences between these two systems and (4) are the right-hand-side

covariance terms that are approximated as the population-weighted average of

the point-support covariances Clocal(h) or Cregional(h) computed between any two

locations discretizing the areas vi and va. This decomposition is a generalization of

FKA (Wackernagel 1998) to Poisson kriging. The kriging system for the trend com-

ponent is similar to (4), except the right-hand-side covariance terms are set to zero

(Goovaerts 1997).

The maps of spatial components can be used as visualization tools to discrim-

inate between regional and local patterns in estimated crime risk. Spatial compo-

nents are also helpful for exploring scale-dependent correlation patterns. Inferring

scale-dependent correlations directly from FKA is less demanding in terms of

assumptions than computing structural correlation coefficients from the parame-

ters of a linear model of coregionalization fitted to a set of direct- and cross-vario-

grams (Goovaerts and Webster 1994; Goovaerts 1997). Fitting normal linear

regression models with first-order simultaneous autoregressive errors to each of

the spatial components from FKA can also help indicate which variables are most

important at each scale.1

Results and discussion

Variogram analysis

Fig. 1a shows the location of centroids for the administrative units in the Baltic

states. In several cases, a city municipality is found in the center of a district mu-

nicipality (nested geographies). The two centroids are close together yet have very

different crime rates. This arrangement of data creates a problem when quantifying

spatial autocorrelation using the distance between centroids as the measure of

geographic proximity. Most maps of the original variables (not shown) give visual

evidence of spatial autocorrelation, as can be seen for ‘‘car-related theft’’ in Fig. 1e.

But, because of the proximity of city and district centroid locations, the variograms
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for these variables appear to be pure nugget. Cities thus act as spatial outliers,

creating a noisy effect superimposed on the underlying spatial autocorrelation of

the regions. To address this data feature, city and district municipalities were

merged (reducing the number of administrative units from N 5 107 to 5 89), and

the total number of crimes in the new area were divided by the combined pop-

ulation. Note that this is only done for the purpose of estimating the variograms and

that the original 107 rates are still used for kriging. This approach is comparable to

the frequent practice in geostatistics of removing outliers when computing a va-

riogram but returning them for interpolation so that their presence is not lost; how-

ever, the variogram portrayed in Fig. 2 is not erratic due to their presence. In the

absence of fine-scale census data, population was assumed uniformly distributed

within each of the 107 original administrative units, and population data for 2000

was disaggregated to a 5-km grid (Fig. 1b) to produce a population-weighted da-

taset (Fig. 1c) for population-weighted centroids. The population data from the

original unmerged geography were disaggregated to create this data set so that the

denser city populations were allowed for in the computation of the variogram from

the merged geographies.

The dimensions of the study area are approximately 1000 km (N–S) by 750 km

(E–W). Variograms of the areal data for the merged geography were computed for

each of the variables using equation (1) and the population-weighted centroids. A

spatial lag distance of around 55 km was used, and variograms were computed to a

maximum lag of about 450 km; the lag classes varied slightly to achieve a balance

Figure 2. Experimental variogram and model from areal data; and theoretically regularized

variogram and deconvoluted model for car-related theft.
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between having an erratic variogram and oversmoothing. Variogram models were

fitted using weighted least squares with equal weight assigned to each lag because

the number of comparisons for the first lag class was small and an accurate estimate

of the nugget variance is important to obtain for kriging. This approach also tends to

give a good indication of the range parameter, which is valuable for identifying

different scales of variability. Models with nested structures were accepted as the

best-fitting models only if clear evidence existed of more than one scale of variation

in the experimental variogram.

Once computed and modeled, variograms were deconvoluted using an itera-

tive procedure that returns the point-support variogram, which once regularized is

closest to the variogram of the areal data (Goovaerts 2008). For this procedure, the

5-km grid was used as the discretization geography, with the population data as the

weight data set. Fig. 2 shows that the experimental variogram for ‘‘car-related theft’’

constructed with the areal data and the theoretically regularized model are similar

in form, as are the parameters. However, the sill of the point-support (deconvolut-

ed) model is higher, showing that the a priori variance of the point process is greater

than that of the spatially aggregated process. The Poisson variogram estimator and

kriging equations were used for the variable ‘‘infant mortality’’ because it is the only

explanatory variable that has a relatively rare outcome and as such could suffer

from the small number problem. For all other explanatory variables a similar pro-

cedure was adopted using the traditional variogram estimator and kriging proce-

dure (see Haining, Kerry, and Oliver 2010).

Table 1 shows the parameters of models fitted to the experimental variograms

for ‘‘car-related theft’’ and all the explanatory variables. Some variograms exhibit

one basic structure, whereas others exhibit two. The parameter c0 is the nugget

variance, which refers to the spatially unstructured or random variation; c1 gives the

amount of variance associated with patches with an average diameter of a1 (local

or short range variation); and c2 gives the amount of variance associated with

patches with an average diameter of a2 (regional or large range variation). The

parameters c0:sill, c1:sill, and c2:sill give the proportion of the overall variance

(sill 5 c01c11c2) that is accounted for by each structure.

The variograms for most variables have two structures, and the majority of

these have a first structure with a range of 110–150 km. This distance is about

double the diameter of an average administrative unit, suggesting that most patterns

for this shorter range structure cover a district plus its adjacent neighbours. How-

ever, where administrative units are larger (Estonia), this small range structure will

reflect the presence of spatial outliers. Foreign direct investment (‘‘FDI’’), ‘‘GDP,’’

and ‘‘voter participation’’ have markedly larger ranges of autocorrelation for the

first structure. The second basic structure shows a wide spread of range values, most

of which are larger than the maximum lag used for the experimental variogram.

These larger-scale structures may be identifying intercountry differences. The vari-

ables ‘‘border,’’ ‘‘economic change,’’ ‘‘FDI,’’ ‘‘natural increase,’’ ‘‘population den-

sity,’’ ‘‘roads,’’ and ‘‘unemployment’’ do not show variation at this scale.
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The relative nugget effect, c0: sill (Table 1), indicates that for most variables the

proportion of variance accounted for by the nugget is near zero, and hence very

little variation is spatially random. The only variables with marked nugget effects

are ‘‘border,’’ ‘‘GDP,’’ ‘‘natural increase,’’ and ‘‘roads.’’ The variogram for ‘‘divorce

rate’’ is pure nugget (Table 1) and hence the influence of this variable could not be

investigated using geostatistical techniques. For most variables, the ratio

c1:sill shows that the first structure accounts for most of the variance; however,

for ‘‘GDP,’’ ‘‘non-national population,’’ and ‘‘voter participation,’’ c2 accounts for

the largest proportion of the variance, suggesting that differences between countries

are most important for these variables.

Analysis of patterns of crime

Kriged maps

Poisson kriging was applied to the crime data based on the original areal geography

(N 5 107) but using the point-support variogram model inferred from the merged

geography (N 5 89) (see the section on variogram analysis).

Two prediction supports were considered for Poisson kriging: the original areal

geography (ATA Poisson kriging) and a grid of points with a spacing of 2 km (ATP

Poisson kriging). The aggregated ATP Poisson kriged predictions (not shown) are the

same as the ATA Poisson kriged predictions, which demonstrates that the coher-

ency constraint is met. Maps of the ‘‘car-related theft’’ data are shown in Figs. 1e–g.

The map of the original rates and ATA Poisson kriged predictions are similar,

although differences can be seen for three districts in the southeast of Estonia, one

district on the Estonian border, one on the Baltic coast in Latvia, one in the central

north, and one in the south of Lithuania (see Ceccato and Haining 2008 for names

of these districts). Each of these districts is located near a country border or has a

relatively small population (25,000–50,000 [Fig. 1c]). The similarities between

Figs. 1e and 1f suggest, as anticipated, that the small number problem is not a

serious issue for the crime data because of the large population sizes of the

administrative units.

Fig. 1e shows that the expected rates of ‘‘car-related theft’’ are lower in Latvia,

especially in the east. Large rates appear in the central areas of Lithuania. Admin-

istrative areas are artificial constructions, and crime rates should not be expected to

be uniform within them. The ATP Poisson kriged map (Fig. 1g) indicates the broad

underlying patterns of the crime risk that might be revealed if data were not

aggregated by administrative unit.

Local cluster analysis

One hundred simulated rate maps were generated using p-field simulation. The

LISA statistic was computed for each simulated map, and its significance was tested

using two different randomization procedures: random shuffling of simulated rates

ignoring population sizes (Model 1); and, accounting for population size differ-

ences by sampling from a Poisson distribution Po(n(vj) � m�), where n(vj) is the size
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of the population at risk and m� is the population-weighted mean of the N rates

(global crime rate) (Model 2). In both cases, a significance level of .05 was used

with correction for multiple testing utilizing Castro and Singer’s (2006) false dis-

covery rate (FDR). These results were post-processed to retrieve for each admin-

istrative unit the category that occurred most frequently over the 100 simulated

fields: not significant; LL (low-low cluster); LH (low-high outlier); HL (high-low

outlier); and HH (high-high cluster). The frequency of occurrence of each category

is used as a measure of the reliability of the categorization.

Using the original rates data with no adjustments for multiple testing or pop-

ulation size (Model 0), Fig. 3a and Table 2 show that several administrative units in

eastern Latvia are significant LL clusters, and one unit in northern Estonia is a sig-

nificant HH cluster of ‘‘car-related thefts.’’ Using the ATA Poisson kriged maps

(which, as noted, are noise-filtered rates) and Model 1 reduces the number of sig-

nificant LL clusters by half, and there are no significant HH clusters. The reductions

in significant clusters compared with Model 0 are caused by the multiple testing

correction. In Model 2, which accounts for population size, no units are identified

as significant clusters (Fig. 3c and Table 2). When using ATP kriging (Figs. 3d–f)

estimates, many significant clusters are found irrespective of model choice (Table

2). This result for ATP kriged estimates compared with ATA kriged estimates is to be

expected based on the change in the scale of analysis. Because spatial autocorre-

lation decays with increasing distance, any given point on a 2-km grid is more

likely to be surrounded by points with similar high or low crime rates than an

Table 2 Local cluster Analysis Results of Car-related Theft (Original Rates, Area-to-Area (ATA) and

Area-to-Point (ATP) Poisson Kriged Rates) Under the Three Different Models for Hypothesis Testing

Classification Proportion of areas (original and ATA) or points (ATP) in category (%)

Original rate ATA ATP

Frequency of

classification

Model 0 Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

HH 2.8 2.8 0.0 0.9 13.6 14.7 19.1

LL 11.2 10.3 5.6 0.0 23.2 25.0 14.7

HH, 0 � � 99.1 99.1 � 5.6 6.2

HH, 0.01–0.49 � � 0.9 0.0 � 80.3 78.5

HH, 0.50–0.74 � � 0.0 0.0 � 5.3 5.6

HH, 0.75–1 � � 0.0 0.9 � 8.8 9.7

LL, 0 � � 87.9 98.1 � 11.5 14.3

LL, 0.01–0.49 � � 6.5 1.9 � 51.8 52.5

LL, 0.50–0.74 � � 0.9 0.0 � 21.6 29.6

LL, 0.75–1 � � 4.7 0.0 � 15.1 3.6

Proportions of areas or points classified as significant clusters (HH and LL).
�No results given for Model 0 as uncertainty is not taken into account by this model.
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administrative unit measuring 50 km in diameter. Accounting for multiple testing

using the FDR method (Models 1 and 2, Figs. 3e–f) is now especially important.

Many areas are identified as HH or LL clusters in Fig. 3d (Table 2) but are only

classified as such with a 50–75% frequency once multiple testing is taken into

consideration. For Model 2 (Fig. 3f), where population size is also taken into ac-

count, a larger area on the southwest coast of Estonia is considered to be a HH

cluster with a frequency of more than 75%, and, compared with Fig. 3e, smaller

areas in northeastern Latvia are identified as LL clusters with a frequency of 50–

75% (Table 2). In summary, the maps in Fig. 3 and LISA results (Table 2) provide a

number of perspectives on the existence and location of ‘‘hot spots’’ and ‘‘cold

spots’’ for the offense of ‘‘car-related theft.’’ Hot spots tend to occur at the local

scale, whereas cold spots are a more regional phenomenon including most of east-

ern Latvia, perhaps related to lower ‘‘GDP’’ in this area. Given that law enforce-

ment agencies are more interested in locating and policing the hot spot areas, this

analysis also indicates the value of ATP Poisson kriging before cluster analysis to

pinpoint more effectively where these clusters might be, which would be largely

missed by an analysis using areal data.

Explaining patterns of car-related thefts

Scale-dependent correlations

Correlations were computed between the original values for ‘‘car-related theft’’ and

the set of explanatory variables and also each of their spatial components (trend

component 5 TC, local 5 E1 and regional 5 E2) obtained using factorial ATA (Pois-

son) kriging (hence noise-filtered measures of the variables). We discuss pairs of vari-

ables with a correlation coefficient 40.5 (a value chosen as indicative of a moderate

relationship), and where the correlation based on a spatial component is greater than

those based on the original data values. This selected threshold enables us to make

some preliminary comparisons with the findings of Ceccato and Haining (2008).

Correlations between ‘‘car-related theft’’ and the two variables ‘‘natural in-

crease’’ and ‘‘roads’’ are 0.25 and 0.05, respectively, when based on the original

data values, but 0.57 and � 0.51, respectively, when based on the estimated trend

components. Figs. 4a and 4d show the maps for the TCs of ‘‘car-related theft’’ and

‘‘natural increase.’’ Both maps show a general increase in the estimates from east to

west and higher values in the north and south.

The correlations between ‘‘car-related theft’’ and ‘‘population density’’ for the

original variables and E1 components are 0.47 and 0.59, respectively. Figs. 4b and

4e map these E1 components for the two variables, indicating a scale of variation of

approximately 120–140 km with aggregations of high or low values.

Finally, the correlations between ‘‘car-related theft’’ and ‘‘GDP’’ for the orig-

inal variables and E2 components are 0.42 and 0.55, respectively, and the scale of

variation is between 700 and 1130 km. Figs. 4c and 4f map these E2 components,

revealing lower ‘‘GDP’’ and ‘‘car-related thefts’’ in Latvia.
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The purpose of this analysis, similar to carrying out a correlation analysis before

undertaking multivariate regression, is to identify associations among all the vari-

ables, only here the data are decomposed into different components of variation

and associations are identified with respect to each component. The higher corre-

lation between ‘‘GDP’’ and ‘‘car-related theft’’ at the E2 scale reflects the results of

the Ceccato and Haining (2008) analysis, where an association reveals a differen-

tiation between Estonia, Latvia, and Lithuania. The association between ‘‘car-related

theft’’ and urbanization (‘‘population density’’)—identified at the administrative area

level in Ceccato and Haining (2008)—appears to be strongest at the scale of each

administrative area taken together with its nearest neighbor areas (E1).

The Ceccato and Haining (2008) analysis shows no significant relationship be-

tween road density (‘‘roads’’) and ‘‘car-related thefts,’’ but a negative relationship

does appear significant in the trend component of variation. While their analysis

reveals a significant relationship between ‘‘natural increase’’ and ‘‘car-related

thefts,’’ the analysis here suggests that this association may be a product of larger-

scale trends in both variables rather than an association at the administrative area

level. The next stage of analysis, to which we now turn, allows a closer examination

of these relationships while controlling for the effects of the other variables.

Scale-dependent regression

A multiple linear regression (MLR) model with first-order simultaneous autoregres-

sive errors was fitted, using GeoDA. The dependent variable is ‘‘car-related thefts,’’

and in the first analysis the log of the original crime rates (z(va)) was used, and

the original values were used for the independent variables. This implementation

facilitates comparison with the results in Ceccato and Haining (2008). In the second

analysis, ATA kriged estimates (KE)2 of all the variables are used. In the third set of

analyses, each of the spatial components from ATA FKA (TC, E1, and E2)3 for all the

variables are analyzed in turn. The second and third analyses are not directly com-

parable with the Ceccato and Haining results because the variables have been

constructed differently, as previously explained.

The specific MLR model was fitted because the earlier analysis by Ceccato and

Haining (2008) and the results of the preceding spatial components analysis suggest

the need to allow for spatial autocorrelation in the errors (see also note 1). Appro-

priate diagnostic tests demonstrated for all models the absence of residual spatial

autocorrelation and the normality of the residuals.

Table 3 summarizes all of the MLR results. Note that the spatial error parameter

is significant in all of the analyses. Although ‘‘divorce rate’’ is identified as statis-

tically significant for the original data, it could not be included in the second and

third analyses because its variogram is pure nugget. For the original variables, three

other explanatory variables are significant at the 5% level: ‘‘GDP,’’ ‘‘voter partic-

ipation,’’ and ‘‘social change’’ (which has the ‘‘wrong’’ sign). These results can be

compared with those of Ceccato and Haining (2008) (Table 1), although in their

analysis they allow for intercountry differences using dummy variables and the
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dependent variable is the log of the standardized ‘‘car-related crime’’ ratio. As with

this earlier study, the results here show that a target area attractiveness variable is

significant (‘‘GDP’’) as is a social disorganization variable (‘‘divorce rate’’). In ad-

dition a social cohesion variable is significant (‘‘voter participation’’). Ceccato and

Haining (2008) also report that ‘‘social change’’ has the ‘‘wrong sign’’ for Estonia

and Lithuania, but not Latvia. They attribute this result to measuring ‘‘social

change’’ with changes in the ‘‘divorce rate’’ for the purpose of analysis. Interested

readers should consult the original article for more details.

Modeling using KE increases the proportion of variance explained in the depen-

dent variable from 59% to 68% (Table 3). The apparently better fit may be partly due

to working with noise-filtered dependent and independent variables, which have

lower overall variances. The significant variables explaining the Poisson kriged es-

timates of risk are ‘‘social change’’ (but again with the wrong sign), ‘‘voter partici-

pation,’’ ‘‘population density,’’ and ‘‘non-national population,’’ all with the expected

signs. These results, from which divorce rate had to be excluded, are not directly

comparable to those of Ceccato and Haining and draw particular attention to ur-

banization (‘‘population density’’) and social cohesion (‘‘voter participation’’ and

‘‘non-national population’’) variables in explaining crime risk.

We now turn to the results obtained from modeling the three scales of variation

in crime risk using the corresponding scales of variation in the explanatory variables

(excluding ‘‘divorce rate’’). Modeling TC, the variables ‘‘infant mortality,’’ ‘‘social

change,’’ and ‘‘voter participation’’ are significant at the 5% level and explain 84%

of the variation (Table 3). Again the sign is wrong for ‘‘social change.’’ The per-

centage of variation explained in the E1 component is 52%, and the significant

variables (Table 3) are ‘‘border,’’ ‘‘infant mortality,’’ ‘‘males aged 15–29,’’ and

‘‘population density.’’ The percentage of the variation explained in the E2 compo-

nent is 53%, and the significant variables (Table 3) are ‘‘GDP,’’ ‘‘infant mortality,’’

‘‘males aged 15–29,’’ ‘‘natural increase,’’ and ‘‘voter participation.’’

The significant variables for explaining the variation in the risk of ‘‘car-related

theft’’ at local and regional/national scales (E1 and E2) are those relating to demo-

graphic and economic conditions. This finding suggests that countries and subre-

gions that are leading economically and with large proportions of young males tend

to have the highest risk of this offense (and hence, are likely to have the highest

rates). The association of car crime rates with these explanatory variables has a

spatial reach that is both local (the spatial unit and its immediate neighbors) and

regional. However, we can go further. Because over 80% of the spatial variation in

‘‘car-related theft’’ as described by its variogram (Table 1) is local, the most im-

portant variables explaining this variation are those identified by the MLR for E1.

This in turn emphasizes the importance of demographics (proportion of ‘‘males

aged 15–29’’), urbanization (‘‘population density’’), social cohesion (‘‘voter par-

ticipation’’), location (‘‘border’’), and the variable ‘‘infant mortality’’ (which may be

capturing a measure of welfare provision) in explaining the geographical distribu-

tion of this offense in the Baltic states, where the association is not just between
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levels of these variables in the same administrative area but between levels of these

variables in contiguous administrative areas. This finding about the importance of

the E1 component of variation may be indicative of what are often termed local

‘‘spillover effects,’’ with certain criminogenic conditions in one administrative area

spilling over into neighboring areas and affecting their crime rates as well. The

negative sign for the coefficient parameter estimate for the ‘‘border’’ variable may

be indicating the barrier effect that international borders have on these spillover

effects, which is understandable.

The importance of the TC of variation for ‘‘car-related theft’’ is not captured in

the variogram; however, its relative importance can be estimated by computing the

variance of each set of kriged estimates (E1, E2, and TC) and dividing these by the

variance of the kriged risk. When this calculation is done 71% of the variation can be

explained by E1, 12% by E2, and 17% by TC. This result suggests that the variables

identified as significant locally (E1) are by far the most important and that broad

trends in ‘‘infant mortality,’’ ‘‘social change,’’ and ‘‘voter participation’’ are only

slightly more important than regional patterns in ‘‘GDP,’’ ‘‘infant mortality,’’ ‘‘males

aged 15–29,’’ ‘‘natural increase,’’ and ‘‘voter participation’’ for explaining patterns

of ‘‘car-related theft.’’ Interestingly, some variables (‘‘infant mortality,’’ ‘‘voter par-

ticipation,’’ and ‘‘males aged 15–29’’) are significant at more than one scale.

Conclusions

This study demonstrates the use of geostatistics for studying crime data. First, ATA

Poisson kriging can be used to filter out the noise in rates caused by the small

number problem, which is important for low volume crimes recorded in areas with

small populations. Second, ATP Poisson kriging creates a continuous risk surface

that reduces the visual bias associated with large administrative units. Third, local

cluster analysis of simulated crime rates from ATA and ATP kriging, accounting for

population size and multiple testing in the randomization and testing procedures, is

helpful in more carefully identifying significant clusters of crimes and pinpointing

the most likely clusters. Doing this analysis with ATP Poisson kriged estimates may

also give insight into more localized potential ‘‘hot spots’’ that are not evident when

areal rates are used.

Correlation and regression analyses using the spatial components obtained

from ATA factorial Poisson kriging help to identify the most important spatial scales

at which crime rates vary and which explanatory variables are significant at those

scales. It also allows visualization of the patterns associated with these different

scales, which can give further insight into the independent variables that are as-

sociated with high crime rates. The methodology described here provides a way to

explore these different scales of spatial variation and associations and offers some

advantages over methods that sweep unexplained spatial variation into a single

spatially autocorrelated error term or into spatial dummies. A rich set of models also

exists that can be called upon for describing the spatial structure in data.
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The geostatistical methodology presented here is not without its challenges.

First, it cannot circumvent the limitations that arise from the scale at which data

have been collected. Any assumptions made about, for example, how population is

distributed at a subunit scale need to be acknowledged and, if possible, their va-

lidity assessed and their effect on analysis considered. An additional challenge for

the present application, which is not likely to be a problem in many other studies, is

the existence of nested geographies, which creates an artifact nugget effect when

geographical proximity is quantified using distance between centroids. Second,

variables may not be amenable to geostatistical analysis if they have no spatial

structure—as in the case for the variable ‘‘divorce rate.’’ Third, the methodology

has not been widely tested on crime data sets, and the software used (Terraseer

STIS) is currently available only as a beta product.
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Notes

1 Because kriging computes weighted spatial averages of crime rates, it introduces spatial

autocorrelation into the estimated crime risk. One way to allow for this artifact in a

regression analysis of these estimated risks is to fit a correlated-errors regression model.

2 ATA Poisson kriging used for ‘‘car-related theft’’ and ’’infant mortality.’’

3 ATA factorial Poisson kriging used for ‘‘car-related theft’’ and because ‘‘infant mortality.’’
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