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Geostatistical methods have rarely been applied to area-level offense data. This article
demonstrates their potential for improving the interpretation and understanding
of crime patterns using previously analyzed data about car-related thefts for Estonia,
Latvia, and Lithuania in 2000. The variogram is used to inform about the scales of
variation in offense, social, and economic data. Area-to-area and area-to-point Poisson
kriging are used to filter the noise caused by the small number problem. The latter is
also used to produce continuous maps of the estimated crime risk (expected number of
crimes per 10,000 habitants), thereby reducing the visual bias of large spatial units. In
seeking to detect the most likely crime clusters, the uncertainty attached to crime risk
estimates is handled through a local cluster analysis using stochastic simulation.
Factorial kriging analysis is used to estimate the local- and regional-scale spatial
components of the crime risk and explanatory variables. Then regression modeling is
used to determine which factors are associated with the risk of car-related theft at
different scales.

Introduction

Quantitative analyses of area crime data often focus on the identification of areas of
extreme criminality, such as areas with high rates or counts of offenses (crime hot
spots). Hot spot detection is often undertaken using any one of a number of ad hoc
techniques (e.g., Sherman, Gartin, and Buerger 1989) or statistical cluster detection
methods drawn either from spatial epidemiology (e.g., Kulldorff 1997) or quanti-
tative geography (e.g., Messner et al. 1999; Anselin et al. 2000; Haining 2003).
Ecological modeling to explain spatial variation in counts or rates is usually un-
dertaken using regression (e.g., Ceccato and Haining 2008; Haining, Law, and
Griffith 2009).
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Several authors suggest the use of geostatistical methods for the investigation of
crime data (Anselin et al. 2000; Krivoruchko and Gotway 2003; Krivoruchko, Got-
way, and Zhigimont 2003; Getis 2004), but we are aware of only one application.
Camara et al. (2004) use ordinary kriging based on centroids of administrative
units to produce a surface of homicide rates in Brazil and to identify clusters.
However, recent advances in geostatistical methodology, such as area-to-area
(ATA) and area-to-point (ATP) kriging (Kyriakidis 2004) and Poisson kriging (Goo-
vaerts 2005; Monestiez et al. 2005), have opened up new opportunities.

We demonstrate in this article the application of geostatistical methods for an-
alyzing the geography of offenses and for identifying significant clusters of crimes.
Data about car-related thefts in the Baltic states (Estonia, Latvia, and Lithuania) in
2000, a data set previously analyzed by Ceccato and Haining (2008), are used. This
article contrasts the insights obtained using geostatistical methodology with those
reported by Ceccato and Haining.

Acquisitive crime in the Baltic states: an earlier study

A conceptual framework

Since the collapse of the Soviet Union in 1991, the three Baltic states of Estonia,
Latvia, and Lithuania have undergone profound political change and associated
social and economic change as their economies have become more market ori-
ented. The conceptual framework developed by Ceccato and Haining (2008, p.
216) to explain the geography of acquisitive crime emphasizes the role of both
medium- and short-term dynamics. In the medium term, citizens of countries ex-
periencing profound socioeconomic change are subject to uncertainty and insta-
bility that create anomic conditions leading to increased rates of crime and
violence (Durkheim 1897). However, effects are moderated where strong social
institutions exist (Messner and Rosenfeld 1997; Kim and Pridemore 2005). Ceccato
and Haining (2008) measure medium-term effects using ‘““economic, social and
welfare change” over the period 1993-2000. All the change variables were cal-
culated so that more change (e.g., increasing unemployment) would be expected
to produce more offenses.

In the short term, the incidence of acquisitive offenses at the area level reflects a
rational choice theory trade-off made by a motivated offender in terms of current
“risk and reward.” Motivated offenders not only assess an area’s attractiveness
(reward to the offender) but also the probability of getting caught (risk to the
offender). Geographical variation in rates of acquisitive crime depends on prevail-
ing economic conditions, the social context (strength of social institutions; quality
of welfare provision), and demographic structure. Periods of high unemployment
may have more motivated offenders. A strong economy is more likely to have more
targets for acquisitive crimes. If economic performance is geographically and sect-
orally uneven, motivated offenders may be more drawn to better-off regions than to
poorer regions. However, the literature about social cohesion has long suggested
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the importance of strong social institutions in moderating the negative effects of
economic problems in society (Sampson 1986) and in discouraging would-be
offenders. Lack of social cohesion in an area reduces the risk to the offender to
commit an offense there because fewer “’capable guardians’” are present. Demo-
graphic structure is important because areas with relatively large numbers of young
males or with an overrepresentation of certain marginalized non-national ethnic
groups (Lehti 2001) tend to experience higher rates of offending.

Although the three Baltic states have experienced the effects of transition, these
effects have played out differently across the states and the subregions into which
they are subdivided. Other place-specific variables were added to the set of
covariates that are known to correlate with offense rates: whether areas are at
national political borders (“border’’) and whether they are urban or rural areas
(“population density”’). A list of the variables used is given in Table 1. For full de-
tails and a graphical representation of the conceptual framework used, see Ceccato
and Haining (2008).

Ceccato and Haining’s methodology and findings
Using the statistical software package STATA, the negative binomial regression
model was fitted to counts of car-related thefts for 107 administrative units (Osgood
2000; Osgood and Chambers 2000). Dummy variables were introduced to allow
parameters to vary between the three countries. However, statistically significant
spatial autocorrelation was identified in the generalized linear model (GLM) resid-
uals (Lin and Zhang 2007). Because the counts for this offense were large, they
were converted to standardized offense ratios, log transformed (Ceccato and Hain-
ing 2008, p. 227), and a normal linear regression model was fitted with first-order
simultaneous autoregressive errors to model the residual spatial autocorrelation.
Also, because the residuals from this model were not spatially autocorrelated (and
other diagnostics were satisfactory), this was the model used for hypothesis testing.

The final model of Ceccato and Haining (2008), summarized in Table 1, ex-
plains just under 67% of the variation in the log-transformed dependent variable
(pseudo-R?). Short-term dynamics dominate the final model and show the impor-
tance of target area attractiveness (higher levels of the variable gross domestic
product [GDP], lower levels of “infant mortality’” indicative of a higher standard of
living, and higher levels of “population density’’) and social disorganization asso-
ciated with areas with high rates of family breakdown (higher ““divorce rate”).
Ceccato and Haining (2008) found no convincing evidence of medium-term effects
being important except in Latvia, where “’social change” is statistically significant
and its coefficient has the ““correct” (i.e., expected) sign, although in Lithuania and
Estonia the coefficient for the same variable, while again statistically significant, has
the ““wrong’’ sign. Table 1 summarizes their main results.

As Ceccato and Haining (2008) observe, one of the problems with this type of
small-area analysis is how to deal with the scale effects associated with different
explanatory variables. Areas are not sealed units and ““economic disadvantage in
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one region may trigger higher rates of offending and offence rates in other areas as mo-
tivated offenders travel or migrate to find suitable targets” (Ceccato 2007, p. 141). The
identification and mapping of these scales of variability and their association with offense
rates is not straightforward in the types of models used by Ceccato and Haining (2008),
which is one of the reasons to investigate the use of geostatistical methods, including
factorial kriging analysis (FKA). However, another important set of reasons is that
geostatistics also provides an analyst with a much wider range of models for descri-
bing spatial structure in data, and recent developments now allow the analyst of area
data to account for the spatial support of the measurements (i.e., size and shape of
administrative units), as well as the population size, which can vary greatly among units.

Revisiting car-related thefts in the Baltic states: methods

Data

Car-related theft counts refer to the 107 administrative units in Estonia, Latvia, and
Lithuania in 2000 (Fig. Ta). The average population size of the areas in 2000 was
just under 70,000, making them large heterogeneous spatial units. Data about de-
mographic, social, economic, and welfare variables refer to the same spatial units.
Quality issues arise with this data, including underreporting of offenses (Del Frate
and van Kesteren 2004; see also European Sourcebook of Crime and Criminal Jus-
tice Statistics 1996, 2003). (For an extended overview of database construction and
data quality issues, see Ceccato and Haining (2008) and Ceccato (2008).)

Geostatistical methodology

Crime rates for an administrative unit v, are the number of crimes in that unit d(v,)
divided by its population n(v,) and then multiplied by 10,000. When n(v,) is small,
rates z(v,) = d(v,)/n(v,) may appear unrealistically large or small (the small number
problem). Variogram and spatial predictions need to be adapted to counter this
source of noise.

Variogram computation

First, the usual variogram estimator (equation 4 in Haining, Kerry, and Oliver
2010), must be adapted to characterize the spatial variability in the data. The fol-
lowing population-weighted estimator adjusts for the small number problem:

1 N“{mmmm

n(vy) + n(vg

?Rv(h) = N(h) ( ) ( )
n(vy)n(v, .
2 Z n(vq)Jrn(\[jB) P

[zt~ 2 = (1)

where N(h) is the number of pairs of areas (v, ,vg) whose population-weighted cen-
troids are separated by the vector h, and m™ is the population-weighted mean of the
N area rates. The usual squared differences, [z(v,) — z(vB)]2, are weighted by a func-
tion of their respective population sizes, n(v,)n(vg)/[n(v,)+n(vg)l, a term inversely
proportional to their standard errors, thus giving more importance to more reliable
data pairs (Monestiez et al. 2006). More importance is given to data values based on
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larger populations, which have smaller standard errors. In analyses where the
areal units are small, this adjustment is particularly important but is not likely
to make a major difference to the results here. This adjustment should also be
made when considerable heterogeneity exists in population size across a set of areal
units.

An important step in the application of the kriging techniques described in this
article is inference about the point-support variogram yg(h) or, equivalently, the
point-support covariance Cg(h) defined as Cg(0) — yg(h). The major difficulty here is
that this function cannot be estimated directly from the experimental variogram
[equation (1)] because the latter is computed from areal rate data. Therefore, the
model fitted to (1) using weighted least squares (see, e.g., Haining, Kerry, and Ol-
iver 2010) needs to be deconvoluted. We adopt an iterative deconvolution proce-
dure whereby the point-support model is chosen that, once regularized, is the
closest to the model fitted to the areal data. See Goovaerts (2006b, 2008) for more
details about this approach and simulation studies that illustrate the reliability of
this method in proceeding from areal to point support. Unlike conventional decon-
volution methods developed for regular mining blocks, this approach takes into
account the irregular shape and size of areal units, and the nonuniform distribution
of population within those units if those data are available.

Spatial prediction
Adaptation of kriging as outlined by Haining, Kerry, and Oliver (2010) for use with
crime data should proceed as follows. The crime count d(v,) is interpreted as a
realization of a random variable D(v,) that is Poisson distributed with a parameter
(expected number of crimes) that is the product of the population size n(v,) and the
local crime risk R(v,). R(v,) might be thought of as a noise-filtered crime rate for
area v, which we also refer to as the crime risk. It is estimated by using a variant of
kriging with nonsystematic errors, known as Poisson kriging (Monestiez et al.
2005). Choropleth mapping of crime rates creates visual bias as large units dom-
inate. ATP kriging (Kyriakidis 2004; Goovaerts 2006b) is used to create isopleth
maps of the estimated crime risk to reduce this bias.

The crime risk and the associated kriging variance for a unit X are estimated as

f‘(X) = i X,‘Z(V,‘) and (2)

K
o?(X) = Cr(X, X) — Z AiCr(vi, X) — pu(X) (3)

where X represents either an area v, (ATA kriging) or a point us within that
area (ATP kriging). The kriging weights (A) and the Lagrange parameter p(X) are
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computed by solving the Poisson kriging system of equations:

K

Z?xj |:CR(V,', Vj) +6,‘j% +u(X) =Cr(vi, X), i=1,...,K,

J=1 !

K (4)
3 =1

g

—

where 8;;=1 if i=j and 0 otherwise. The error variance term, m*/n(v)), leads to
smaller weights for rates measured over smaller populations. The ATA covariances
Cr(v;, v;) and ATP covariances Cr(vi, X = uy) are approximated as the popula-
tion-weighted average of the point-support covariance Cg(h) computed between
any two locations discretizing the areas v; and v;, or v; and u,. An important prop-
erty of the ATP kriging estimator is its coherence: the population-weighted average
of the risk values estimated at the P, points u; discretizing a given entity v,, yields
the ATA risk estimate for this entity:

P

‘I o

Hvy) = —— n(ug)r(ug 5
(0 = iy D s ) (5)
where use v, with s=1,..., P, and n(uy) is the population count assigned to the

interpolation grid node u; (e.g., centroids of 25 km? cells in this study). Constraint
(5) is satisfied if the same K areal data are used for the ATA kriging of 7(vy) and the
ATP kriging of the P, risk values.

Local cluster analysis

A common task in crime analysis is the identification of regions where rates mea-
sured in adjacent geographical units are either significantly similar (i.e., positive
autocorrelation that may produce local clusters) or different (i.e., negative auto-
correlation that may produce local outliers). Similarity between the crime rate
measured within area v, and those recorded in the J(v,) neighbouring areas v (e.g.,
which share a common border with v,) can be quantified by the local Moran sta-
tistic (Anselin 1995):

I(vy) = [72(‘/“)5_ m} X /;ZV?)I(L) x {Z(\/j)s_ m} (6)

where m and s are the mean and standard deviation of the set of N area rates.
This local indicator of spatial association (LISA) is simply the product of the
kernel rate and the average of the neighboring rates. Camara et al. (2004) use it to
identify significant clusters of crimes, ((v,)>0), along with spatial outliers of high
or low crime rates, (/(v,) <0). The distribution of the local Moran statistic under the
null hypothesis of complete spatial randomness is usually derived by (repeatedly)
randomly shuffling all the rates except at v,, each time computing (6), thus obtain-
ing the distribution of simulated LISA values. The empirical value of (6) is compared

60



Ruth Kerry et al. Applying Geostatistical Analysis to Crime Data

with this distribution to compute the P value for the test. This randomization
ignores the population size associated with each areal unit (Goovaerts and Jacquez
2005). To address this, we randomly sample a Poisson distribution, Po(n(v)) x m™),
where n(v)) is the size of the population at risk and m™ is the population-weighted
mean of the N rates.

The impact of population size on the reliability of crime rates also needs to be
incorporated into the computation of the local Moran statistic. Although Poisson
kriging provides a measure of rate uncertainty in the form of the kriging variance,
this information cannot be used directly in (6) to derive a measure of uncertainty for
the LISA statistic. Following Goovaerts (2006a), the uncertainty attached to crime
rates is carried through a local cluster analysis by conducting this analysis with a set
of L-simulated crime rate maps. Differences between the resulting L maps of LISA
statistics illustrate how the uncertainty about crime rates impacts the results of a
local cluster analysis. The correlation of each area with adjacent areas is tested L
times, enabling the computation of the probability that an area either belongs to a
local cluster or is a spatial outlier. Goovaerts (2006a) proposes the use of p-field
simulation to circumvent the problem that no risk data, only risk estimates and thus
no reference histogram, are available to condition the simulation. According to this
procedure the fh realization of the crime rate for unit v, is computed from the
Poisson kriging estimate and the square root of the kriging variance 6°(v,) as

rD(vy) = #(vy) + o(va) W (1) (7)

and the L sets of random deviates, {W(I)(Va), a=1,...N}, are generated using
nonconditional sequential Gaussian simulation and the semivariogram of the risk,
vr(h), rescaled to a unit sill; see Goovaerts (2006a) for a detailed description of the
p-field simulation algorithm.

Scale dependent correlation and regression

Many factors explain the variation in crime rates in the Baltic states but over differ-
ent time scales and probably at different spatial scales (Ceccato and Haining 2008).
These scales could be distinguished from the variogram, which would then be
modeled. For the variable “‘car-related thefts,”” the point-support model uses
the sum of two cubic models: Yg(h) = Yiocal(h)+Yregional(h) oF, equivalently,
Cr(h) = Cigcat(h)+Cregional(h). The local model range of the autocorrelation estimate
(140km) is one order of magnitude smaller than for the regional model (1130 km).
Based on the nested variogram model, the risk estimate can be decomposed into the
sum of a local and a regional component, plus a trend component (TC)

F(Va) = Tiocal (Vo) + fregional(va) + TC(va) = E1(Vo) + Ea(va) + TC(v4) (8)

The spatial components are still estimated as linear combinations of crime rates
recorded in neighboring counties (equation (2)), but the weights are computed by
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solving the following system of equations:

K *
_ m = .
Zx/llocal |:CR(V17 vl) + 6"]%] + H(Va) = Clocal(via Vot) = 17’ -, K
=1 ’
) (9)

Z x}ocal =0

=1

*

K
. _ m — .
E k;eg|ona| |:CR(V1'7 V/) + 6’7 n(v-)} + H(Vu) = Cregional(via Voc) = 17 R3] K
= ’

K ol
Z )L;eglona -0
Jj=1

The only differences between these two systems and (4) are the right-hand-side
covariance terms that are approximated as the population-weighted average of
the point-support covariances Ciocai(h) or Cregionaith) computed between any two
locations discretizing the areas v; and v,. This decomposition is a generalization of
FKA (Wackernagel 1998) to Poisson kriging. The kriging system for the trend com-
ponent is similar to (4), except the right-hand-side covariance terms are set to zero
(Goovaerts 1997).

The maps of spatial components can be used as visualization tools to discrim-
inate between regional and local patterns in estimated crime risk. Spatial compo-
nents are also helpful for exploring scale-dependent correlation patterns. Inferring
scale-dependent correlations directly from FKA is less demanding in terms of
assumptions than computing structural correlation coefficients from the parame-
ters of a linear model of coregionalization fitted to a set of direct- and cross-vario-
grams (Goovaerts and Webster 1994; Goovaerts 1997). Fitting normal linear
regression models with first-order simultaneous autoregressive errors to each of
the spatial components from FKA can also help indicate which variables are most
important at each scale.’

(10)

Results and discussion

Variogram analysis

Fig. 1a shows the location of centroids for the administrative units in the Baltic
states. In several cases, a city municipality is found in the center of a district mu-
nicipality (nested geographies). The two centroids are close together yet have very
different crime rates. This arrangement of data creates a problem when quantifying
spatial autocorrelation using the distance between centroids as the measure of
geographic proximity. Most maps of the original variables (not shown) give visual
evidence of spatial autocorrelation, as can be seen for ““car-related theft'” in Fig. Te.
But, because of the proximity of city and district centroid locations, the variograms
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Figure 2. Experimental variogram and model from areal data; and theoretically regularized
variogram and deconvoluted model for car-related theft.

for these variables appear to be pure nugget. Cities thus act as spatial outliers,
creating a noisy effect superimposed on the underlying spatial autocorrelation of
the regions. To address this data feature, city and district municipalities were
merged (reducing the number of administrative units from N=107 to = 89), and
the total number of crimes in the new area were divided by the combined pop-
ulation. Note that this is only done for the purpose of estimating the variograms and
that the original 107 rates are still used for kriging. This approach is comparable to
the frequent practice in geostatistics of removing outliers when computing a va-
riogram but returning them for interpolation so that their presence is not lost; how-
ever, the variogram portrayed in Fig. 2 is not erratic due to their presence. In the
absence of fine-scale census data, population was assumed uniformly distributed
within each of the 107 original administrative units, and population data for 2000
was disaggregated to a 5-km grid (Fig. 1b) to produce a population-weighted da-
taset (Fig. 1c) for population-weighted centroids. The population data from the
original unmerged geography were disaggregated to create this data set so that the
denser city populations were allowed for in the computation of the variogram from
the merged geographies.

The dimensions of the study area are approximately 1000 km (N-S) by 750 km
(E-W). Variograms of the areal data for the merged geography were computed for
each of the variables using equation (1) and the population-weighted centroids. A
spatial lag distance of around 55 km was used, and variograms were computed to a
maximum lag of about 450 km; the lag classes varied slightly to achieve a balance

63



Geographical Analysis

between having an erratic variogram and oversmoothing. Variogram models were
fitted using weighted least squares with equal weight assigned to each lag because
the number of comparisons for the first lag class was small and an accurate estimate
of the nugget variance is important to obtain for kriging. This approach also tends to
give a good indication of the range parameter, which is valuable for identifying
different scales of variability. Models with nested structures were accepted as the
best-fitting models only if clear evidence existed of more than one scale of variation
in the experimental variogram.

Once computed and modeled, variograms were deconvoluted using an itera-
tive procedure that returns the point-support variogram, which once regularized is
closest to the variogram of the areal data (Goovaerts 2008). For this procedure, the
5-km grid was used as the discretization geography, with the population data as the
weight data set. Fig. 2 shows that the experimental variogram for “’car-related theft”
constructed with the areal data and the theoretically regularized model are similar
in form, as are the parameters. However, the sill of the point-support (deconvolut-
ed) model is higher, showing that the a priori variance of the point process is greater
than that of the spatially aggregated process. The Poisson variogram estimator and
kriging equations were used for the variable ““infant mortality’” because it is the only
explanatory variable that has a relatively rare outcome and as such could suffer
from the small number problem. For all other explanatory variables a similar pro-
cedure was adopted using the traditional variogram estimator and kriging proce-
dure (see Haining, Kerry, and Oliver 2010).

Table 1 shows the parameters of models fitted to the experimental variograms
for ““car-related theft”” and all the explanatory variables. Some variograms exhibit
one basic structure, whereas others exhibit two. The parameter ¢y is the nugget
variance, which refers to the spatially unstructured or random variation; c; gives the
amount of variance associated with patches with an average diameter of a; (local
or short range variation); and ¢, gives the amount of variance associated with
patches with an average diameter of a, (regional or large range variation). The
parameters cy:sill, cq:sill, and c,:sill give the proportion of the overall variance
(sill = co+cy+ ) that is accounted for by each structure.

The variograms for most variables have two structures, and the majority of
these have a first structure with a range of 110-150km. This distance is about
double the diameter of an average administrative unit, suggesting that most patterns
for this shorter range structure cover a district plus its adjacent neighbours. How-
ever, where administrative units are larger (Estonia), this small range structure will
reflect the presence of spatial outliers. Foreign direct investment (“FDI”), ““GDP,”
and “voter participation’”” have markedly larger ranges of autocorrelation for the
first structure. The second basic structure shows a wide spread of range values, most
of which are larger than the maximum lag used for the experimental variogram.
These larger-scale structures may be identifying intercountry differences. The vari-
ables ““border,” ““economic change,” “/FDI,”” “'natural increase,” “‘population den-
sity,” “roads,”” and ““unemployment”” do not show variation at this scale.

2y
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The relative nugget effect, co: sill (Table 1), indicates that for most variables the
proportion of variance accounted for by the nugget is near zero, and hence very
little variation is spatially random. The only variables with marked nugget effects
are “border,” “GDP,”” “natural increase,”” and ‘‘roads.”” The variogram for “divorce
rate”’ is pure nugget (Table 1) and hence the influence of this variable could not be
investigated using geostatistical techniques. For most variables, the ratio
¢y :sill shows that the first structure accounts for most of the variance; however,
for “GDP,”” “’non-national population,” and “’voter participation,” ¢, accounts for
the largest proportion of the variance, suggesting that differences between countries
are most important for these variables.

Analysis of patterns of crime

Kriged maps

Poisson kriging was applied to the crime data based on the original areal geography
(N=107) but using the point-support variogram model inferred from the merged
geography (N = 89) (see the section on variogram analysis).

Two prediction supports were considered for Poisson kriging: the original areal
geography (ATA Poisson kriging) and a grid of points with a spacing of 2 km (ATP
Poisson kriging). The aggregated ATP Poisson kriged predictions (not shown) are the
same as the ATA Poisson kriged predictions, which demonstrates that the coher-
ency constraint is met. Maps of the ““car-related theft'” data are shown in Figs. 1e-g.
The map of the original rates and ATA Poisson kriged predictions are similar,
although differences can be seen for three districts in the southeast of Estonia, one
district on the Estonian border, one on the Baltic coast in Latvia, one in the central
north, and one in the south of Lithuania (see Ceccato and Haining 2008 for names
of these districts). Each of these districts is located near a country border or has a
relatively small population (25,000-50,000 [Fig. 1cl). The similarities between
Figs. 1e and 1f suggest, as anticipated, that the small number problem is not a
serious issue for the crime data because of the large population sizes of the
administrative units.

Fig. Te shows that the expected rates of “’car-related theft’” are lower in Latvia,
especially in the east. Large rates appear in the central areas of Lithuania. Admin-
istrative areas are artificial constructions, and crime rates should not be expected to
be uniform within them. The ATP Poisson kriged map (Fig. 1g) indicates the broad
underlying patterns of the crime risk that might be revealed if data were not
aggregated by administrative unit.

Local cluster analysis

One hundred simulated rate maps were generated using p-field simulation. The
LISA statistic was computed for each simulated map, and its significance was tested
using two different randomization procedures: random shuffling of simulated rates
ignoring population sizes (Model 1); and, accounting for population size differ-
ences by sampling from a Poisson distribution Po(n(v)) x m™), where n(v)) is the size
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Table 2 Local cluster Analysis Results of Car-related Theft (Original Rates, Area-to-Area (ATA) and
Area-to-Point (ATP) Poisson Kriged Rates) Under the Three Different Models for Hypothesis Testing

Classification  Proportion of areas (original and ATA) or points (ATP) in category (%)

Original rate  ATA ATP

Frequency of Model 0 Model 0 Model T Model 2 Model 0 Model 1 Model 2
classification

HH 2.8 2.8 0.0 0.9 13.6 14.7 19.1
LL 11.2 10.3 5.6 0.0 23.2 25.0 14.7
HH, 0 * * 99.1 99.1 * 5.6 6.2
HH, 0.01-0.49  * * 0.9 0.0 * 80.3 78.5
HH, 0.50-0.74  * * 0.0 0.0 * 5.3 5.6
HH, 0.75-1 * * 0.0 0.9 * 8.8 9.7
LL, O * * 87.9 98.1 * 11.5 14.3
LL, 0.01-0.49 * * 6.5 1.9 * 51.8 52.5
LL, 0.50-0.74 * * 0.9 0.0 * 21.6 29.6
LL, 0.75-1 * * 4.7 0.0 * 15.1 3.6

Proportions of areas or points classified as significant clusters (HH and LL).
*No results given for Model 0 as uncertainty is not taken into account by this model.

of the population at risk and m* is the population-weighted mean of the N rates
(global crime rate) (Model 2). In both cases, a significance level of .05 was used
with correction for multiple testing utilizing Castro and Singer’s (2006) false dis-
covery rate (FDR). These results were post-processed to retrieve for each admin-
istrative unit the category that occurred most frequently over the 100 simulated
fields: not significant; LL (low-low cluster); LH (low-high outlier); HL (high-low
outlier); and HH (high-high cluster). The frequency of occurrence of each category
is used as a measure of the reliability of the categorization.

Using the original rates data with no adjustments for multiple testing or pop-
ulation size (Model 0), Fig. 3a and Table 2 show that several administrative units in
eastern Latvia are significant LL clusters, and one unit in northern Estonia is a sig-
nificant HH cluster of ““car-related thefts.”” Using the ATA Poisson kriged maps
(which, as noted, are noise-filtered rates) and Model 1 reduces the number of sig-
nificant LL clusters by half, and there are no significant HH clusters. The reductions
in significant clusters compared with Model 0 are caused by the multiple testing
correction. In Model 2, which accounts for population size, no units are identified
as significant clusters (Fig. 3c and Table 2). When using ATP kriging (Figs. 3d-f)
estimates, many significant clusters are found irrespective of model choice (Table
2). This result for ATP kriged estimates compared with ATA kriged estimates is to be
expected based on the change in the scale of analysis. Because spatial autocorre-
lation decays with increasing distance, any given point on a 2-km grid is more
likely to be surrounded by points with similar high or low crime rates than an
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administrative unit measuring 50 km in diameter. Accounting for multiple testing
using the FDR method (Models 1 and 2, Figs. 3e—f) is now especially important.
Many areas are identified as HH or LL clusters in Fig. 3d (Table 2) but are only
classified as such with a 50-75% frequency once multiple testing is taken into
consideration. For Model 2 (Fig. 3f), where population size is also taken into ac-
count, a larger area on the southwest coast of Estonia is considered to be a HH
cluster with a frequency of more than 75%, and, compared with Fig. 3e, smaller
areas in northeastern Latvia are identified as LL clusters with a frequency of 50—
75% (Table 2). In summary, the maps in Fig. 3 and LISA results (Table 2) provide a
number of perspectives on the existence and location of “’hot spots” and ‘“cold
spots” for the offense of ““car-related theft.” Hot spots tend to occur at the local
scale, whereas cold spots are a more regional phenomenon including most of east-
ern Latvia, perhaps related to lower “GDP"’ in this area. Given that law enforce-
ment agencies are more interested in locating and policing the hot spot areas, this
analysis also indicates the value of ATP Poisson kriging before cluster analysis to
pinpoint more effectively where these clusters might be, which would be largely
missed by an analysis using areal data.

Explaining patterns of car-related thefts

Scale-dependent correlations

Correlations were computed between the original values for ““car-related theft” and
the set of explanatory variables and also each of their spatial components (trend
component =TC, local = E1 and regional = E2) obtained using factorial ATA (Pois-
son) kriging (hence noise-filtered measures of the variables). We discuss pairs of vari-
ables with a correlation coefficient >0.5 (a value chosen as indicative of a moderate
relationship), and where the correlation based on a spatial component is greater than
those based on the original data values. This selected threshold enables us to make
some preliminary comparisons with the findings of Ceccato and Haining (2008).

Correlations between ‘“car-related theft” and the two variables “natural in-
crease’ and “roads’” are 0.25 and 0.05, respectively, when based on the original
data values, but 0.57 and —0.51, respectively, when based on the estimated trend
components. Figs. 4a and 4d show the maps for the TCs of ‘‘car-related theft” and
“natural increase.” Both maps show a general increase in the estimates from east to
west and higher values in the north and south.

The correlations between ““car-related theft'”” and “population density”’ for the
original variables and E1 components are 0.47 and 0.59, respectively. Figs. 4b and
4e map these E1 components for the two variables, indicating a scale of variation of
approximately 120-140 km with aggregations of high or low values.

Finally, the correlations between “‘car-related theft’” and “GDP”’ for the orig-
inal variables and E2 components are 0.42 and 0.55, respectively, and the scale of
variation is between 700 and 1130 km. Figs. 4c and 4f map these E2 components,
revealing lower “GDP”’ and “‘car-related thefts’” in Latvia.
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The purpose of this analysis, similar to carrying out a correlation analysis before
undertaking multivariate regression, is to identify associations among all the vari-
ables, only here the data are decomposed into different components of variation
and associations are identified with respect to each component. The higher corre-
lation between “GDP”" and “car-related theft”” at the E2 scale reflects the results of
the Ceccato and Haining (2008) analysis, where an association reveals a differen-
tiation between Estonia, Latvia, and Lithuania. The association between *’car-related
theft’” and urbanization (“population density’’)—identified at the administrative area
level in Ceccato and Haining (2008)—appears to be strongest at the scale of each
administrative area taken together with its nearest neighbor areas (E1).

The Ceccato and Haining (2008) analysis shows no significant relationship be-
tween road density (“roads’’) and “‘car-related thefts,” but a negative relationship
does appear significant in the trend component of variation. While their analysis
reveals a significant relationship between “‘natural increase’”” and ‘car-related
thefts,” the analysis here suggests that this association may be a product of larger-
scale trends in both variables rather than an association at the administrative area
level. The next stage of analysis, to which we now turn, allows a closer examination
of these relationships while controlling for the effects of the other variables.

Scale-dependent regression

A multiple linear regression (MLR) model with first-order simultaneous autoregres-
sive errors was fitted, using GeoDA. The dependent variable is “’car-related thefts,”
and in the first analysis the log of the original crime rates (z(v,)) was used, and
the original values were used for the independent variables. This implementation
facilitates comparison with the results in Ceccato and Haining (2008). In the second
analysis, ATA kriged estimates (KE)? of all the variables are used. In the third set of
analyses, each of the spatial components from ATA FKA (TC, E1, and E2)* for all the
variables are analyzed in turn. The second and third analyses are not directly com-
parable with the Ceccato and Haining results because the variables have been
constructed differently, as previously explained.

The specific MLR model was fitted because the earlier analysis by Ceccato and
Haining (2008) and the results of the preceding spatial components analysis suggest
the need to allow for spatial autocorrelation in the errors (see also note 1). Appro-
priate diagnostic tests demonstrated for all models the absence of residual spatial
autocorrelation and the normality of the residuals.

Table 3 summarizes all of the MLR results. Note that the spatial error parameter
is significant in all of the analyses. Although ““divorce rate”” is identified as statis-
tically significant for the original data, it could not be included in the second and
third analyses because its variogram is pure nugget. For the original variables, three
other explanatory variables are significant at the 5% level: “GDP,” “‘voter partic-
ipation,”” and “’social change’” (which has the ““wrong’’ sign). These results can be
compared with those of Ceccato and Haining (2008) (Table 1), although in their
analysis they allow for intercountry differences using dummy variables and the
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dependent variable is the log of the standardized *‘car-related crime’’ ratio. As with
this earlier study, the results here show that a target area attractiveness variable is
significant (“GDP"’) as is a social disorganization variable (“’divorce rate”’). In ad-
dition a social cohesion variable is significant (“’voter participation’’). Ceccato and
Haining (2008) also report that ““social change” has the ““wrong sign’’ for Estonia
and Lithuania, but not Latvia. They attribute this result to measuring ‘’social
change’” with changes in the ““divorce rate”” for the purpose of analysis. Interested
readers should consult the original article for more details.

Modeling using KE increases the proportion of variance explained in the depen-
dent variable from 59% to 68% (Table 3). The apparently better fit may be partly due
to working with noise-filtered dependent and independent variables, which have
lower overall variances. The significant variables explaining the Poisson kriged es-
timates of risk are ““social change”” (but again with the wrong sign), ““voter partici-
pation,”” “population density,” and ““non-national population,” all with the expected
signs. These results, from which divorce rate had to be excluded, are not directly
comparable to those of Ceccato and Haining and draw particular attention to ur-
banization (“population density”’) and social cohesion (“voter participation” and
“non-national population”) variables in explaining crime risk.

We now turn to the results obtained from modeling the three scales of variation
in crime risk using the corresponding scales of variation in the explanatory variables
(excluding ““divorce rate’’). Modeling TC, the variables “infant mortality,”” ‘‘social
change,” and ““voter participation” are significant at the 5% level and explain 84%
of the variation (Table 3). Again the sign is wrong for “social change.” The per-
centage of variation explained in the E1 component is 52%, and the significant
variables (Table 3) are ““border,”” “/infant mortality,” “‘males aged 15-29,”" and
““population density.” The percentage of the variation explained in the E2 compo-
nent is 53%, and the significant variables (Table 3) are “GDP,”” “infant mortality,”’
““males aged 15-29,” “‘natural increase,”” and “‘voter participation.”

The significant variables for explaining the variation in the risk of “’car-related
theft” at local and regional/national scales (E1 and E2) are those relating to demo-
graphic and economic conditions. This finding suggests that countries and subre-
gions that are leading economically and with large proportions of young males tend
to have the highest risk of this offense (and hence, are likely to have the highest
rates). The association of car crime rates with these explanatory variables has a
spatial reach that is both local (the spatial unit and its immediate neighbors) and
regional. However, we can go further. Because over 80% of the spatial variation in
““car-related theft”” as described by its variogram (Table 1) is local, the most im-
portant variables explaining this variation are those identified by the MLR for ET.
This in turn emphasizes the importance of demographics (proportion of ““males
aged 15-29”), urbanization (“population density’”’), social cohesion (“‘voter par-
ticipation”’), location (“’border”), and the variable ““infant mortality’”” (which may be
capturing a measure of welfare provision) in explaining the geographical distribu-
tion of this offense in the Baltic states, where the association is not just between
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levels of these variables in the same administrative area but between levels of these
variables in contiguous administrative areas. This finding about the importance of
the E1 component of variation may be indicative of what are often termed local
“spillover effects,”” with certain criminogenic conditions in one administrative area
spilling over into neighboring areas and affecting their crime rates as well. The
negative sign for the coefficient parameter estimate for the “’border’”” variable may
be indicating the barrier effect that international borders have on these spillover
effects, which is understandable.

The importance of the TC of variation for “’car-related theft”” is not captured in
the variogram; however, its relative importance can be estimated by computing the
variance of each set of kriged estimates (E1, E2, and TC) and dividing these by the
variance of the kriged risk. When this calculation is done 71% of the variation can be
explained by E1, 12% by E2, and 17% by TC. This result suggests that the variables
identified as significant locally (E1) are by far the most important and that broad
trends in “infant mortality,”” “social change,” and “‘voter participation” are only
slightly more important than regional patterns in “GDP,” “infant mortality,” ‘‘males
aged 15-29,” “natural increase,” and ‘‘voter participation”” for explaining patterns
of “car-related theft.” Interestingly, some variables (“infant mortality,”” “‘voter par-
ticipation,” and ““males aged 15-29”) are significant at more than one scale.

’

Conclusions

This study demonstrates the use of geostatistics for studying crime data. First, ATA
Poisson kriging can be used to filter out the noise in rates caused by the small
number problem, which is important for low volume crimes recorded in areas with
small populations. Second, ATP Poisson kriging creates a continuous risk surface
that reduces the visual bias associated with large administrative units. Third, local
cluster analysis of simulated crime rates from ATA and ATP kriging, accounting for
population size and multiple testing in the randomization and testing procedures, is
helpful in more carefully identifying significant clusters of crimes and pinpointing
the most likely clusters. Doing this analysis with ATP Poisson kriged estimates may
also give insight into more localized potential “’hot spots” that are not evident when
areal rates are used.

Correlation and regression analyses using the spatial components obtained
from ATA factorial Poisson kriging help to identify the most important spatial scales
at which crime rates vary and which explanatory variables are significant at those
scales. It also allows visualization of the patterns associated with these different
scales, which can give further insight into the independent variables that are as-
sociated with high crime rates. The methodology described here provides a way to
explore these different scales of spatial variation and associations and offers some
advantages over methods that sweep unexplained spatial variation into a single
spatially autocorrelated error term or into spatial dummies. A rich set of models also
exists that can be called upon for describing the spatial structure in data.
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The geostatistical methodology presented here is not without its challenges.
First, it cannot circumvent the limitations that arise from the scale at which data
have been collected. Any assumptions made about, for example, how population is
distributed at a subunit scale need to be acknowledged and, if possible, their va-
lidity assessed and their effect on analysis considered. An additional challenge for
the present application, which is not likely to be a problem in many other studies, is
the existence of nested geographies, which creates an artifact nugget effect when
geographical proximity is quantified using distance between centroids. Second,
variables may not be amenable to geostatistical analysis if they have no spatial
structure—as in the case for the variable ““divorce rate.” Third, the methodology
has not been widely tested on crime data sets, and the software used (Terraseer
STIS) is currently available only as a beta product.
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Notes

1 Because kriging computes weighted spatial averages of crime rates, it introduces spatial
autocorrelation into the estimated crime risk. One way to allow for this artifact in a
regression analysis of these estimated risks is to fit a correlated-errors regression model.

2 ATA Poisson kriging used for ““car-related theft”” and "infant mortality.”

3 ATA factorial Poisson kriging used for “‘car-related theft”” and because ““infant mortality.”’
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