

TABLE OF CONTENTS

1. Introduction 1
2. Basic enterprise architecture 23
3. MAP class diagram 35
4. Application modifiability 44
5. Data accuracy 57
6. Application usage 65
7. Service availability 72
8. Interoperability 80
9. Cost 86
10. Utility 93
11. Creating metamodels 110
12. Modeling patterns and practices 120
References 150

1 An introduction to the
management of IT with
Enterprise Architecture.

Introduction

2

Today, there are information systems for most of the tasks performed in an
enterprise. There are customer management systems, contract management
systems, product design systems, production systems, financial systems, hu-
man resource systems, business intelligence systems, asset management
systems, waste management systems, document management systems,
workflow management systems, and hundreds of other systems. In recent
years, these systems have been integrated with each other to such an extent
that it is oftentimes necessary to view them, not as hundreds of different
systems, but one single system of systems.

The resulting enterprise-wide information system is under constant change.
Every year, new systems are developed and introduced, old systems are ex-
tended, modified, integrated with each other, and retired. In large enter-
prises, these changes are the result of many different stakeholders' require-
ments and many developers' actions. It has become increasingly evident
that there is a need to plan and manage the evolution of this system in order
to keep chaos at bay.

In this book, we describe an approach to enterprise information systems
management that relies on models of the information systems and their
environment. The main idea is very old. Instead of building the enterprise
information system using trial and error, we propose a set of models to pre-
dict the behavior and effects of changes to the system. The enterprise
architecture models allow reasoning about the consequences of various
scenarios and thereby support decision-making. In order to predict
whether scenario A or B is preferable, three things are needed. Firstly, mod-
els over the two scenarios need to be created. Secondly, it is necessary to

define what is desirable; the goals. Do we want the systems to support
business process efficiency or is organizational flexibility more important?
Is high system availability more important than high information security
or maintainability? Thirdly, we need to understand the causal chains from
scenario selection to goals. Scenario A features hardware redundancy that
positively affects the system reliability which in turn improves the service
availability, leading to more efficient business processes. However, sce-
nario B is built on a loosely coupled technology, which promotes the modi-
fiability of the system. This, in turn, may be expected to have positive ef-
fects on the organizational flexibility.

In this first chapter we present a brief history of enterprise information systems,
the most common types of systems found today and the general architectures
for the interaction between these systems, a brief history of enterprise
architecture, and finally some background information describing our view of
enterprise architecture for IT management.

1.1 A brief history of enterprise information systems

In this section, we describe three epochs of enterprise information
systems. We consider each era in terms of the technology, the users, and
the maintainers and developers.

1.1.1 Mainframes and mini-computers

The first electronic computer was the ENIAC (Electronic Number Inte-
grator And Calculator), which was developed in 1946 by the account-
ing industry and the emerging electronics industry in a joint effort.

Chapter 1 Introduction

3

Comprising of 17,468 vacuum tubes, the
ENIAC filled a large room requiring air con-
ditioning due to the intensive heat caused
by the machine. The ENIAC and its succes-
sors were programmed one program at a
time and were served data using punch
cards - stiff pieces of papers with presence
or absence of holes in predefined positions.
The end-users were typically engineers,
who communicated punch card decks to an
intermediary, the mainframe operator, who
in turn ran the programs. Executing a pro-
gram could take hours, sometimes days,
and when the program terminated, the user
received his card deck back together with
the output data.

In the 1950's the demand for computers
slowly increased and mainframes were sold
to large organizations including universi-
ties, corporations and civil and military gov-
ernment agencies. Universities bought com-
puters to perform scientific calculations of
engineering problems, whereas enterprises
mainly bought computers for business-
oriented issues, such as managing payrolls.
The government bought computers for

these purposes and also for supervision and
real-time control over physical processes,
such as air space surveillance. Computers
were designed for specific purposes, so a
computer designed for handling business
purposes could do just that, and not be util-
ized for scientific calculations or real-time
control. As the needs of organizations ex-
tended into several different areas, this ma-

chine specialization became a problem of
both economics and convenience. Another
problem was that differences between jobs
in for example memory and storage usage
often required tedious manual interven-
tions when different programs within the
same domain were executed. The operating
system might have needed to be repro-
grammed and sometimes the computer

Movie 2: On the Importance of Information Systems

Chapter 1 Introduction

needed to be rewired as well. As these problems grew, the need for an
all-round computer emerged [1].

In the middle of the 1960's IBM released the S/360 mainframe, the first
general-purpose computer. Besides enabling different types of programs
to be executed on the same computer simultaneously, this was the first
computer making a difference between architecture and implementation.
This enabled IBM to release a suite of compatible designs at different
price levels, promising customers that migration to more powerful ver-
sions would be possible as their needs grew. Some consider the introduc-
tion of the IBM S/360 on the market as the biggest advancement of IT in
business and society as a whole [2]. In the same period as the IBM S/360
entered the market, the smaller minicomputers started to establish their
own markets. The minicomputers possessed the same components as
large mainframes but with reduced memory capacity and slower process-
ing speeds. Before the advent of the minicomputer industry in the 1960's,
companies wishing to automate their data processing were forced to use
mainframes. Because of its performance limitations the minicomputer
did not impose a threat to the mainframes. Instead, the minicomputer,
with about the size of about a refrigerator, opened up new application
areas and allowed managers to choose computers with substantially
lower costs than mainframes. While, the mainframes were at that time
handled by specific operators who managed the direct interaction with
the machine, the smaller minicomputer enabled direct interaction be-
tween the multiple users and the computer. Their establishment in the
market in late sixties has been seen as a cultural, technological and eco-
nomic phenomenon [2]. One of the earlier successful models was the

PDP-8 from Digital Equipment Corporation. The data centers managing
the computers, were typically offshoots from different organizational de-
partments, such as accounting. The specific-purpose characteristics
among early computers often further increased the decentralization of
system management and often resulted in a number of different data cen-
ters connected to each department, one for each specific purpose and
computer. As computers broadened their application domain, these cen-
ters were centralized into larger ones, providing services to multiple or-
ganizational departments. The increased volumes of data gathered in da-
tabases and the criticality of the data to business called for methods to
assure rigidity and handle the system configurations. With centralized
systems, a centralized IT governance structure became possible.

1.1.2 Terminals, workstations and PCs

In the seventies, increased memory size led to a shift from batch-oriented
operating systems to online processing systems, where data could be en-
tered and response would be immediate. Until this point, mainframes
had mainly supported back-office functions. In the seventies, local net-
works were set up, connecting the mainframes and minicomputers to ter-
minals, allowing hundreds of users to simultaneously interact with the
systems. At this time, a yet smaller computer entered the scene; the mi-
crocomputer, intended only for a single user. These machines and their
operating systems, such as Microsofts DOS, were simple in comparison
to minicomputers and mainframes.

As the costs of the microprocessor hardware became lower and the
cost of deploying local area networks decreased in the eighties, the

4

Chapter 1 Introduction

microcomputers popularity increased in business applications. The
microcomputers eventually evolved into personal computers, replac-
ing the terminals, while the minicomputers migrated into servers for
PC networks. The use of PCs instead of mainframes and terminals
had an important impact on the software industry. Traditionally, soft-
ware and hardware had been bought from one single vendor, and in
the fifties and sixties, computers were often leased from developers
for a time span of several years. As the PC revolution came, the soft-
ware market changed and was filled with different vendors selling
high volumes to push prices down.

The PC revolution in late eighties and early nineties moved computing
power from the centrally located mainframes to distributed microcom-
puters. This made users less dependent on data centers and computer
manufacturers, but with consequences for the IT department. Configura-
tion management, backups and security became more difficult as PCs re-
placed terminals and mainframes. The shift towards online systems and
databases containing business critical information introduced areas such
as online transactions, database management and access security. This
meant new responsibilities for the IT department.

Moreover, the users' increased independence from the IT department
and the regional and international expansion of many enterprises drew
the previously centralized IT organization closer to the business and IT
management decentralized to become more responsive to the needs
from business [1].

1.1.3 Extensive networks

As the business value of personal computers became clear to enterprises, the
next logical step was to link them together. The US Defense Advanced Re-
search Projects Agency's ARPANET initiative in the sixties and early seven-
ties was the dawn of efficient and large-scale networking. In the early nine-
ties it reached a global impact with the Internet. As the interconnected net-
works grew, the power and number of applications using them increased,
and consequently their importance grew. With the evolution of extended
computer networks, the computer itself lost its position as the main focus,
which instead shifted to the availability and capacity of the networks.

The weak economy during the early 1990 forced companies to save costs.
The decentralization of IT management during the eighties had made the IT
departments more responsive to the needs from the business, but with dupli-
cated efforts and lost economics of scale as a consequence. Outsourcing was
seen as one way of controlling costs and when Kodak outsourced their data
center operations to IBM on a ten-year deal in 1989, a new trend was born.
Not all enterprises adopted the trend of outsourcing, but since they faced
the same problem with high costs, many enterprises again started to central-
ize their IT management. The previous decentralized organization structure
had besides inefficiency resulted in various, incompatible, technologies
across enterprises that complicated this centralization process.

In addition to a technically heterogeneous information system portfolio,
the need for enhanced IT management is also the result of the business's
everincreasing dependence on the information systems as a means to per-
form work and communicate internally and externally. The share of IT in

5

Chapter 1 Introduction

6

business equipment investments in USA rose
to above 50 percent in year 2000 [3]. This
meant that the demand of IT knowledge
among personnel in general and IT specialist
in particular increased. The importance of
information systems is reflected in the fact
that the role of the Chief Information Officer
(CIO), with an enterprise-wide responsibility
for IT, is nowadays typically reporting di-
rectly to chief executives or the president [4].

1.2 The information systems of
today

Today, information systems are employed in
virtually all parts of modern enterprises and
the systems as such are extremely business
critical being an integrated part of most depart-
ments. In this section, we review the most com-
mon services provided by the systems, and we
also consider four very general architectures
for the interaction between the systems.

1.2.1 Application services

We begin the information system walk-through
with those systems that are closely related to the

physical world and move toward the more ab-
stract domains.

Industrial control systems provide measure-
ment and control functionality for large-scale,
possibly geographically distributed, physical
processes, such as electricity generation, elec-
tric power transmission, electricity distribu-

tion, district heating, water distribution, pulp
and paper production, manufacturing, de-
fense, transport, chemical and telecom indus-
try. In one end of the system, the sensors and
actuators either measure or act on the process
objects, and in the other end, human opera-
tors typically monitor the process. Functions
provided include forecasting and planning,

Movie 3: On the Difficulties of Information Systems Management

Chapter 1 Introduction

remote measurement as well as control over the physical process, auto-
matic control, and alarm and notification functionality.

Product management systems, or product life cycle management systems,
handle most functions used during a products lifecycle, from conception
and design to manufacturing and service. In the conception phase, these
systems provide functionality for requirements management and design.
The design phase is supported by computer aided design (CAD)
functionality, supplying the developer with 2D or 3D drawing functions, as
well as simulation, validation and optimization functions. Also the
manufacturing phase is supported by for instance computer aided
manufacturing (CAM) functionality. Other functions supported in this
phase are process simulation and production planning. Further support
may be provided for product testing. In the service phase, functionality
provides customers and service engineers with information on the finished
products, such as repair and maintenance information. Special kinds of
product management systems are software development tools. These
provide functionality for requirements management, design, production
(compilation) and testing of software products.

Asset management systems provide functionality used for organizing and
processing assets within an enterprise. The assets can be digital, for
instance images, documents and presentations. They can also be of a
physical nature, e.g. equipment and facilities. Asset management systems
usually provide functions for collecting, managing, searching, retrieving,
and archiving information about the assets. An important issue for these
systems is the availability of the stored information. They may therefore

offer mobility solutions, for instance allowing remote access via handheld
terminals. Systems designed specifically for managing real estate are
sometimes called property management systems.

Inventory management systems are used for monitoring quantity, location
and status of the enterprises inventory, as well as supporting the shipping
and receiving processes.

Geographical information systems may be used to maintain records of the
whereabouts of the assets in enterprises with a geographically distributed
infrastructure. These systems are based on databases of geographical maps
over the region of interest. Satellite photographs, road maps, and asset
information are then superimposed on these maps.

Human resource management systems are designed to support the re-
sponsibilities of the human resource department. These systems there-
fore provide functionality for the tracking of employee data like personal
history, addresses and phone numbers, but also for tracking the employ-
ees skills and capabilities. The automatic gathering and calculation of
information for the salary payment process like time, attendance, deduc-
tions and taxes are other functions of human resource management
systems. Additionally, the systems may support administration and
tracking of employee participation in benefit programs as well as the
planning and tracking of learning activities.

To make sure that work is performed according to procedure, workflow
management systems may be employed. These are systems that help or-
ganizations to specify, execute, monitor, and coordinate the flow of

7

Chapter 1 Introduction

work. The typical use is the flow of documents through an administra-
tive process, e.g. the flow of tax declarations through the internal reve-
nue service, where various persons and applications calculate, check,
and approve of the various aspects of the document. Workflow manage-
ment systems often feature modeling functionality, where the workflow
is designed; simulation functionality, where the design is tested; and exe-
cution functionality, ensuring that the workflow is followed.

Service management systems are reminiscent of workflow management
systems. An example of a service order in the power industry is the
order to repair a power meter reader in a customers house. Such orders
may be initiated by the customer call center, approved by the power
distribution center, accepted and performed by the fieldwork
subcontractor, and reported back to the distribution center and the
customer call center. Service management systems support the flow of
these activities. Related to workflow and service management systems
are workforce management systems. These typically manage scheduling
of the work force, time and attendance. They may also encompass
functionality that is further described as human resource systems.
Another type of workflow management systems used for planning and
follow-up of work are project management systems. These typically
provide functionality for scheduling projects, allocating resources, and
follow-up of the planned projects.

Customer management systems, or customer relationship management
systems, are designed to support sales, service and marketing in their
contacts with the customer. The first function of these systems is the order

management of customer information, so that for instance the service
department is notified of what the sales department has sold to the
customer. Customer relationship management systems also provide support
for the management of potential customers, management of contracts with
the customers, and analysis and forecasting of customer behavior. These
systems are often integrated with workflow management systems.

An important part of the relationship to the customer is the billing. Bill-
ing systems provide support for creating and distributing invoices for
performed services at suitable dates. For service-providing companies,
billing systems can be very important to the business because it en-
ables the company to differentiate the price of its services according to
various circumstances. Telecom operators, for instance, typically
charge their customers very differently for the same service depending
on when and how much they use it.

Companies also need to manage the input side of the business, i.e.
relations to suppliers. For these purposes, there are procurement
management systems. There are also brokering systems to be used by
both customers and suppliers. Prime examples of such systems are
trading systems, providing a market place for the exchange of goods
and services.

Management information systems are computer systems that present
high-level summary information that assists management decision-
making. One part of the management information system is typically
the business intelligence system, which is a system employed to gather
and aggregate information relevant for corporate management. An-

8

Chapter 1 Introduction

9

other part of management information systems is the decision support
system, which may analyze the gathered information to aid the process
of decision-making. The information gathered and analyzed typically
concerns customers, competitors, business partners, the economic envi-
ronment, or internal operations.

Financial systems are used for accounting and reporting. Business
transactions are recorded and fixed assets and inventory are financially
managed. Bank relations are supported, as well as tax accounting.
Functionality for the reporting of financial statements is also provided.

1.2.2 Basic technical architecture

In the previous subsection, we presented different kinds of services provided
by the most common information systems in modern enterprises. In this sub-
section, we briefly consider how these systems relate to each other.

Not so long ago, the various systems presented in the previous subsection
were produced by different companies, procured independently of each
other, and installed in different departments as what is often labeled as
islands of automation, cf. Figure 1. Each system had its own hardware,
gathered its own information from the environment and its users and
performed its functions without regarding other systems in the vicinity. In
those (normally rare) cases where one system required information
available in another, information transfer was performed manually.

As the information systems grew in scope and number, the information
they stored and the information they would benefit from having access

to also increased. This situation led to demands for automated exchange
of information between the systems. Technological development
responded rapidly to these demands by devising engineering methods
for connecting two systems to each other. Billing systems were thus
connected to the financial systems in order transfer accounting
information. Product management systems were connected to industrial
control systems to allow the exchange of production-related information.
Human resource systems were connected to work management systems
in order to transfer information for schedules and salaries. And so on.
Soon, however, the number of connections between systems became
overwhelming. The common way of presenting this problem is by
considering the introduction of a new system in an existing enterprise
information system environment. Assuming that the new system needs
to be connect to all other systems, this will be manageable when there
are three, four and five systems, but when the number of systems
reaches twenty, then there is also a need for twenty new separate

Figure 1: Islands of automation

Chapter 1 Introduction

10

connections between the new system and the
existing ones. If all systems connect to each
other, the number of connections grows
quadratically with the number of systems.
The resulting mass of unmanaged
connections is sometimes called "spaghetti
architecture", cf. Figure 2.

In order to mitigate the problems of the spa-
ghetti architecture, some information system
vendors began offering more comprehensive
solutions, providing many of the required
functions. The attractive proposition with
these systems is that the customer company
only needs to buy one or a few systems, not

hundreds. With such "suite architecture" the
integration problems are thereby reduced
dramatically, cf. Figure 3. These multi-
functional systems generally have their ori-
gins in the administrative systems, such as
the financial and human resource manage-
ment systems, and they are commonly called
enterprise resource planning systems. Today,
these systems offer functionality covering
virtually all application services described in
the previous subsection. However, the
enterprise resource planning systems' legacy
from the administrative domain is still visi-
ble; many users complain that these systems
cannot provide sufficiently high-qualitative
functionality in other application domains,
notably the technical domain of e.g. produc-
tion management and industrial control
systems. Furthermore, many customers are
reluctant to make themselves too dependent
on a single vendor, worried that this will re-
duce their bargaining position. Finally, many
organizations have encountered difficulties
when attempting to modify enterprise re-
source planning systems to their business op-
erations; it is sometimes claimed that it is eas-

ier to make the organization fit the system
than vice versa.

In an attempt to avoid the pitfalls of both spa-
ghetti architecture and suite architecture, many
companies have turned to a middleware-based
architecture, or broker architecture (cf. Figure 4).
Broker architectures try to avoid the negatives
of the suite solution by returning to the multi-
vendor scenario. This is sometimes called the
best-of-breed approach. In order to not re-
experience the problems of the spaghetti
architecture, the point-to-point connections be-
tween systems are substituted by a centrally lo-

Figure 2: Spaghetti architecture

Figure 3: Suite architecture

Chapter 1 Introduction

11

cated hub, broker, or integration platform. In-
stead of connecting each system directly to all
others, it is thus only connected to one other sys-
tem, namely the broker. The broker provides ba-
sic message-passing services, but it is also spe-
cialized at translating data between various for-
mats. Furthermore, the broker may implement
intelligent routing, passing messages between
various systems depending on various parame-
ters, such as the contents of the message, the
time of day, etc. There are many alternative
broker-based solutions. The most influential
trend in this domain is service-oriented
architecture (SOA).

In reality, most organizations maintain a mix of
the four approaches described above, cf. Figure
5. There are some old systems that are very
sparsely interconnected to other systems. There

are some systems that have direct connections
between them. Certain, but not all, functional
modules from an enterprise resource planning
systems are typically implemented. Sometimes,
there are two or more enterprise resource plan-
ning systems from different vendors. Finally,
there is typically at least one, sometimes many,
integration platforms, or brokers, to which
some systems are connected.

1.3 A brief history of enterprise
architecture

In the previous section, we considered the
history and current state of information
systems in general. Now, we focus on the con-
cept of Enterprise Architecture (EA).
Enterprise architecture, as we view it in this
book, is an approach for managing the organi-
zation's information system portfolio and its
relation and support to the business. At the
base of the approach lies an architectural
model incorporating concepts such as software
components, connectors, functions,
information, business processes, organiza-
tional units and actors. This section outlines
the history of enterprise architecture by consid-
ering some of the most popular architecture
frameworks in chronological order.

The Zachman framework

The history of enterprise architecture is
generally considered to begin in 1987 with
John Zachman's article A Framework for
Information Systems Architecture [5]. Drawing
analogies to the fields of classical architecture
as well as to systems engineering, Zachman
proposed a set of models for specifying
information systems and their context.

Figure 4: Broker architecture

Figure 5: Mixed architecture

Chapter 1 Introduction

12

Zachman thus claims that in order to manage
a company's information systems, they need
to be specified in the same way that e.g. an
airplane or a building is. The current version

(version 3.0) of The Zachman Framework for
Enterprise Architecture (1) was released in
2011, cf. Figure 6.

The set of models proposed by Zachman
are ordered on two axes. On the horizontal
axis are sets of six aspects: inventory, proc-
ess, distribution, responsibility, timing and
motivation. These description types answer
six fundamental questions: what, how,
where, who, when and why. On the vertical
axis are sets of perspectives, relating to the
stakeholder posing the question. The first
five rows include the executive, the busi-
ness manager, the architect, the engineer,
and the technician. The sixth row covers the
final product of the enterprise system and
is labeled the Enterprise. Altogether, the
framework thus provides thirty-six cells
from which an enterprise could be under-
stood and described. The detailed syntax
and semantics of the different models popu-
lating the cells are not given by Zachman,
but are instead passed on to the user.

The Zachman framework does not provide
concrete guidance for the process of
enterprise architecting and it is not directed
at any special kind of organization. The
framework is still one of the most commonly
referred to approaches to enterprise Figure 6: The Zachman Framework 3.0

Chapter 1 Introduction

architecture. The Zachman Institute is today active providing both
courses and consulting services.

DoDAF

Within the United States Department of Defense, there is a fairly long tra-
dition of enterprise architecture. The first version of an architectural
framework was the Technical Architecture Framework for Information
Management [6], published in the early 1990's. This initiative was fol-
lowed by various successors, including the Command, Control, Commu-
nications, Computers, Intelligence, Surveillance, and Reconnaissance
(C4ISR) Architecture Framework [7], finally leading up to the currently
supported version, namely the Department of Defense Architecture
Framework (DoDAF) 2.0 [8].

The DoDAF describes fifty-two architecture products. Of these, two are
of a summarizing nature. The remaining fifty products are divided into
seven categories, or viewpoints: the capability viewpoint, the data and
information viewpoint, the operational viewpoint, the project viewpoint,
the service viewpoint, the standard viewpoint, and the system view-
point. The DoDAF is arguably one of the most explicit frameworks with
regards to different viewpoints and architecture products.

The main part of the DoDAF is focused on describing the architecture
products. However, the DoDAF also contains some information regard-
ing the use of these products by providing a fairly brief so called generic
architecture description process consisting of six steps: 1) determine the
intended use of the architecture; 2) determine the scope of the

architecture; 3) determine the data required to support the architecture
development; 4) collect, organize, correlate, and store the architecture
data; 5) conduct analyses in support of the architecture objectives; and
finally 6) present results in accordance with the decision-maker needs.

Because it is mandated by the Department of Defense, it is obvious that
the US armed forces are the most diligent users of the DoDAF. However,
the framework has been widely influential in the work of many other
military forces, such as the NATO Architecture Framework [9] and Great
Britains Ministry of Defense Architecture Framework [10].

TOGAF

The first version of The Open Group Architecture Framework (TOGAF)
was presented in 1995. This framework was based on the TAFIM (also
the origin of DoDAF, above), which was donated by the US
government to The Open Group. The Open Group has since then
published a number of improvements to the original framework; the
current version is TOGAF 9.1 [11].

According to the TOGAF, enterprise architecture can be divided into four
architecture domains or subsets, namely business architecture, data
architecture, application architecture and technology architecture. TOGAF
is designed to support all these subsets.

The core of TOGAF is the Architecture Development Method (ADM),
cf. Figure 7. As the figure indicates, the process is constituted of nine
steps. In the first step, organizational, administrative and scoping is-

13

Chapter 1 Introduction

sues are set up. In the second step, the purpose, or vision, of the archi-
tectural activities is articulated. In the third, fourth and fifth steps, the
current and target business architecture, information systems
architecture and technology architecture are modeled respectively. In
the sixth and seventh step, a plan for migrating to the target
architecture is created, and in the eighth step, the execution of this plan
is supervised. In the final step, a process for managing changes to the
architecture is set in place.

New in TOGAF 9 is the explicit presentation of a metamodel. This meta-
model contains entities such as organization unit, actor, function, role,
process, business service, data entity, application component, technology
component and platform service.

Although the TOGAF has its origins in the Department of Defense, The
Open Group has effectively eliminated all military specificities and when
reading the documentation today the heritage is difficult to detect. The
TOGAF is thus considered a general-domain framework, and is applied
in all types of industries. The Open Group is a vendor- and technology-
neutral consortium that continuously develops the framework.

1.4 Enterprise architecture as decision making support

Because enterprise architecture has a short history, there are many
different views on what enterprise architecture really means, what it
should mean, what problems it should address, and how. In this section,
we argue for some propositions that this book is based upon.

14

Figure 7: The TOGAF Architecture Development Method

Chapter 1 Introduction

15

1.4.1 Enterprise architecture analysis

In this book, enterprise architecture is mainly
considered as a tool for making good decisions
regarding the enterprise information systems.
Decision-making can be viewed as a process of
scenario selection. From the current state of the
enterprise information system (to the left in
Figure 8), various change decisions will result
in new enterprise information systems. We call
these potential new systems scenarios. Gener-
ally, IT decision makers have some ideas about
how these scenarios could manifest them-
selves in the short and in the long term (to the
right in Figure 8).

Enterprise architecture models can represent
each future scenario, as well as the current
state. Models over for instance applications,
business processes, information, and techni-
cal infrastructure may all be employed for
specifying these scenarios. The main problem
in decision-making is to choose which one of
the future scenarios to pursue; which one is
the better one for a given purpose. This
choice is aided by enterprise architecture
analysis as illustrated in Figure 9.

In the ideal case, we would like to have a
machine that takes the various potential
scenarios as input and produces an output
specifying which of the scenarios is best. We
would of course select the best scenario,
implementing the decision set required to
reach that scenario. This machine is what we

call enterprise architecture analysis. In
enterprise architecture analysis research, the
rules determining why one scenario is better
than another are developed. An informal
example of such a rule could be A system that
is loosely coupled is better than one that is
tightly coupled.

Movie 4: On the Benefits of Enterprise Architecture

Chapter 1 Introduction

Model-based enterprise information systems management

The main difference between enterprise architecture and alternative
approaches to enterprise information systems management is perhaps the
focus on models of the systems and the context within which they reside.
There are other approaches to enterprise information systems management
that share many of the views of the enterprise architecture community, but
no other approach places quite as large emphasis on modeling.

So, what is a model? Common models familiar to most people include
geographical maps, architectural drawings, miniature buildings,
airplanes, trains and cars. But there are also more abstract models, such
as the Bohr model of the atom, where electrons orbit around the
nucleus in the same way planets orbit the sun. Furthermore, there are

mental models, representing our cognitive appreciation of worldly
phenomena. As indicated by the term enterprise architecture, we are
mainly concerned with graphical models, i.e. drawings over how
various things and phenomena are related. The analogy between
enterprise architecture and the traditional architecture of buildings is
in many ways appropriate.

Models are powerful tools for mainly two reasons: Firstly, they help us
focus on the important issues when contemplating a certain problem. A
common map depicting the different nation states of the world leads us
to focus on questions like what the capital of this or that country is or

16

Figure 8: Scenario decision making

Figure 9: The Enterprise architecture machine

Chapter 1 Introduction

which country owns this or that island, while a road map leads us to
questions about the driving distance between various locations. A
weather map, of course, leads us to other questions. Secondly, models
provide different people with a common view of an issue. Models both
provide a common language that helps us communicate with each other
and also guide us to focus on the same set of issues. Models are thus ef-
fective tools for planning, communicating, and of course, also for docu-
menting (remembering). It is thus an important mission of enterprise
architecture to provide useful models for the various decision-making
activities of enterprise information systems planning.

The role of the CIO

There is a special relationship between the role of the Chief Information
Officer (CIO) and the discipline of Enterprise Architecture. An individual
or a small group of people close to the senior management of the company
typically holds the CIO role. The CIO role definition differs with the com-
pany, but generally it is a position with an overarching responsibility for
all of the enterprise's IT. Sometimes the CIO is the head of the IT depart-
ment. Typically, the primary focus of the CIO is strategic information
systems planning. Common work products consequently include vision
documents for information systems, IT strategies, and IT plans. In brief,
the CIO is typically responsible for overarching enterprise information
systems management.

Because enterprise architecture is a tool for enterprise information systems
management and the CIO is the role with the main responsibility for this
activity, it is reasonable to view the CIO as the main stakeholder of

enterprise architecture. Therefore, in this book, if no other stakeholder is
indicated, the CIO will be assumed. Naturally, this does not mean that the
CIO is the only role with an interest in enterprise architecture, on the con-
trary, all roles involved in enterprise information systems management
should have some involvement in the enterprise architecture. But of these
various roles, the CIO is in most companies the main stakeholder.

Goal-driven enterprise architecture

Enterprise architecture advocates the explicit modeling of the organi-
zation and its systems. Modeling, however, can be costly. The world
is full of things that could be represented, and it would not be diffi-
cult to spend completely unreasonable efforts on modeling the details
of existing and future systems. Such indiscriminate modeling would
be of little value, not only due to the effort of producing the models,
but also because the models would soon be as difficult to understand
as the real world they represent.

In order to avoid indiscriminate modeling, we advocate for a goal-
driven approach. In brief, only those phenomena that directly relate to
our enterprise architecture goals are to be modeled. In other words,
only the information required for answering our most pertinent ques-
tions will be gathered in the enterprise architecture models. This seems
almost self-evident, but it is not easily accomplished. There are two
main problems. Firstly, many organizations are not clear on what their
goals are. For instance, is information security more important than us-
ability in this information system? Or is increased business process effi-
ciency the most important metric to strive for in this business domain?

17

Chapter 1 Introduction

Secondly, the relations between the enterprise information system man-
agement goals and the enterprise architecture models are unclear. If it
is important to manage the availability of the information systems,
what enterprise architecture models should we maintain? This book ad-
dresses both of these issues.

Decision-making

All attempts at rational decision-making need to contain a few activities
[12]. Firstly, the decision-maker must settle on a goal, or a success crite-
rion. What would characterize a good decision as opposed to a poor
one? For instance, when buying a car, one goal might be to buy as safe a
car as possible. Actually, as a rule there are multiple goals that need to be
traded against one another.

Secondly, decision alternatives need to be identified. What options are
available? Let us suppose that our hypothetical car buyer only has a
choice between a 1963 Corvette Sting Ray and a 2005 Saab 9-5.

Thirdly, the effects of the decisions on the goals must be elicited. For
instance, selecting a car that features seatbelts, airbags and good
brakes, is more likely to lead to the goal than selecting one without
these features. It is also preferable to select a car with good crumple
zones, i.e. structural features designed to compress during an accident
in order to absorb the impact energy.

Fourthly, based on the above analysis of the effects of the alternatives on
the goal, the decision-maker needs to decide on what information to col-

lect with respect to the different decision alternatives. In this case, the
decision maker might write down a small checklist over questions to ask
the dealer: Does this model have seat belts? etc.

Fifthly, the information needs to be collected. A problem often encoun-
tered here is that the gathered information is not completely certain.
Perhaps the car dealer does not know the answer to some questions. It
is then normally possible to find the answer elsewhere. For many ques-
tions, however, it is very expensive to get certain answers. To be really
sure that the crumple zones are properly designed, for instance, it may
be necessary to conduct crash tests. Such information gathering would
be more expensive than the planned investment.

Sixthly, when the chosen information is gathered, it needs to be consoli-
dated into an aggregated assessment; which decision alternative is to be
preferred? For instance, the buyer might need to determine whether it is
safer to drive a car with seat belts and airbags but poor brakes than a car
with good brakes, seat belt but no airbag. Also, the decision maker needs
to estimate whether the credibility of the assessment is acceptable. Is it
okay to make the decision without knowing the answer to the question
regarding crumple zones, for instance?

Finally, the decision needs to be made and acted upon. The buyer needs
to go to the car dealer, pay the money and get the car. There might also
be a need for monitoring that the decision is really implemented as de-
cided. Perhaps the car needs some adjustments before delivery. The
buyer would then be satisfied with the decision process only when the
car was delivered.

18

Chapter 1 Introduction

The same decision making process is valid and inevitable for sound
enterprise information systems management.

Setting the goals

In the context of enterprise information systems management, we consider
information system goals (as opposed to the simple car buyer example above).

Because it often is hard to measure the effects of information system deci-
sions on the enterprises ultimate goals (business goals such as maximizing
the profit), it may be necessary to use intermediary goals associated with
the information systems themselves. For instance, it may be sufficient to
understand the difference between two systems with respect to their avail-
ability, performance and interoperability in order to choose between them.
In this case, the effects of the systems on the organizations ultimate goals
are even less understood in detail, but we are convinced that these
information system properties do have a positive effect on these goals and
might be content with that. The benefit of this approach is that we believe
the assessments of availability, performance and interoperability to be
much more certain than those of business profit. These information system
goals are the focus of this book.

Specifying the decision alternatives

If one end of decision-making is the goal, then the other is the available
set of decision alternatives.

Oftentimes, some decision alternatives are clear, while others are fuzz-
ier. For instance, consider the case of the chief architect considering the

technological direction of the information system architecture. An alter-
native that may be reasonably clear is the migration to a service-
oriented architecture. Another alternative may be to aim for suite solu-
tions, i.e. to try to reduce the number of vendors as much as possible,
letting one or a few deliver all required systems. In addition to these
two alternatives, there are surely others, but which are they? In short, it
is important but oftentimes difficult for the decision maker to under-
stand what the comprehensive set of options is.

Breaking down the goals

One important aspect of the above mentioned decisions is that they
have causal effects on the goals. The chief architects decision to move
the system architecture towards a service-oriented platform has for in-
stance effects on the modifiability and performance of systems, which
in turn affects the flexibility of the business processes supported by the
systems, and in the end this (hopefully) has an effect on the ultimate
organizational goals.

A second important aspect is that the causal relations from decision to
goals are oftentimes complicated. It would have been a simpler world
if it were possible to directly change the goals, so that the chief archi-
tect directly could make the decision to increase the flexibility of the
business processes, instead of having to go via the information system
architecture. Unfortunately, in this world, it is rare that the phenomena
that we can manipulate are identical to the objectives we seek.

19

Chapter 1 Introduction

In order to mitigate this problem, decision makers need to try to under-
stand the chains of causality. This is no simple task, and we may safely
claim that relatively few of the causal relations between IT decisions and
IT goals are certain in any scientific sense of that word. However, incom-
plete knowledge is generally better than no knowledge. Figure 10 presents
one hypothetic causal theory relating the decision between two infrastruc-
ture alternatives to the goal of information system security.

In this theory, it is believed that the most important determinants of
information system security are the organizational behavior on the one
hand and the technical security on the other. Since the decision only
concerns technical issues, the theory needs not be explicit with regard
to the organizational issues. Technical security, however, is believed to

be dependent on the existence of firewalls, the existence of intrusion
prevention systems and the technical enforcement of complicated user
passwords. (We grant that this is a simplistic theory over security.) If
the infrastructure alternatives under consideration differ with respect
to these features, the decision maker may use the theory to predict the
causal impact of the decision on the goal.

Eliciting information requirements

If the decision maker has settled on goals, is aware of at least a couple of
decision alternatives, and has some understanding of the causal effects
of the decision on the goals, it is time to start examining the alternatives
in greater detail. Do all infrastructure alternatives include firewalls, or
only some of them?

It is oftentimes convenient if the information required for the decision is
collected and presented in a consistent manner to the decision maker.
Since information gathering can be very time consuming, it would also
be good if other people than the decision makers themselves could per-
form this activity. In order to allow such third-party data collection, one
needs to clarify exactly what information is desired.

The importance of this activity is oftentimes overlooked. IT decision mak-
ers often commission various investigations aimed at providing
decision-supporting information. Unfortunately, the information pre-
sented in the resulting reports is oftentimes not at all compatible with
the goal breakdown of the decision-maker. The decisions taken are then
based on unnecessarily incomplete information.

20

Figure 10: A simple decision making theory on security

Chapter 1 Introduction

Collecting evidence

When it has been decided on what information to gather, the complicated
task of data collection needs to be embarked upon. This task is very much
like a scientific or a criminal investigation. The major problem is to collect
evidence that is sufficiently credible for the given purposes. Many ques-
tions in enterprise information systems management are very difficult to
find trustworthy answers to.

For instance, assume that we are interested in assessing the availability
of some part of the enterprise information system in a large enterprise.
One might then be interested in finding out whether two existing
systems are exchanging information or not. For the investigator in this
hypothetical example, the first step might be to refer to a previous sur-
vey over the company's information systems and their relations. Perhaps
that study indeed does contain the required information, but it is five
years old. It is then uncertain if this information is still correct. In order
to improve the credibility of the information, the investigator might
make a phone call to the person listed as system owner. Perhaps this per-
son responds that yes, she believes that the systems are exchanging
information, because the system administrator said so a while back. The
investigator may then call the system administrator, but of course, that
person may also be in error. In order to really get to the bottom of the
question, our investigator then decides to read the system documenta-
tion. However, such information is often outdated. How then, should the
investigator proceed to really ensure that the collected information is cor-
rect? Perhaps it would be possible to install an application to the local

area network that attempts to identify communication between the two
systems by checking the origin and target addresses of IP-packets on the
network. This might fail if the communication frequency between the
systems is lower than the test period. Another alternative would be to
read through the source code of the systems to find any code that trans-
mits messages between them. However, the source code might not be
available. And so on.

The main point here is that data collection is a difficult endeavor, and it
is rarely the case that the collected information is completely credible.
On the contrary, it is often the case that the gathered information is as-
sociated with a degree of uncertainty.

Assessing goal fulfillment

When the required pieces of information have been gathered, they need
to be consolidated into a comprehensive judgment. When we know that
decision alternative A features solidly configured firewalls and intrusion
prevention systems while decision alternative B incorporates encrypted
communication and biometric authentication, we need to determine
which is the better alternative. Of course, this goes back to the goal break-
down of Subsection 1.4.8. A good goal breakdown includes the relative
importance of the different causal factors, so that it is possible to deter-
mine which of the alternatives is better. It is important here to note that
all (non-random) decision makers have such weighted broken-down
goal structures. It is just that these models are normally not made ex-
plicit. They remain hidden in the heads of the decision makers.

21

Chapter 1 Introduction

Furthermore, in the aggregation of the various gathered pieces of
information into a single judgment, it is important to also attempt to get
a feeling for the credibility of that judgment. If the information base is
uncertain, the judgment will often also be dubious. If the decision maker
feels that this uncertainty is excessive, she may choose to return to the
information gathering activity, attempting to collect better information.

Decision-making, implementation and monitoring

A decision-maker supported by a credible analysis of the effects of deci-
sions on goals is in a good position for making a decision. The only thing
to do is to choose the option that has the best effect on the goals.

Of course, decision making in the real world is rarely quite so rational. It is
oftentimes the case that there is more than one decision maker, so that ac-
tivities such as lobbying and negotiation become a large part of the
decision making process. However, such lobbying and negotiation may
concern whether the correct goal has been selected, whether the identified
decision alternatives are reasonable, whether the causal theory linking the
decisions to the goals are really correct, and whether the collected
information is credible or not.

In organizations, decision makers are oftentimes not the executors. There
are various means by which decisions may be implemented. Policies and
directives may be changed in order to affect the behavior of relevant or-
ganizational units. Specific projects may be initiated, aiming at coming
about the required changes.

In whatever manner the decision maker attempts to realize the
decision, there is the risk that the implementation does not succeed.
Therefore, monitoring activities, measuring whether goals are really
reached, are commonly employed instruments. Monitoring is very simi-
lar to the process described in this section. It is necessary to determine
what (goal) to monitor, to break it down into measurable indicators, to
collect that information, and to aggregate it in order to assess whether
the goal was actually met.

1.4.2 EA modeling and analysis, the continuation of this book

This first chapter of the book presented the history of information systems
and enterprise architecture, the enterprise systems in use today and their
most common integration architectures, as well as the background of
enterprise architecture as a decision making approach. The rest of this
book focuses on presenting enterprise architecture models and tools sup-
porting the decision making process.

22

Chapter 1 Introduction

2 An introduction to
Enterprise Architecture
modeling.

Basic enterprise
architecture

24

This second chapter of the book focuses on
presenting what enterprise architecture mod-
eling is and how to do it. First, we introduce
some basic modeling theory e.g. what is a
metamodel and a model. Then, we provide a
simple modeling tutorial.

2.1 Modeling theory

Enterprise architecture is a model-based
approach to business and IT management.
Just as any other models, enterprise

architecture models are abstractions and
simplifications of the real world. The use of
models is pervasive; from for instance
geographical maps and calendars that we
use in our daily lives to advanced models of
building constructions and the behavior of
atoms and molecules that are used under
very specific circumstances. The essence of
modeling is to capture interesting
phenomena in the real world, be it roads or
electrons, and leave out everything else.

The choice of what to filter out from the real
world into the model is determined by a
metamodel, or a modeling language. In other
words, the metamodel is the language in
which we describe the phenomena of the real
world, cf. Figure 11. In the discipline of
enterprise architecture, we are interested not
in roads or electrons, but in things like
business processes, organizational roles,
information systems, communication
networks, how they behave, as well as how
they relate to each other. A simple metamodel
for enterprise architecture could look like the
one depicted in Figure 12. The metamodel
describes what classes should be modeled Figure 11: Conceptual picture of modeling

Figure 12: A simplistic metamodel
example.

Chapter 2 Basic enterprise architecture

and what relations between them that are of interest. The relations may
also provide information about the multiplicity restricting the relation; a
role may for instance own many applications, but the application may
only have one owner. Moreover, a class may be described by a number
of attributes; an application may have a certain cost and a business
process a level of efficiency. The typical metamodel thus consist of
classes, class relations and attributes.

There are many different metamodels proposed for enterprise
architecture, including the already mentioned metamodel proposed by
The Open Group in TOGAF [11]. Also, most EA tools have a built in
metamodel. What metamodel to use is up to each company. We suggest
that the choice of metamodel should be based on the goals the company
has with its EA initiative.

2.1.1 A modeling example

This subsection contains a small modeling example, with focus on
describing how a metamodel and a model are related. Thus, the presented
metamodel and model are only examples. We have also chosen not to
include any attributes here, only classes and relationships. The relation to
certain information system goals, such as interoperability and
modifiability is only touched upon and will be detailed later on.

Considering the IT-centered enterprise architecture models, perhaps the
most common are the ones aiming at describing application (or system)
cooperation. In its basic form such a model would describe what
applications that are connected to each other, typically in terms of some

form of information exchange through interfaces indicating what kind of
services are provided by the applications. It could also contain
information regarding what applications are grouped together in larger
assemblies. A metamodel defining this is found in Figure 13.

An example of an instantiated application cooperation model is found in
Figure 14. The model illustrates the relationship between the automatic
meter reading, billing, and customer support applications.

25

Figure 13: Metamodel example focusing on application
cooperation.

Figure 14: Example application cooperation model.

Chapter 2 Basic enterprise architecture

Notice the relation between the metamodel (Figure 13) and the model
(Figure 14). The model only contains instantiated classes and relationships
that are available in the metamodel. That is, the metamodel sets the
constraints on what is possible to instantiate in a model. If an architect
realizes that there is another type of class necessary in the model in order
for it to provide decision support for the goals under consideration, then
the metamodel must be modified first. For instance, the CIO might have
requested that there is a need for information about application
cooperation and application usage. The architect realizes that in order for
the model to provide this information it needs to contain what processes
there are and how they relate to the applications. Thus, the metamodel
needs to be altered for this change, e.g. by adding a process class and
process-application relationships.

Even this type of small metamodel can aid in decision-making if used in the
right way. For instance, in relation to information system interoperability,
the application cooperation model describes what applications that actually
are connected, and through what interfaces. Related to information system
modifiability, the application collaboration model can provide information
about modifiability-affecting factors such as the external coupling of applica-
tions. Information about the source code, such as its size or complexity,
could potentially also be included as application attributes in this type of
model. More on this will be presented in chapter 3.

2.1.2 A commonly used metamodel

As explained earlier there are many initiatives presenting different types
of metamodels, some more similar to each other than others. Our stand-

point is that the choice of metamodel should be based on the goals one
has. However, in order to show what a typical metamodel could contain
when it comes to classes and relationships we here briefly introduce you
to one of the more common ones.

Dr. Marc Lankhorst and his colleagues have proposed what is one of the
most well-known and widespread metamodels, called ArchiMate [13].
ArchiMate is an open, independent, and general modeling language for
enterprise architecture. The Open Group accepted the ArchiMate
metamodel as a technical standard in 2009. The metamodel consists of
three layers; the Business layer, the Application layer and the Technology
layer, where the technology supports the applications, which in turn
support the business. Each layer consists of a number of classes and
defined class relationships. The classes in each layer are categorized into
three aspects of enterprise architecture: 1) The passive structure -
modeling informational objects. 2) The behavioral structure - modeling
the dynamic events of an enterprise. 3) The active structure – modeling
the components in the architecture that perform the behavioral aspects.
Figure 15 presents the ArchiMate metamodel.

Below, the ArchiMate classes and relationships are described in detail in [13].

2.2 Modeling tutorial

This section will guide you through a modeling tutorial using the
Enterprise Architecture Analysis Tool (EAAT). There are altogether two
EAAT tools - an EAAT Class Modeler and an EAAT Object Modeler. See

26

Chapter 2 Basic enterprise architecture

http://www.opengroup.org/archimate
http://www.opengroup.org/archimate
http://www.ics.kth.se/eaat
http://www.ics.kth.se/eaat

chapter 11 for more information on class modeling and chapter 12 for mod-
eling patterns and practices.

In this tutorial, we will introduce the classes and relationships of a meta-
model capable of analyzing several different quality attributes, including
service availability, modifiability, and cost. In this first subsection, the at-
tributes are not explained, these will be presented later in the book (cf.
chapter 3). The metamodel used here is partially based on ArchiMate and
contains classes from the business layer, the application layer, and the in-
frastructure layer.

Application layer

An application service is defined as a unit of functionality that a system
exposes to its environment and that displays automated behavior. An
application service could be playing a game of chess with a user, or
printing a shopping list or calculating a ballistic trajectory. The important
thing is that the service provides something meaningful to the user.

An application service is exposed to the environment, but it is realized
by an application function. For the chess game, an application function
could be calculating the next move. To calculate the next move is not in
itself useful to the chess player, but it is a function that will contribute to
something useful, that is to an application service.

An application component is a modular, deployable, and replaceable part of a
software system. It is the entity that performs application functions. It could
for instance be the Chess software that plays the chess game with the user.

27

Figure 15: The ArchiMate metamodel.

Business
actor

Business
role

Application
component

Business
object

Artifact

Value

Application
service

Application
interface

Infrastructure
interface

Infrastructure
service

Node

DeviceSystem
software Network

Business
service

Event

Business
interface

Business
process /
function /

interaction

Business

Application

Application

Technology

Data object

Contract

Product

Representation

Communication
path

Application
function /

interaction

Business
collaboration

Application
collaboration

Meaning

Chapter 2 Basic enterprise architecture

An application collaboration is used in order to model what application
components that are acting together to perform a collective behavior. It
could for instance be the collaboration between the chess software and a
web component, in order to find other players to compete with or to be
able to post your game results online.

Business layer

Just as the chess player uses the chess application, a designer in the
automotive industry may use a design application to sketch on a car.

The business process is the Designing of the vehicle, and processes may use
application services, so here is an important link between the business and
the IT. Other processes in a car company could be producing the vehicle
and shipping the vehicle.

Business processes are performed by roles. In this case, the designer is a
role. Other roles could be Chief Production Officer and Machine Operator.

The customer, however, sees nothing of the design, production and ship-
ping of a car. The customers interact with the company through business
services. An example of a business service is Car selling.

Infrastructure layer

Moving to the bottom part of the metamodel, the application layer is
mirrored by an underlying infrastructure layer. In the same manner as
business processes may use application services, application functions
may use infrastructure services. Examples of infrastructure services are

28

Figure 16: Tutorial metamodel example.

Chapter 2 Basic enterprise architecture

Messaging, Data management and Printing. Just as in the case of
applications, infrastructure services are realized by infrastructure
functions. These are in turn performed by nodes. A node could be an
IBM Mainframe running z/OS, or a PC running Microsoft Windows.

In all, the metamodel is composed of ten classes, cf. Figure 16, and this
metamodel will allow us to analyze system qualities such as service
availability, modifiability, and cost.

The tutorial is composed of eight steps that will guide you through an
enterprise architecture modeling and analysis example. The
background is a case at a fictive energy company called ACME, which
is about to start a project to improve the business process of analyzing
automatic meter reading data. The architect at ACME has a proposal
for the CIO that includes new applications and infrastructure
supporting the process. The scenario also includes the hiring of a new
person in charge of the meter data analysis. The CIO has expressed that
the most important aspects to consider, besides getting the right
functionality, is to have high availability and that the solution is easy to
change in the future in case new requirements occur. Also the company
has a tight budget for these kinds of investments, thus the total cost is
also a major factor in this case.

Outline

1. Add a first infrastructure layer with three classes and evaluate the
availability

2. Add a second infrastructure layer with three additional classes
and evaluate its availability

3. Add an application function, connect it to the two infrastructure
services, and evaluate its availability

4. Add an application component, connect it to the application function,
and see how it affects the availability

5. Add an application collaboration with coupling evidence

6. Add an application service and evaluate the modifiability

7. Add a business layer and evaluate the business process availability

8. Add cost evidence to the model and evaluate the total business
process cost

The following paragraphs will detail the modeling steps.

Step one: Add a first infrastructure layer

• Add an Infrastructure Function

• Name it Local meter reading

• Press the calculate button

• Consider the Availability results (the availability of the Local meter
reading function should be a normal distribution centered around 0.95)

• Add a Node
29

Chapter 2 Basic enterprise architecture

• Name it Local meter readers

• Connect the two classes

• Add 0.992 (99,2 %) as evidence to the attribute Availability of the
Local meter readers node

• Press the calculate button

• Consider the Availability results (the availability of the Local
meter reading function should now be 0.992 instead)

• Add an Infrastructure Service and name it Aggregated meter readings

• Connect the Aggregated meter reading service and the Local meter
reading function. The Aggregated meter readings service is realized
by the Local meter reading function.

• Press calculate again and see how the availability of the node, that first
had an effect on the function, now also has an effect on the service.

• Save the model regularly.

Step two: Add a second infrastructure layer

• Add a second Node and name it Database, add a second Infrastructure
function and name it Data transmission, and add a second
Infrastructure service and name it Data transfer.

• Connect the Node and the Function.

• Connect the function and the service with a RealizeAND association
so the Data transfer service is Realized by the Data transmission
function.

• Add 0.991 (99,1 %) as evidence to the attribute Availability of the
Database node.

• Press the calculate button and consider the Availability results (the
availability of the Data transfer service should be 0.991)

• Save the model regularly.

Step three: Calculate the availability of an application function

• Add an Application Function and name it Data collection

30

Figure 17: The application function availability viewpoint of the tuto-
rial model example.

Chapter 2 Basic enterprise architecture

• Connect the Data collection function with the Aggregated meter
readings and the Data transfer services, since the Data collection function
uses both services the relationship should be of type AND. The
relationships should be DataCollection.useAND.LocalMeterReading
and DataCollection.useAND.DataTransmission.

• Press the calculate button and consider the Availability of the Data
collection function, which should be 0.983 (98,3 %)

• See the application function availability viewpoint of the model in
Figure 17.

• Save the model regularly.

Step four: Add an application component

• Add an Application Component and name it AMR master

• Connect the AMR master with the Data collection function

• Press calculate and consider the Availability result of the Data
collection, the result should now read 94,9 %

• Add 0.995 as evidence to the attribute Availability of the AMR
master component

• Press calculate and consider the Availability result of the Data collection
function again, the result should now read 97,8 %

• Save the model regularly.

Step five: Add application collaboration

• Add a second Application component and name it Business intelligence.

• Add an Application collaboration class and name it Data exchange.

• Connect the two Application components through the Application
collaboration class.

• Add a second Application function and name it Data compiler.

• Connect the AMR master and the Business intelligence components
with the Data compiler function.

• Add Size 430000 and Gearing factor 53 to the AMR master, as well as
Size 75000 and Gearing factor 55 to the Business intelligence component.

• Press calculate and consider the the External couplings attributes of
the two components, all four should now be 1 (since we have one
collaboration of unknown kind).

• Add 1 Content coupling, 2 Common couplings, and 11 Data couplings to
the Data exchange collaboration between the two components.

• Press calculate again and consider the External coupling attributes
of the two components, all four should new be 5,9 instead.

• Save the model regularly.

31

Chapter 2 Basic enterprise architecture

Step six: Calculate application modifiability

• Add an Application service and name it Compiled meter data.

• Connect the Compiled meter data service with the two Application
functions, since the service is Realized by both functions the relationship
should be of type AND.

• Add a baseline Gearing factor of 53 to the Compiled meter data service.

• Press calculate and consider the Modifiability of the service, which
should be 3. This is a rather low value indicating that the service
will be difficult/costly to change in the future, mainly due to large
source code and the tight coupling between the components
realizing the service.

• See the application service modi_ability viewpoint of the model in
Figure 18.

• Save the model regularly.

Step seven: Add a business layer

• Add a Business process and name it Analyze meter data.

• The Analyze meter data process Uses the Compiled meter data service.
Add this relationship (since there is only one user, either userAND or
UserOR) can be selected.

• Add a Role and name it Meter data analyzer.

• Connect the Meter data analyzer role with the Analyze meter data
process.

• Add 99 % Availability as evidence for the Role and 99,7 % Availability
for the Business intelligence component.

• Press calculate and consider the Availability for the Business process
Analyze meter data, which should be 97 %. This is a rather low value
for a business process and it is mainly due to the high dependence of
the manual work of the Meter data analyzer role.

• Save the model regularly.

32

Figure 18: The application service modifiability viewpoint of the
tutorial model example.

Chapter 2 Basic enterprise architecture

Step eight: Calculate the business process cost

• Add the Initial and Yearly costs of the Nodes, Components, and Role
as described in Table 1.

• Press calculate and consider the cost of the business process Ana-
lyze meter data, which should be 3.480.000 SEK. This cost is based
on the assumption that the role, components, and nodes are new.
Once these have been in place for some time the initial costs will
be written-off and the total cost of the service will only be based
on the yearly costs (this has not been implemented in the meta-
model yet). Also, in this small example architecture the business
process does not share any components, nodes, or the role with
others. If this would have been the case the costs would also have

been shared, thus a smaller economic burden would have fallen
on this particular service.

• Save the model regularly.

• The complete model can now be seen in Figure 19.

33

Table 1: Initial and yearly cost data for modeling tutorial.

Class Type Initial Cost Yearly Cost

Local meter
readers

Node 1000000 100000

Database Node 50000 10000

AMR master App.Comp. 300000 45000

Business
intelligence

App.Comp. 450000 25000

Meter data
analyzer

Role 500000 1000000

Figure 19: Complete tutorial model example after the nine steps.

Chapter 2 Basic enterprise architecture

The CIO is satisfied with the functionality of the solution and the cost, but
there is a wish to find a scenario with higher modifiability and at least
better availability in the infrastructure and application layers. Therefore,
the architect needs to find a second scenario that the CIO can compare this
solution with before a decision can be made.

This chapter of the book has focused on explaining what a metamodel is
and how to model architectures. The next chapter will present a
metamodel for enterprise architecture analysis of multiple attributes
including modifiability, availability, cost, interoperability, application
usage, and data accuracy.

34

Chapter 2 Basic enterprise architecture

3 A brief description of the
MAP class model.

The chapter briefly
introduces the MAP class
model. Subsequently,
chapters 4 through 10
describe the individual
components (viewpoints),
which the MAP class model
contains.

The Multi-Attribute Prediction
(MAP) class diagram

36

This chapter presents a multi-attribute analysis
metamodel for application modifiability, data
accuracy, application usage, service availability,
interoperability, cost and utility. Previous work
on combining different quality attributes in one
metamodel has been presented in [14-16]. Each
of the six attributes are then detailed as separate
viewpoints in the coming chapters.

For the interested reader this chapter is based
on two fundaments, namely the Enterprise
Architecture Analysis Tool3 (EA2T) [17-20]
and the Predictive, Probabilistic Architecture
Modeling Framework (P2AMF) [21], also
referred to as Probabilistic Imperative Object
Constraint Language (Pi-OCL) [22] or
Probabilistic Object Constraint Language (P-
OCL) [23, 24].

3.1 Metamodel elements

This section presents the metamodel, cf. Figure
20. The main classes in the metamodel are based
on ArchiMate, thus the three layers; technology,
application, and business are all used. The three
categories; passive, behavior, and active structure
are also employed in the metamodel. The

metamodel has five viewpoints tailored for
specific purposes, these are presented in the
coming sections.

In the metamodel there are six classes (in
grey) which are not used by the modeler
namely; BehaviorStructure, Service, Behav-

iorElement, PassiveComponentSet, ActiveS-
tructureElement and Requirement. These six
classes all have two or more subclasses inher-
iting their properties. This means that the at-
tributes, relationships, constraints, and behav-
ior of the parent class is also existent in the
child class, i.e. inheritance from its parent.

Chapter 3 The MAP class diagram

Figure 20: The metamodel.

Each child class can also have its own properties. A parent class is some-
times referred to as superclass and the child subclass.

The rest of the subsection will present the definitions of all the meta-
model classes and class relationships. The attributes will be presented in
the coming viewpoint sections.

3.1.1 Inheritance elements

Behavior element

BehaviorStructure is the central class in the metamodel. It is not used
when modeling, but plays an important role since both Services and Be-
haviorElements are inheriting from this class. Furthermore the Busi-
nessService, ApplicationService, and InfrastructureServ-
ice all inherits from the Service class, while the BusinessProcess,
ApplicationFunction, and InfrastructureFunction inherits
from the BehaviorElement class. There are seven class relationships in
the behavior element class.

Relationship: realize. In ArchiMate the realization relationship links a logical
entity with a more concrete entity that realizes it. The realize relation
Service.realizer.BehaviorElement or the other way around,
BehaviorElement.realizee.Service is used when an behavior element
is realizing a service. Meaning that the functionality of the service is pro-
vided by the behavior element.

Relationship: used by. In ArchiMate the used by relationship models the
use of services by processes, functions, or interactions and the access to

interfaces by roles, components, or collaborations. The
BehaviorElement.uses.Service or the other way around
Service.usedBy.BehaviorElement is used when a behavior element
is using a service to perform its behavior.

The two relations, realize and usedBy, are available as both an AND and
an OR option. The correct usage of these are of great importance when
evaluating service availability (cf. section 7). In Figure 21 the Service is
realized by four BehaviorElements, A, B, C, and D. Where, A and B
realize the Service through the realizeAND relationship. While, C and
D realize the Service through the realizeOR relationship. When evaluat-
ing for instance availability this example would mean that A, B, and one
of C or D have to be available, A ! B ! (C " D).

Relationship: speaks language. The speaks language relation,
BehaviorStructure.language.Language or the other way around,
Language.speaker.BehaviorStructure is used in order to model what
languages a behavior element can understand or vice versa what behavior
elements that are capable of understanding a certain language.

37

Chapter 3 The MAP class diagram

Figure 21: Demonstration of the AND/OR relationships,  
A ∧ B ∧ (C ∨ D)

R e l a t i o n s h i p : r e a d . T h e r e a d r e l a t i o n ,
BehaviorStructure.read.PassiveComponentSet or the other
way around PassiveComponentSet.reader.BehaviorStructure is
used in order to model that a behavior element is reading a certain
passive component set.

R e l a t i o n s h i p : w r i t e . T h e w r i t e re l a t i o n s
BehaviorStructure.written.PassiveComponentSet or the other
way around PassiveComponentSet.writer.BehaviorStructure is
used in order to model that a behavior element can write to a certain pas-
sive component set.

Behavior element

BehaviorElement is a class not used when modeling, it is a subclass of
BehaviorStructure and a superclass to BusinessProcess, Applica-
tionFunction, and InfrastructureFunction. BehaviorElement
has one class relation added on top of the inherited relations from the Be-
haviorStructure.

Relation: assignment. In ArchiMate the assignment relationship links
active elements (e.g., business roles or application components) with
units of behavior that are performed by them, or business actors with
business roles that are fulfilled by them. In the metamodel,
BehaviorElement.assignee.ActiveStructureElement or the
o t h e r w a y a r o u n d
ActiveStructureElement.assignor.BehaviorElement is used in
the same way.

Service

The service class is not used for modeling, it is a subclass of Behavior-
Structure and superclass of the three classes; BusinessService,
ApplicationService, and InfrastructureService.

Active structure element

ActiveStructureElement is a class not used for modeling, it is a super-
class to some of the classes in the metamodel which performs a behavior
aspect. The ActiveStructureElement is a superclass to Node, Role
and ApplicationComponent. The .ActiveStructureElement has
one relationship.

Relation: Assignment. In ArchiMate the assignment relationship links
active elements (e.g., business roles or application components) with
units of behavior that are performed by them, or business actors with
business roles that are fulfilled by them. In the metamodel,
BehaviorElement.assignee.ActiveStructureElement or the
o t h e r w a y a r o u n d
ActiveStructureElement.assignor.BehaviorElement is used in
the same way.

Passive component set

PassiveComponentSet is a class not actively used for modeling, it is a
superclass to two informational classes RepresentationSet and
DataSet. The passive component set has four relationships.

38

Chapter 3 The MAP class diagram

Relation: Precedence. The precedence relationship is a self reference, it
links the preceding passive component sets with the subsequent passive
component set. The relationship is used to model which previous data
that is composed to the new passive component set.

R e l a t i o n s h i p : r e a d . T h e r e a d r e l a t i o n ,
BehaviorStructure.read.PassiveComponentSet or the other
way around PassiveComponentSet.reader.BehaviorStructure is
used in order to model that a behavior element is reading a certain
passive component set.

R e l a t i o n s h i p : w r i t e . T h e w r i t e r e l a t i o n s h i p s
BehaviorStructure.written.PassiveComponentSet or the other
way around PassiveComponentSet.writer.BehaviorStructure is
used in order to model that a behavior element can write to a certain pas-
sive component set.

R e l a t i o n s h i p : l a n g u a g e . T h e l a n g u a g e r e l a t i o n s h i p ,
PassiveComponentSet.language.Language is used to model which
language the PassiveComponentSet is stored in.

Requirement

Requirement is a class not actively used for modeling, it is a superclass
to the three requirement classes: ServiceRequirement,
InterfaceRequirement and ApplicationServiceRequirement.
In ArchiMate a requirement is defined as a statement of need that must be
realized by a system. The Requirement has one relationship.

R e l a t i o n s h i p : c o n c e r n . T h e c o n c e r n re l a t i o n s h i p
Requirement.concern.Stakeholder or the other way around
Stakeholder.concern.Requirement is used to model which stakeholder
that has a certain requirement.

3.1.2 Modeling elements

Business service

In ArchiMate a business service is defined as a service that fulfills a business
need for a customer (internal or external to the organization). The
BusinessService is a subclass of the Service. It is realized by business
processes and can also be used by a business process. The business services
is typically the core of an enterprise apart from physical products
manufactured. Examples of a business service are accounting, marketing,
selling, and intelligence gathering & analysis services.

Application service

In ArchiMate an application service is defined as a service that exposes
automated behavior. The ApplicationService is a subclass of Service.
It has one extra relationship, application use. The application service is
realized by application functions, it can be used by both application
functions and business processes. Examples of application services are sales
order compiling, automated information tracing and intelligence collecting,
and transaction processing.

R e l a t i o n s h i p : a p p l i c a t i o n u s e . T h e r e l a t i o n s h i p ,
ApplicationService.appUse.ProcessServiceInterface, is used

39

Chapter 3 The MAP class diagram

to bind an application service the process service interface class when
performing application usage evaluation (cf. section 6).

Infrastructure service

In ArchiMate an infrastructure service is defined as an externally visible unit
of functionality, provided by one or more nodes, exposed through well-
defined interfaces, and meaningful to the environment. The
InfrastructureService is a subclass of Service. It is realized by
infrastructure functions and can be used by application functions and
infrastructure functions. A infrastructure function could for example be data
storage, file naming and version control, or information passing.

Business process

In ArchiMate a business process is defined as a behavior element that
groups behavior based on an ordering of activities. It is intended to
produce a defined set of products or business services. In our
metamodel the BusinessProcess is a subclass of the
BehaviorElement. It also has its own reference, process use. The
business process can realize BusinessServices through the realize
relationship. It can use ApplicationFunctions modeled with the
usedBy relationship and it can have Roles assigned to it with the
assignment relationship. Examples of business processes are
management processes such as governance and strategic
management, operational processes such as manufacturing and
development, or supporting processes such as recruitment and
technical support.

Re la t i onsh ip : p roc e s s us e . The process use ,
BusinessProcess.procUse.ProcessServiceInterface, is used
when evaluating application usage (cf. section 6).

Application function

In ArchiMate an application function is defined as a behavior element
that groups automated behavior that can be performed by an applica-
tion component. The ApplicationFunction realize Application-
Services modeled with the realize relationship, it can make use of In-
frastructureServices modeled with a use relationship, it can also
read and write PassiveComponentsSets modeled with the read and
write relationships. The application function defines the behavior of an
application component, the application component of which the appli-
cation function is performing its functionality is modeled with the as-
signment relationship. Essentially the application function describes
the important behavior of an application component and how it acts
with the environment. Examples of application functions are billing
and work order administration.

Infrastructure function

In ArchiMate an infrastructure function is defined as a behavior element
that groups infrastructural behavior that can be performed by a node. The
InfrastructureFunction can realize InfrastructureServices
through the realize relationship, it can also be assigned Nodes with the
assignment relationship. Example of infrastructure functions are access
control and data management and distribution.

40

Chapter 3 The MAP class diagram

Application component

In ArchiMate an application component is defined as a modular,
deployable, and replaceable part of a software system that encapsulates its
behavior and data, and exposes these through a set of interfaces. The
ApplicationComponent is a subclass of ActiveStructureElement
and has one of its own relationships. The behavior of the application
component is modeled through the use of ApplicationFunctions
related to the ApplicationComponent with the assignment relationship.
Examples of applications functions are units of software such as web
containers and data managers or a billing component.

Relat ion: co l laborat ion. The col laborat ion relat ionship,
ApplicationComponent.collaboration.ApplicationCollaboration
is used to model what application components that are acting together to
perform a collective behavior.

Node

In ArchiMate a node is defined as a computational resource upon which
artifacts may be stored or deployed for execution. The Node is a subclass
of the ActiveStructureElement. Examples of nodes are client work-
stations, web and database servers, and programmable logic controllers.

Role

In ArchiMate a business role is defined as the responsibility for performing
specific behavior, to which an actor can be assigned. The Role is a subclass
of the ActiveStructureElement.

Representation set

The RepresentationSet is a subclass of PassiveStructureElement.
The representation set is used to model unstructured data stored either
electronically or on paper. The representation set could for instance be used
to model a collection of meeting protocols stored as PDF-files in a folder.

Data set

The DataSet class is a subclass of PassiveStructureElement. The
Data set is used to model structured data, typically stored in databases.
A data set is an aggregation of multiple data objects. As an example a
data set could be a collection of customers in a customer database.

Application collaboration

In ArchiMate an application collaboration is defined as an aggregate of
two or more application components that work together to perform
collective behavior. Between every pair of ApplicationComponents
that are collaborating there should be an ApplicationCollaboration
connected to the two ApplicationComponents with the collaboration
relation. An example of an application collaboration is when a product
order component is collaborating with a billing component to create a bill
in order to charge a customer.

Relat ion: co l laborat ion . The col laborat ion relat ionship,
ApplicationComponent.collaboration.ApplicationCollaboration
is used to model what application components that are acting together to
perform a collective behavior.

41

Chapter 3 The MAP class diagram

Process service interface

The ProcessServiceInterface is an intermediate class used for
application usage evaluation (cf. section 6). It links a BusinessProcess
with ApplicationServices and ApplicationComponents in order
to do the evaluation. The class has three relationships.

Re la t i onsh ip : app l i c a t i on usage . The re la t ionship ,
ApplicationService.appUse.ProcessServiceInterface, is used in
order to bind an application service to the usage evaluation.

R e l a t i o n s h i p : p r o c e s s u s a g e . T h e r e l a t i o n s h i p ,
BusinessProcess.procUse.ProcessServiceInterface, is used in
order to bind a business process to the usage evaluation.

Relationship: is af fected usage. The relationship,
ProcessServiceInterface.isAffectedUsage.UsageRelation, is used in
order to bind an application component to the usage evaluation through the
intermediate class UsageRelation.

Usage relation

The UsageRelation class is an intermediate class used for application
usage evaluation (cf. section 6). The class has two relationships.

Relationship: is af fected usage. The relationship,
ProcessServiceInterface.isAffectedUsage.UsageRelation connects
the two intermediate classes ProcessServiceInterface and UsageRelation for
application usage evaluation.

Relat ionship : i s a f f ected . The relat ionship,
UsageRelation.isAffected.ApplicationComponent, connects the
application component to the usage relation class for application usage
evaluation.

Language

The Language class is used to model a language. It can be a natural
language such as English as well as a technical language such as the
programming language Java or a protocol following IEC 61850.

Relationship: speaks language. The speaks language relationship,
BehaviorStructure.language.Language or the other way around,
Language.speaker.BehaviorStructure is used in order to model what
languages a behavior element can understand or vice versa what behavior
elements that are capable of understanding a certain language.

R e l a t i o n s h i p : l a n g u a g e . T h e l a n g u a g e re l a t i o n s h i p ,
PassiveComponentSet.language.Language is used to model which lan-
guage the PassiveComponentSet is stored in.

Service requirement

The ServiceRequirement class is a subclass of Requirement it is also
the superclass of the ApplicationServiceRequirement class. The
service requirement is used to model the requirements a stakeholder has
on a certain service. The service requirement class has one relationship.

42

Chapter 3 The MAP class diagram

Relationship: requirement on. The requirement on relationship,
ServiceRequirement.requirementOn.Service or the other way around,
Service.hasRequirement.ServiceRequirement is used to model the
requirements which a service should fulfill.

Application service requirement

The ApplicationServiceRequirement class is a subclass of
ServiceRequirement. The application service requirement has extra
properties specific to the application service domain.

Interface requirement

The InterfaceRequirement class is a subclass of Requirement. The
interface requirement has extra properties specific to the application
usage domain.

Relationship: requirement on. The requirement on relationship,
InterfaceRequirement.requirementOn.ProcessServiceInterface
or the other way around,

ProcessServiceInterface.hasRequirement.InterfaceRequirement
is used to model the requirements which a process service interface should
fulfill.

43

Chapter 3 The MAP class diagram

4 A description of MAP’s  
application modifiability
viewpoint.

Application
modifiability

45

Business environments today progress and
change rapidly to keep up with evolving
markets. Most business processes are supported
by information systems and as the business
processes change, the systems need to be
modified in order to continue supporting the
processes. Modifications include extending,
deleting, adapting, and restructuring the
enterprise systems [25]. The modification effort
ranges from adding a functional requirement in
a single system to implementing a service-
oriented architecture for the whole enterprise.

An essential issue with today's information
systems is that many of them are
interconnected, thus a modification to one
system may cause a ripple effect among
other systems. Also, numerous systems have
been developed and modified over many
years. Making further changes to these
systems might require a lot of effort from the
organization, for example due to a large
number of previous modifications
implemented ad hoc. Problems like these
raise questions for IT decision makers such
as: Is the source code easy to grasp? Which

systems are interconnected and how? Are
the systems too complex?

Several studies show that the modification
work is the phase of a system's lifecycle that
consumes the greatest portion of resources;
[26] report that over 70 % of the software
budget is spent on maintenance, [27] refers to
studies stating that the maintenance cost,

relative to the total life cycle cost of a software
system, has been increasing from 40 % in the
early 1970s up to 90 % in the early 1990s, and
[28] states that “the cost of maintenance, rather
than dropping, is on the increase”.

The activities of modifying enterprise
information systems are typically executed in
projects, and information system decision

Movie 5: Modifiability

Chapter 4 Application modifiability

makers often find it difficult to estimate and plan their change projects.
Thus, a large proportion of the projects aiming to modify a system
environment fail. That is, the projects tend to take longer time and cost
more than expected. [29] state that 23 % of the software projects are
cancelled before completion, whereas of those completed only 28 % were
delivered on time, and the average software project overran the budget by
45 %. This can often occur due to lack of information about the systems
being changed. According to [29], software engineers must be able to
understand and predict the activities, as well as manage the risks, through
estimation and measurement. Therefore, it would be useful for the
decision makers to gather more information in a structured manner and
use this information to analyze how much effort a certain modification to
an enterprise information system would require.

This section of the book presents the modifiability viewpoint, which
intends to provide such decision support. The original work that this
section is based on can be found in [30-35].

4.1 How to measure application modifiability

The issue of dealing with modifiability is not an enterprise architecture
specific problem. Managing and assessing information system change
has been addressed in research for many years. Some of the more well-
known assessment approaches include the COnstructive COst MOdel
(COCOMO), and the Oman taxonomy.

COCOMO, COnstructive COst MOdel, was in its first version released in
the early 1980's. It became one of the most frequently used and most

appreciated IT cost estimation models of that time. Since then,
development and modifications of COCOMO have been performed
several times to keep the model up to date with the continuously evolving
software development trends. Effort estimation with COCOMO is based
on the size of the software, an approximate productivity constant A, an
aggregation of five scale factors E (precentedness, development flexibility,
architecture/risk resolution, team cohesion, and process maturity), and
effort multipliers to 15 cost driving attributes [36].

The Definition and Taxonomy for Software Maintainability presented by
Oman et al. in [37] provides a hierarchical definition of software
maintainability in the form of a taxonomy. Oman et al. found three broad
categories of factors influencing the maintainability of an information
system namely; management, operational environment, and the target
system. Each of these top-level categories is then further broken down
into measurable attributes. According to Oman et al. the taxonomy can
be useful for developers by defining characteristics affecting the software
maintenance cost of the software they are developing.

Hence, the developers can write highly maintainable software from the
beginning by studying the taxonomy. Maintenance personnel can use the
taxonomy to evaluate the maintainability of the software they are working
with in order to pin point risks et cetera. Project managers and architects
can use the taxonomy in order to prioritize projects and locate areas in
need of re-design.

COCOMO focuses on the cost of developing or changing information
systems, where architecture modifiability is one part of it. Oman et al. do

46

Chapter 4 Application modifiability

not provide any support for analysis in their taxonomy. Thus, neither of
these fit our purpose perfectly. However, both COCOMO and Oman et
al. use cost driving/maintenance factors related to software complexity,
size, and coupling. These three metrics are the most commonly used
when estimating the modifiability of information systems. The following
paragraphs of this section will present each one of these in detail.

Complexity

IEEE defines complexity as the degree to which a system or component
has a design or implementation that is difficult to understand and verify
[38]. Halstead's complexity metric was introduced in 1977 [39], it is
based on the number of operators (e.g. and, or, while) and operands (e.g.
variables and constants) in a software program. A drawback of
Halstead's complexity metric is that it lacks predicting power for
development effort since the value can be calculated first after the
implementation is complete [29]. Information flow complexity, IFC, as
presented in [40] is based on the idea that a large amount of information
flows is caused by low cohesion, low cohesion is in turn causing a high
complexity. One problem with the IFC metric is that it produces a lower
complexity value for program code using global variables compared to a
solution which uses function arguments when called, this is
contradicting to common software design principles [41]. In this book
McCabe's Cyclomatic Complexity (MCC) metric is employed [42]. [29]
has identified that MCC is useful to, identify overly complex parts of
code, identify non-complex part of code, and to estimate maintenance
effort. MCC is based on the control structure of the software, the control

structure can be expressed as a control graph. The cyclomatic complexity
value of a system with the control graph G is calculated with the
following equation: v(G) = e − n + 2 or equivalently v(G) = DE + 1
where e =number of edges in the control graph, n=number of nodes in
the control graph, DE=number of predicates. Considering the example
code presented in Figure 22 the control graph Gsort can be obtained.

47

Figure 22: An example of a control graph Gsort with v(Gsort) = 4

void sort(int *a, int n)

Int i, j, t;

n < 2?

i=0

No

End i<n-1 ?

Yes

No

j < n ?

Yes

i=++

No

a[i]>a[j] ?

Yes

t=a[i]
a[i]=a[j]
a[j]=t j=++

Yes

No

j=i+1

void sort(int *a, int n) {
 int i,j,t;
 if(n<2) return;
 for(i=0;i<n-1;i++) {
 for(j=i+1;j<n;j++) {
 if(a[i]>a[j]) {
 t=a[i];
 a[i]=a[j];
 a[j]=t;
 }
 }
 }
}

Chapter 4 Application modifiability

The MCC value of Gsort (cf. Figure 22) is v(Gsort) = 14 − 12 + 2 = 4. McCabe
has performed a study indicating that the cyclomatic complexity value of
a component should be kept below 10 [42]. MCC has been used in other
studies providing additional complexity levels and guidelines on how
complex a piece of software code is [29]:

• 1-4, a simple procedure.

• 5-10, a well-structured and stable procedure.

• 11-20, a more complex procedure.

• 21-50, a complex procedure, worrisome.

• 50<, an error-prone, extremely troublesome, untestable procedure.

Size

Lines Of Code (LOC) and Function Points (FP) are two ways to measure
the size of an information system. FP are based on the inputs, outputs,
interfaces and databases in a system [29]. FP have the advantage of being
technology independent, reasonably reliable and accurate, and they are
effective from an early stage of the system life cycle [29]. The
disadvantages of the FP size metric is that it requires significant effort to
derive [29]. The LOC in a system provides the core functionality and can
therefore be of importance when estimating how easy it would be to
implement changes to the system. LOC in a system can be measured in
different ways: Using source lines of code (SLOC) every line of code in the
software implementation is counted. Non-commented lines of code

(NLOC) is a subset of the previous option, where the blank lines and
comments are excluded. Logical lines of code (LLOC) is another approach,
where only the executable statements of the software are counted. The
most popular option is NLOC, however the most important thing is to be
consistent with the way you measure [29]. No matter which LOC measure
that is used it needs to be well specified to provide a reliable measurement
[29]. A framework on how to measure lines of code has been created by
the Software Engineering Institute of Carnegie-Mello University [43], with
the aid of this framework the LOC measure can be specified to provide a
coherent way of how to measure LOC.

Aivosto suggests a classification of system size for systems coded with
Visual Basic 2. The classification is based on long-time experience, but has
not been validated making it less reliable. However, given the size of the
systems studied in [44], the classification seems trustworthy. Related to
system size, operating systems can be much larger with over 40 million
LOC [45], however an operating system would not be modeled as an
application that an enterprise wishes to modify. Rumor has it that SAP has
over 250 million LOC in their product portfolio, but we believe that no
enterprise would model SAP as one application. Thus, the classification of
system size by Aivosto still seems appropriate for our purpose.

Since different programming languages are more or less expressive per
line of code [29], a gearing factor can be used when comparing the lines of
code of two systems if they are created in different programming
languages. A high gearing factor value indicates poor expressiveness,
hence a programming language with a low gearing factor require less lines

48

Chapter 4 Application modifiability

http://www.aivosto.com/help/pm-loc.html
http://www.aivosto.com/help/pm-loc.html
http://judithbalancingact.com/2007/04/30/
http://judithbalancingact.com/2007/04/30/

of code to implement a function; given that the language is appropriate to
use. [46] has published gearing factors for some programming languages
of which a subset is presented in Table 3.

Coupling

IEEE has defined coupling as the manner and degree of interdependence
between software modules. Types include common-environment
coupling, content coupling, control coupling, data coupling, hybrid
coupling, and pathological coupling [38]. Fenton and Melton have
developed a coupling metric based on Myers coupling levels [47], these
levels are:

• Content coupling relation R5 : (x, y) ∈ R5 if x refers to the internals of
y , i.e., it branches into, changes data, or alters a statement in y.

• Common coupling relation R4 : (x, y) ∈ R4 if x and y refer to the same
global variable.

• Control coupling relation R3 : (x, y) ∈ R3 if x passes a parameter to y
that controls its behavior.

• Stamp coupling relation R2 : (x, y) ∈ R2 if x passes a variable of a record
type as a parameter to y , and y uses only a subset of that record.

• Data coupling relation R1 : (x, y) ∈ R1 if x and y communicate by
parameters, each one being either a single data item or a homogeneous set
of data items that does not incorporate any control element.

• No coupling relation R0 : (x, y) ∈ R0 if x and y have no communication,
i.e., are totally independent.

49

Table 2: System size classification.

Classification LOC

Small 0-9.999

Medium 10.000-49.999

Semi-large 50.000-99-999

Large 100.000-499.999

Very Large 500.000≤

Table 3: Gearing factors for some commonly used programming
languages.

Language Gearing factor

Assembly-Basic 320

C# 59

C++ 55

Java 53

Visual Basic 52

ASP 50

Chapter 4 Application modifiability

The Fenton and Melton coupling measure is pairwise calculated between
components, where n = number of interconnections between x and y . i =
level of highest (worst) coupling type found between x and y.

C(x, y) = i +
n

n + 1

Modifiability

To evaluate the modifiability, the complexity levels by [29], the coupling
levels by [47] and the size levels by Aivosto are used in order to indicate
how "good" a modeled architecture is. The modifiability level is then
evaluated as the sum of the three individual metrics. The reason to
summarize the values is to create a metric that can be used in order to
indicate whether a system is likely to be easy to modify or not. According
to the correlations levels in [41] the three metrics used are more or less
equally important when estimating the level of modifiability in
application services. The modifiability metric gives a rough estimation,
which can be of value when making decisions regarding different
architecture scenarios.

The change cost framework presented by Lagerström et al. [30-35] does
not only contain the application service modifiability assessment, but it
also takes change management processes, documents, and roles, as well
as change project organizational attributes into consideration when
estimating the cost of software change projects. We have however limit it
to the architectural viewpoint.

The assessment method for application service modifiability presented
in this book uses the common software evaluation metrics complexity,
size, and coupling together with enterprise architecture modeling and
analysis.

4.2 The application modifiability viewpoint

This section describes the application modifiability viewpoint, cf. Figure
23. The viewpoint has the following main concepts:

• Service

• ApplicationService

• BehaviorElement

• ApplicationFunction

• ActiveStructureElement

• ApplicationComponent

• ApplicationCollaboration

Concerns

Using the modifiability viewpoint makes it possible to estimate the
modifiability of different application services. This information can be of
use when; choosing between different architectural solutions, assigning
development efforts, looking for possible ripple effects before initiating a
change project, and finding risks that are important to manage in order
to prevent projects from exceeding the budget.

50

Chapter 4 Application modifiability

Stakeholders

The typical stakeholders for the modifiability viewpoint are; CIOs when
handling the project portfolio, architects when choosing between different
architecture solutions, project managers when planning the change
projects, and developers when modifying applications.

Theory

The modifiability of an application service is in this book assessed based
on three commonly used metrics namely; complexity, size, and coupling.

The ApplicationService class contains the attributes Modifiability,
Complexity, Size, Gearing Factor, and Coupling.

ApplicationService.Modifiability. The modifiability metric is
an aggregation of the attributes: ApplicationService.Complexity
α , ApplicationService.InternalCouplingMAX β , a n d
ApplicationService.Size γ.

The complexity levels from [29] are used to give complexity c a numerical
value a, where 0 ≤ α ≤ 5.

• If ApplicationService.Complexity is c = 0, then α = 5.

• If ApplicationService.Complexity is 1 ≤ c ≤ 4, then α = 4.

• If ApplicationService.Complexity is 5 ≤ c ≤ 10, then α = 3.

• If ApplicationService.Complexity is 11 ≤ c ≤ 20, then α = 2.

• If ApplicationService.Complexity is 21 ≤ c ≤ 50, then α = 1.

• If ApplicationService.Complexity is 50 < c, then α = 0.

The coupling levels from [47] are used to give internal coupling (max)
icm a numerical value β, where 0 ≤ β ≤ 5.

51

Chapter 4 Application modifiability

Figure 23: The modifiability viewpoint.

• If ApplicationService.InternalCouplingMax is ≤ 1, then
β = 5.

• If ApplicationService.InternalCouplingMax is 1 ≤ icm < 2,
then β = 4.

• If ApplicationService.InternalCouplingMax is 2 ≤ icm < 3,
then β = 3.

• If ApplicationService.InternalCouplingMax is 3 ≤ icm < 4,
then β = 2.

• If ApplicationService.InternalCouplingMax is 4 ≤ icm < 5,
then β = 1.

• If ApplicationService.InternalCouplingMax is 5 ≤ icm,
then β = 0 .

The size levels from Aivosto are used to give size s a numerical value γ,
where 0 ≤ γ ≤ 5.

• If ApplicationService.Size is s < 10.000, then γ = 4.

• If ApplicationService.Size is 10.000 ≤ s < 50.000, then γ = 3.

• If ApplicationService.Size is 50.000 ≤ s < 100.000, then γ = 2.

• If ApplicationService.Size is 100.000 ≤ s < 500.000, then γ = 1.

• If ApplicationService.Size is s ≤ 500.000, then γ = 0 .

If S is an application service, then the modifiability value = α + β + γ
with V(S . Modi f iabilit y) = {x ∈ N : 0 ≤ x ≤ 14}. A low modifiability
value indicates that an application service is difficult to change just as a
high modifiability value indicates the opposite.

ApplicationService.Complexity. The complexity attribute is
calculated as the cyclomatic complexity by McCabe [42]. The application
components are used as nodes and the values in the attributes of the
application collaboration class are used as edges. This includes relations to
an application component outside of the owning application service, in the
case if an application collaboration exists between one application
component realizing the service is collaboration with a component realizing
a different application service. If I = {i1, . . . , in} is a list of application
collaborations, S is an application service, c is a application component
where c ⊆ S . realize , then and I ⊆ S . realize . collaboration, then

f (S . Complexit y) =
n

∑
i=1

ii . R5_ContentCoupling +
n

∑
i=1

ii . R4_CommonCoupling

+
n

∑
i=1

ii . R3_ControlCoupling +
n

∑
i=1

ii . R2_StampCoupling+

n

∑
i=1

ii . R1_DataCoupling −
n

∑
i=1

ci + 2.

V(S . Complexit y) = N .

ApplicationService.Size Equivalent source lines of code (ENLOC)
is a size measure which uses a gearing factor to get a size measure which
allows size comparison between applications written in different

52

Chapter 4 Application modifiability

programming languages. If F = { f1, . . . , fn} is a list of application
functions, S is an application service and F ⊆ S . realizedBy , then

f (S . ENLOC) =
n

∑
i=1

S . GearingFactor
fi . assignee . GearingFactor

* fi . assignee . NLOC .

V(S . ENLOC) = R .

ApplicationService.GearingFactor. If S is an application service,
then V(S . GearingFactor) = N . The gearing factor is given as evidence
in the model.

ApplicationService.InternalCouplingAVG The InternalCou-

plingAVG is the internal average coupling of the application service. It is
calculated as the arithmetic mean of the Fenton and Melton Software Met-
ric [47] for all pair wise coupling measures within the application service
divided by the number of pairs. If I = {i1, . . . , in} is a list of application col-
laborations, S is an ApplicationService, C is a ApplicationComponent
where C ⊆ S . realize and I ⊆ S . realize . collaboration, then

C . CouplingAVG =
1
n

n

∑
j=1

ij . couplingInPair () .

V(C . CouplingAVG) = {x ∈ R : 0 ≤ x < 6} .

ApplicationService.InternalCouplingMAX The InternalCou-
plingMAX is the internal max coupling of the application service is. It
gives the maximum value of all the connections pair to the application
component within the application service. If I = {i1, . . . , in} is a list of ap-

plication collaborations, S is an ApplicationService, C is a Application-
Component where C ⊆ S . realize and I ⊆ S . realize . communication ,
then C . couplingMAX = couplingInPair (m) where m ∈ P and
couplingInPair (ij) ≤ couplingInPair (m) for all elements in P.

V(C . CouplingMAX) = {x ∈ Q : 0 ≤ x < 6} .

The ApplicationComponent class contains the attributes Coupling,
Size, and Gearing Factor.

ApplicationComponent.ExternalCouplingAVG is calculated as the
arithmetic mean of the Fenton and Melton Software Metric [47] for all pair
wise coupling measures divided by the number of pairs. If I = {i1, . . . , in}
is a list of application collaborations, C is a ApplicationComponent and
I ⊆ C . collaboration , then

C . CouplingAVG =
1
n

n

∑
j=1

ij . couplingInPair () .

V(C . CouplingAVG) = {x ∈ R : 0 ≤ x < 6} .

ApplicationComponent.ExternalCouplingMAX gives the maximum
value of all the connections pair to the application component. If I = {i1, . . . , in}
is a list of application collaborations, C is a ApplicationComponent and
I ⊆ C . communication, then C . couplingMAX = couplingInPair (m) where
m ∈ P and couplingInPair (ij) ≤ couplingInPair (m) for all elements in P.

V(C . CouplingMAX) = {x ∈ Q : 0 ≤ x < 6} .

53

Chapter 4 Application modifiability

ApplicationComponent.Size is measured as the number of non-
commented lines of code (NLOC). If C is an ApplicationComponent,
then V(C . NLOC) = N . The number of non-commented lines of code is
given as evidence in the model.

ApplicationComponent.GearingFactor. If C is an Application-
Component, then

V(C . GearingFactor) = N

The gearing factor is given as evidence in the model.

The ApplicationCollaboration class contains the attribute Coupling
(five different types).

If I is an application interaction, X and Y are both application components,
and {X, Y} ⊆ I . communicates , then they have a:

ApplicationCollaboration.R5_ContentCoupling relation if X
refers to the internals of Y , i.e., it branches into, changes data, or alters a
statement in y.

V(R5_ContentCoupling) = N .

ApplicationCollaboration.R4_CommonCoupling relation if X and
Y refer to the same global variable.

V(R4_CommonCoupling) = N .

ApplicationCollaboration.R3_ControlCoupling relation if X
passes a parameter to Y that controls its behavior.

V(R3_ControlCoupling) = N .

ApplicationCollaboration.R2_StampCoupling relation if X passes
a variable of a record type as a parameter to Y , and Y uses only a subset of
that record.

V(R2_StampCoupling) = N .

ApplicationCollaboration.R1_DataCoupling relation if X and Y
communicate by parameters, each one being either a single data item or
a homogeneous set of data items that does not incorporate any control
element.

V(R1_DataCoupling) = N .

The number of content, common, control, stamp, and data couplings are
given as evidence in the model.

Guidelines for use

To use the modifiability viewpoint follow this process: Firstly, model the
application components, how these collaborate, and what services they
provide. Suitable respondents are application or solution architects,
system owners and developers. Secondly, elicit attribute data for coupling,
size, and programming languages. This information is usually found by
interviewing developers and/or by investigating the source code through
their development tools. Thirdly, run the analysis.

54

Chapter 4 Application modifiability

A modifiability view example

At ACME Energy, fictive company, the application architect is about to
choose between two application architecture solutions delivering the same
application service for the company, namely Study Maintenance. The
company is currently in a state where a lot of changes are being implement,
thus having a flexible IT environment is important for the CIO. A key aspect
to consider when choosing between the two architecture solutions is
therefore the modifiability of the application services. The architect models
the two scenarios and finds solution A (cf. Figure 24) to have higher
modifiability than solution B. Regarding architecture flexibility the
information the architect passes on to the CIO is that solution A is better.

In order to model architecture solution A (cf. Figure 24) of ACME Energy
follow these steps:

1. Add four ApplicationComponents and name them:

• CMMS (Computerized Maintenance Management System)

• Asset Mgmt (Asset Management)

• SCADA (Supervisory Control And Data Acquisition)

• BI (Business Intelligence)

2. Add the following Size (NLOC) and GearingFactor (Programming
language) information to the component attributes:

• CMMS = 251.149 & 53 (Java)

• Asset Mgmt. = 63.987 & 50 (ASP)

• SCADA = 784.627 & 55 (C++)

• BI = 52.345 & 53 (Java)

3. Add three ApplicationCollaborations with associated Coupling
types, as in Table 4.

4. Press calculate and study the calculated coupling values for the four
components. For the CMMS component the ExternalCouplin-
gAVG should read 5.2 and ExternalCouplingMAX 5.9.

55

Figure 24: A modifiability view example.

Chapter 4 Application modifiability

5. Add two Application Functions and name them:

• Generate Failure Statistics

• Compile Maintenance KPIs

6. Connect the two Application Functions with the CMMS component.

7. Add an Application Service and name it Study Maintenance. The
service is Realized by both components, thus the relation should be
of type RealizeAND. The relation should read Study Maintenance
realizerAND Generate Failure Statistics.

8. Add Gearing Factor 53 (for programming language Java) as the
baseline language for the gearing factor based Size calculation
(ENLOC).

9. Press calculate and study the values for the Study Maintenance
application service; the Complexity is calculated to be 6, Size
251.149, and InternalCouplingMAX 5.9. This leads to a
Modifiability level of 4, which is generally considered to be a
low score. However, obviously better then the assessed level of
scenario B.

56

Table 4: Application collaboration information for modifiability view
example.

No. of couplings between CMMS andNo. of couplings between CMMS andNo. of couplings between CMMS and

Coupling type
Asset
Mgmt.

SCADA BI

Content coupling 5 0 0

Common coupling 1 1 2

Control coupling 1 5 2

Stamp coupling 0 1 0

Data coupling 10 2 2

Chapter 4 Application modifiability

5 A description of MAP’s  
data accuracy viewpoint.

Data accuracy
Additional author: Per Närman

58

Poor data quality in information systems can
cause great economical impact resulting in
costs of billions of dollars [48]. Analyzing the
quality of data is therefore of great
importance. Data is by IEEE defined as a
representation of facts, concepts, or
instructions in a manner suitable for
communication, interpretation, or processing
by humans or by automatic means [38]. The
most common dimensions of data quality are
completeness, consistency, currency,
relevance and accuracy [49]. In this section
data accuracy has the main focus. Accuracy is
by IEEE defined as; (1) a qualitative
assessment of correctness, or freedom from
error, (2) a quantitative measure of the
magnitude of error [38]. According to
Redman [49] and Batini & Scannapieco [50]
accuracy is defined as the closeness of a value
V to V′�, where V′� is an actual concept in the
domain of reference and V is a datum that
represents it. Depending on the accuracy
requirements, the frame of reference V′� can
consist of an interval, e.g. 200 plus or minus
one, such that a datum V with a value within
the interval of 199-201 can be considered

accurate whereas a datum V with the value
203 would be inaccurate.

Sound decisions are made based on
accurate data. Unfortunately it does not
matter if the data is used in a manual
business process or within an automated
application service. Neither is executed

flawless at all time, resulting in steadily
deteriorating data accuracy. The further
away from the source the data gets, the
poorer its accuracy becomes.

The original work that this section is based
on can be found in [51, 52].

Movie 6: Data Quality

Chapter 5 Data accuracy

5.1 How to measure data accuracy

There are several modeling techniques proposed to capture quality
characteristics of data. The traditional relational model has built in
functionality to enforce some sort of data quality checks such as data
integrity functions to minimize duplication of data or field data checks
to enforce some sort of format on data. Other than these basic func-
tions, data that is stored in systems based on the relational model are
assumed to be accurate by design.

To remedy this limitation, the Quality Entity Relationship (QER) model
extends the classical Entity Relationship (ER) model to accommodate
several data quality dimensions on relations and fields [53]. The attributes in
relations are associated with quality indicators (e.g. accuracy) and quality
rankings (e.g. excellent). The QER model lacks the ability to incorporate
information on the origin of the data. Tracing the origin of data is known as
data provenance [50] and is important in most systems where data is
collected from distributed sources with different data quality.

One of the earliest attempts in tracing data provenance is the Polygen
model [53] which is more geared to analyze data quality in distributed
heterogeneous data sources. The Polygen model is a relational model
which defines a set of operators (e.g. union, Cartesian product etc) based
on relational algebra that can semantically annotate the propagation of
data. This is done by 'source tagging' data from multiple databases. The
idea is essentially that the user or consumer of the data could judge the
credibility of the data based on knowing from where it originated. The

Polygen model was later extended to accommodate quality attribute
associated with relations and fields, much like the QER model, but as an
implementation on the relational algebra. According to [53] this
extended the user's or consumer's ability to judge the credibility of the
data by also allowing better interpretation and determination of the
believability of the data.

While the QER and Polygen models are expressive and applicable to the
database relational domain, they are less applicable to distributed enterprise
information systems. In such systems the data does not only originate from
database sources, but could also be collected in semi-structured format from
business processes. Furthermore the structure of the data is not necessarily
defined according to the relational model and could be more the result of an
aggregation of data from one or several processes.

Information Product Maps (IP Maps) [54] accommodate such process
based modeling of data. IP Maps are graphical models that treat data
as a product from processes where the input is raw data, analogous to
manufacturing processes where raw materials are inserted and a
product exits the manufacturing line after being manipulated. Such
manipulations can be represented in the IP Maps model with the use
of specific constructs to represent the process and actions on the data,
e.g. processing, quality check, or data receiver. Each construct has
associated metadata which can be used in a model to specify the
construct. The strength of the IP Maps is the ability to portray the
data provenance as well as the elements in the process that
manipulate the data.

59

Chapter 5 Data accuracy

The IP Maps model has been extended into an IP UML profile [55] to
make use of UML's richer semantics. In the UML model the data units
are associated through a quality association with a stereotyped quality
dimension class e.g. timeliness. By using UML the IP UML provides the
opportunity to model data units in interaction diagrams and to observe
the data flow between object calls in activity diagrams. Neither IP Map
nor IP UML can perform quantitative analysis of data accuracy in a
process. Instead, their function is mostly to visualize data quality
problems and aid system design.

A quantitative analysis method was proposed in [56]. The method known
as the Data Flow/Process Method, is an analytical model which utilizes
data flow diagrams to illustrate how the data quality of numerical data
objects is affected by the data processing that takes place in applications.
With this approach it is possible to trace data quality in applications. The
limitation of this method is that it only considers numeric data and cannot
accommodate alphanumeric data.

Another quantitative method from the accounting community was
proposed by [57]. This method is not exclusively concerned with
numeric data and can be used to show how by incorporating various
improvement feedback cycles in processes, the overall quality of data
could be improved. [57] also suggested an algorithm for assessing the
general quality of data called 'reliability'. While overcoming the
shortcoming of only being able to treat numerical data, and introducing
the ability to reason about improvements of data the method is not
intended to analyze the data quality across business processes.

The assessment method that is presented in this book is similar to the IP
Maps and the IP UML model in the sense that it is aimed at the
management of information systems by visualizing processes and data
quality. Furthermore, our method uses the general approach of Data
Flow/Process method to show how data quality, and specifically the
accuracy dimension, in processes evolves. In following [57], the method
does not confine itself to treating only numerical data.

5.2 The data accuracy viewpoint

This section describes the data accuracy viewpoint, cf. Figure 25. The view-
point has the following main concepts:

60

Chapter 5 Data accuracy

Figure 25: The data accuracy viewpoint.

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

• BehaviorElement

- BusinessProcess

- ApplicationFunction

- InfrastructureFunction

Concerns

Using the data accuracy viewpoint makes it possible to estimate the accuracy
of data sets within the organization. It is also possible to determine which
applications or business processes that introduce errors into the data sets.

Stakeholders

Obvious stakeholders are data custodians, i.e. those in charge of maintaining
data quality, but also end users wishing to know the quality of the data which
they use in their daily activities.

Theory

The data accuracy viewpoint employs process modeling in a manner
similar to that of IP maps and that of [56]. Furthermore, following [57],
the viewpoint also shows how data can improve when manipulated in
business processes.

The PassiveComponentSet is used to describe sets of information objects
whether stored in databases (then specialized into DataSets) or as more
unstructured information (specialized into RepresentationSet). The
attribute PassiveComponentSet.Accuracy is defined below.

Firstly, we denote the individual Representations and DataObjects
PassiveComponentObjects. Next, we introduce the following:

N: Number of PassiveComponentObjects in the PassiveComponent-
Set.

Nacc: Number of accurate PassiveComponentObjects in the Passive-
ComponentSet.

Ninacc: Number of inaccurate PassiveComponentObjects in the Passive-
ComponentSet.

where "accurate" or "inaccurate" for the PassiveComponentObjects is
defined as their value V being sufficiently close to the true value V′� in line
with [49, 50]. Since PassiveComponentObjects can be either accurate
or inaccurate we have:

Nacc + Ninacc = N (1)

61

Chapter 5 Data accuracy

The accuracy of the PassiveComponentSet can then be defined as

PassiveComponentSet . Accuracy =
Nacc

N
 (2)

The number of accurate PassiveComponentObjects in a
PassiveComponentSet may change when processed by a Function or a
Service. These may corrupt a PassiveComponentObject, which was
accurate at process step T = t into being inaccurate at time step T = t + 1. To
be able to reason about this we introduce Ndet: the number of accurate
PassiveComponentObjects at process step T = t , which were made
inaccurate by a Function or Service at process step T = t + 1 .

The frequency of this happening is

α =
Ndet

Nacc
t

 (3)

Similarly, a Function or a Service may correct inaccurate Passive-
ComponentObjects. We introduce Ncorr : the number of Passive-
ComponentObjects that were inaccurate at process step T = t, but
made accurate by a Function or a Service at time step T = t + 1.

β =
Ncorr

Ninacc
t

 (4)

The number of accurate objects at process step T = t + 1 is given by:

Nacc
t+1 = Nacc

t − Ndet + Ncorr (5)

From the above an expression of the accuracy of a PassiveComponent-
Set at T = t + 1 can be derived:

PassiveComponentSet . Accuracyt+1 =
Nacc

t+1

N
=

=
Nacc

t

N
−

Ndet

N
+

Ncorr

N
=

=
Nacc

t

N
−

α * Nacc
t

N
+

β * Ninacc
t

N
=

=
Nacc

t

N
* (1 − α) +

β(N − Nacc
t)

N
=

=
Nacc

t

N
(1 − α) + β(1 −

Nacc
t

N
) =

= PassiveComponentSet . Accuracyt * (1 − α)+

β * (1 − PassiveComponentSet . Accuracyt) (6)

The data accuracy viewpoint can be found in Figure 25. The
properties α and β are found as attributes Function.Correction,
F u n c t i o n . D e t e r i o r a t i o n , S e r v i c e . D e t e r i o r a t i o n a n d
Service.Deterioration. Whenever a PassiveComponentSet is read
or written by a Service or Function these attributes either improve or
deteriorate the PassiveComponentSet.Accuracy. The attributes
deterioration and correction are both given as evidence x in the
model, where{x ∈ R : 0 ≤ x ≤ 1}

62

Chapter 5 Data accuracy

PassiveComponentSet.InputAccuracy is an attribute used to
specify the baseline accuracy of the first PassiveComponentSet in the
process. The input accuracy attribute is given as evidence x in the model,
where {x ∈ R : 0 ≤ x ≤ 1}.

Guidelines for use

To use the data accuracy viewpoint follow this process: Firstly, model the
data flow qualitatively. Suitable respondents are those performing the
process who understands the process side of the flow and/or system
architects who understand the application architecture. Secondly, elicit
parameters input accuracy, deterioration, and correction from the same
respondents. Thirdly, run the analysis.

A data accuracy view example

At ACME Energy, our fictive energy company, the analysts decide to
investigate whether the reason Computerized Maintenance Management
System (CMMS) users hold the application to a low esteem is due to
poor data accuracy in the information provided by the application.

One important piece of information used when compiling the
maintenance Key Performance Indicators (KPI's) is the “failure
description" that the maintenance workers use in order to report what
caused a failure in a piece of equipment. This is reported as a part of
closing the work order, which was issued when the failure was first
detected. Eliciting estimates of the correction and deterioration attributes
of the processes and services involved in creating the maintenance KPIs
was done through interviews, as well as eliciting the input accuracy of the

initial work orders. Using these estimates in the modeled accuracy view,
cf. Figure 26, it was estimated that the accuracy of the output Maintenance
KPI's (with respect to failure statistics) was 87.8. This is a low number, and
in order to improve the perceived usefulness of the application increasing
this number might be a viable option.

In order to model the data accuracy view example (cf. Figure 26) of
ACME Energy follow these steps:

1. Add a Business Process class and name it Close Workorder. The
Correction and Deterioration of this process are both 0.1, add this as
attribute evidence.

2. The Close Workorder process Reads from a Representation Set called
Raw Failure Descriptions. Add this class and relationship.

3. The Raw Failure Descriptions has an Input Accuracy of 0.98, add this
as attribute evidence.

63

Figure 26: A data accuracy view example.

Chapter 5 Data accuracy

4. The CloseWorkorder processWrites to a Data Set called Processed
Failure Descriptions. Add this class and relationship.

5. Press calculate, the Accuracy of the Processed Failure Descriptions is
calculated to be 0.88. This means that the Close Workorder process
has decreased the data accuracy of the failure descriptions.

6. Add two Application Functions and name them Generate Failure
Statistics and Compile Maintenance KPIs (if you have modeled the
modifiability example of the previous chapter re-use the application
functions instead of creating new ones).

7. Both application functions have a Correction of 0.05 and Deterioration
of 0.01. Add this as attribute evidence.

8. The Generate Failure Statistics function Reads from the Processed Failure
Descriptions and Writes to a Data Set called Failure Descriptions with
Stats. Add these two relationships and this class.

9. The Compile Maintenance KPIs function Reads from the Failure
Descriptions with Stats and Writes to a Data Set called Maintenance
KPIs. Add these two relationships and this class.

10. Press calculate and follow the Accuracy. See how it decreases from
98 % (Input Accuracy), to 88,4 % when processed, to 88,1 % after the
statistics function, to finally 87,8 % when compiled to KPIs.

64

Chapter 5 Data accuracy

6 A description of MAP’s  
application usage
viewpoint.

Application usage
Additional author: Per Närman

Modern organizations have large application portfolios comprising
hundreds if not thousands of applications. Despite the very large
investments these portfolios represent, realizing their full value often
proves to be elusive [58]. An important problem encountered by most
organizations is the uncontrolled proliferation of applications leading to a
heterogeneous application portfolio with redundant functions and data,
high information system costs and poor business-IT alignment [59]. Thus,
there is a case for structured application portfolio and landscape
management [60] to support decision-making concerning changes to the
application portfolio. Such rational decision-making calls for means to
assess the value of the individual applications [61].

Delone and McLean introduced a six dimension model of information
systems value [62, 63]. One of these dimensions is system usage. System
usage has been found to explain business performance [64]. Similarly,
[65] introduced system usage as one of five important parameters in
assessing application portfolio health.

The original work that this section is based on can be found in [66].

6.1 How to measure application usage

For the past couple of decades, two theories have reigned supreme in
explaining system usage; the Technology Acceptance Model (TAM) [67-75]
and the Task-Technology Fit model (TTF) [76-83]. TAM is built around the
two constructs Perceived Usefulness (PU) and Perceived Ease of Use
(PEoU), and the TTF model on the idea that having a good match of
functional capabilities and task requirements leads to higher usage.

The Technology Acceptance Model

The technology acceptance model (TAM) is arguably the most influential
theory in information systems research. Originally proposed by [67] and
drawing heavily on the psychological research field, the TAM suggests
that the usage of information systems can be determined by two factors;
the perceived usefulness and the perceived ease of use of the information
system, Figure 27.

The antecedents of both these constructs have been further deliberated by
[73-75] and there are an overwhelming number of studies published where
the TAM is used in different contexts and with slight variations of variables,
see e.g. [68-72] and more. These studies have established conclusively that at
least the perceived usefulness construct is an important variable in
determining user acceptance and usage of a technology [84] with the

66

Figure 27: The Technology Acceptance Model.

Perceived
Ease of Use

Perceived
Usefulness

Intention to
Use

Usage
Behavior

Chapter 6 Application usage

perceived ease of use variable having significant relations to the perceived
usefulness as well as a smaller, yet important impact on system usage [84].

Task-Technology Fit

In this book we focus on the Task-Technology Fit model (TTF) for assessing
the usage of applications. TTF is built on the idea that if the users perceive a
technology to have characteristics which fit the user's work tasks, then i) the
user is more likely to utilize the technology and ii) to perform the work task
better. Figure 28 shows a basic TTF model.

Several studies have used the TTF model to predict user performance
and technology utilization see e.g. [77-83].

The original TTF model proposed by Goodhue [76] described the constructs
task characteristics, tool characteristics and task-technology fit in general
terms stating that task technology fit can be measured in terms of eight
factors. The link between TTF and utilization was found to be rather weak
using this setup.

Dishaw and Strong [79] used the concept of strategic fit as interaction [85]
(meaning multiplying the values of task requirements with those of IT
functional fulfillment) to operationalize TTF for a specific domain viz.
computer software maintenance. Instead of defining a general notion of
TTF they operationalized task and tool characteristics based on previously
published reference models of computer maintenance tasks [86] and tool
functionalities [87].

The assessment method for application usage presented in this book
uses the Task-Technology Fit model together with enterprise architecture
modeling and analysis.

6.2 The application usage viewpoint

This section describes the application usage viewpoint, cf. Figure 29. The
viewpoint has the following main concepts:

• Service

- ApplicationService

• BehaviorElement

67

Figure 28: A basic Task-Technology Fit (TTF) model.

Tool
Functionality

Task
Requirements

Task-
Technology

Fit

Actual
Tool Use

Individual
Performance

Chapter 6 Application usage

- BusinessProcess

- ApplicationFunction

• ActiveStructureElement

- ApplicationComponent

• UsageRelation

• ProcessServiceInterface

Concerns

Why do users voluntarily embrace certain applications and object to using
others? Voluntary application usage is a very important indicator of the
quality of the application portfolio [65].

Stakeholder

The stakeholders are those interested taking a top-down perspective on the
application portfolio. These may include enterprise architects, application
architects, and ultimately the organization's CIO.

Theory

Application usage is in this book evaluated as task technology fit. The
application usage viewpoint needs to be tailored to its application domain.
The tailoring involves defining and operationalizing the domain's tasks, IT
functionality, how the IT functions support the tasks (i.e. the TTF variables).
The viewpoint is presented in Figure 29. The aim of employing the viewpoint
is to obtain a value for the ApplicationComponent.Usage attribute.

ApplicationService.Functionality The functionality attribute is
evaluated based on the functionality of the application functions which
realize the service. If AF = {a f1, . . . , a fn} is a list of application functions,
S is a Service, and AF ⊆ S . realizedByAND ∪ S . realizedByOR then

f (S . Functionalit y) =
n

∑
i=1

a fi . Functionalit y .

V(ApplicationSer vice . Functionalit y) = {x ∈ R : 0 ≤ x} .

68

Chapter 6 Application usage

Figure 29: The application usage viewpoint.

ApplicationFunction.Functionality The functionality of the
application function is set as an evidence in the model. The functionality
of the application function is quantitatively assessed by using the mean
of user assessments on a Likert scale.

V(ApplicationFunction . Functionalit y) = {x ∈ R : 0 ≤ x} .

ApplicationComponent.DomainConstant The domain constant of
the application component is set as evidence in the model. The domain
constant is derived by creating a linear regression model from the user
elicited data out of which the adjusted coefficient of determination R̄2 is
used as the evidence. Even though R̄2 can give a negative result only
positive numbers are allowed in the model.

V(ApplicationComponent . DomainConstant) = {x ∈ R : 0 ≤ x} .

ApplicationComponent.Usage The usage of an application component
is evaluated based on the domain constant and the weighted TTF values in
the usage relationships which affect the application component. If
U = {u1, . . . , un} is a list of usage relations, C is an application component
and U ⊆ C . isA f fectedInv then

f (C . Usage) = C . DomainConstant +
n

∑
i=1

ui . WeightedTTF .

V(ApplicationComponent . Usage) = {x ∈ R : 0 ≤ x} .

BusinessProcess.TaskFulfillment The task fulfillment of the
business process is set as evidence in the model. The task fulfillment value is

derived by taking the mean value of task fulfillment assessments by
application users. Task fulfillment can be evaluated using a Likert scale.

V(BusinessProcess . TaskFul f illment) = {x ∈ R : 0 ≤ x} .

ProcessServiceInterface.TTF The task technology fit attribute in the
process service interface class is evaluated based on the functionality of the
connected application service and business process. If s is an application
service where ProcessSer viceInter face . appUseInv = s and u is an usage
relations where ProcessSer viceInter face . procUseInv = u then

f (ProcessSer viceInter face . TTF) = s . Functionalit y * u . TaskFulFillment

V(ProcessSer viceInter face . TTF) = {x ∈ R : 0 ≤ x} .

UsageRelation.RegressionCoefficientTTF The regression
coefficient TTF attribute in the usage relation class is set as evidence
in the model. The regression coefficient is set to show the domain
specific strength of the ProcessServiceInterface.TTF on
Application.Component.Usage.

V(UsageRelation . RegressionCoef f icientTTF) = {x ∈ R : 0 ≤ x} .

UsageRelation.ApplicationWeight The application weight
attribute in the usage relation is evaluated by dividing the application
functions functionality with the application service functionality. If U is an
usage relation, F = { f1, . . . , fn} is a list of application functions where
F ⊆ U . isA f fected . assignor and s is an application service where
U . isA f fectedUsageInv . appUseInv = s then

69

Chapter 6 Application usage

f (UsageRelation . ApplicationWeight) =
∑n

i=1 fi . Functionalit y

s . Functionalit y
.

V(UsageRelation . ApplicationWeight) = {x ∈ R : 0 ≤ x} .

UsageRelation.WeightedTTF The weighted TTF attribute is evaluated
by multiplying the application weight with the regression coefficient TTF
and TTF value from the process service interface. If u is the usage relation p
is an process service interface where u . isA f fectedUsageInv = p then

f (UsageRelation . WeightedTTF) = p . TTF *
u . ApplicationWeight * u . RegressionCoef f icientTTF .
V(UsageRelation . WeightedTTF) = {x ∈ R : 0 ≤ x} .

Guidelines for use

In the case the organization does not have reference models for tasks and
functionality, these have to be developed in order to employ this view-
point perhaps using the approach of [66]. Once the appropriate models
are in place, however, the viewpoint may be employed as follows:

Firstly, compile list of all applications and processes relevant to the
inquiry and generate the architecture view. These lists can be elicited by
process managers or similar. Secondly, perform a survey with a sufficient
subset of application users or process performers. For each function of
the reference model, the respondents are asked to name the application
that implements the function the most and to what degree. For all tasks
of the task reference model, the respondents are asked to rate the degree
to which they perform the activities.

An application usage view example

The ACME Energy CIO has ordered an exploratory study of the quality of
ACME Energy's application portfolio. The application usage viewpoint
was employed to determine which applications users liked and would use
voluntarily. Here we model one of the applications, the Computerized
Maintenance Management System (CMMS).

In the view of Figure 30 we see the single ApplicationComponent
CMMS which offers two ApplicationFunctions Generate failure
statistics and Compile maintenance KPIs which realize an
ApplicationService Study Maintenance which in turn supports a
BusinessProcess with the same name. The functionality and task
fulfillment of the ApplicationFunctions and the BusinessProcess

70

Figure 30: An example application usage view.

Chapter 6 Application usage

were found by taking the mean of user's assessments. It was discovered that
the users considered the CMMS to be all right functionality-wise, which
together with a high degree of BusinessProcess.TaskFulfillment
yielded a high ProcessService Interface.TTF for the interface
between the Study ApplicationService and BusinessProcess.

In order to model the application usage view example (cf. Figure 30) of
ACME Energy follow these steps:

1. Add two Application Functions and name them Generate Failure
Statistics and Compile Maintenance KPIs. Add one Application Service
and name it Study Maintenance. Add one Application Component and
name it CMMS (Computerized Maintenance Management System). All
four classes have been used in previous view examples (Modifiability
and/or Data accuracy), re-use these classes if possible.

2. The Study Maintenance service is Realized by both (AND) application
functions, add these relationships. The two application functions are
both Assignees of the CMMS component, add these relationships as
well. These relationships are automatically generated if the classes are
re-used from previous examples.

3. The CMMS component has a Domain Constant of 0.9, the Generate
Failure Statistics has a Functionality of 4, and the Generate Failure
Statistics 2.1. Add this as attribute evidence.

4. Add a Business Process and name it Study Maintenance.

5. The Study Maintenance process use the CMMS component via a
Process Service Interface and a Usage Relation. Add these classes
and relationships.

6. The Study Maintenance service and process are also related via the
Process Service Interface. Add this relationship.

7. The Usage Relation has a Regression Coefficient TTF of 0.035 and an
Application Weight of 1. Add this as attribute evidence.

8. Press calculate and study the Application Component Usage, it
should read 2.18.

71

Chapter 6 Application usage

7 A description of MAP’s  
service availability
viewpoint.

Service availability
Additional author: Per Närman

73

Information systems availability is crucial in
order to ensure continuous business operations
[88] and as such rated very highly by IT system
executives [89]. Not only are the direct costs of
unavailable IT systems high [90], but IT
incidents disrupting business operations also
have an adverse impact on the market value of
publicly traded companies [91]

The original work that this section is based on
can be found in [92-94].

7.1 How to measure service availability

System availability analysis is a mature field
and there is an abundance of availability
analysis techniques including methods such as
Reliability Block Diagrams, Fault Tree Analysis,
Failure mode effects analysis, Markov processes
and Bayesian analysis [95].

In the category of qualitative methods we find
for example Failure Mode and Effect Analysis
(FMEA) [96]. In FMEA, each system
component's failure mode and its impact on
the rest of the system is documented. The
method is particularly useful for systems with
single component failures. Thus the approach

is not well suited for systems with a fair
degree of redundancy [95].

An alternative approach is state-based analysis.
State-based methods enumerate all possible
system failure states and are not limited to
stochastically independent failure of
components. This expressiveness comes at a
price: models for state-based analysis using

Markov chains [97] grow exponentially with the
number of system components [98, 99]. Hence,
state-based analysis using Markov models
contradicts the requirement of keeping the
framework simple, both in terms of modeling
size and with respect to the ease-of-use.

One of the most frequently adopted methods is
Fault Tree Analysis (FTA), which translates the

Movie 7: Availability

Chapter 7 Service availability

failure behavior of a physical system into a visual diagram and a logical
model [95]. The modeling structure of FTA allows the modeler to visualize
the system architecture in terms of primary component's relational
dependency on subcomponents [100]. Availability analysis using FTA is
much similar to the approach based on reliability block diagrams (RBDs)
[95, 101]. The concept behind RBD is to identify undirected relational paths
between components within the architecture. First two nodes s and t are
defined. Secondly, relational paths comprising system components between
the nodes are identified. A system is said to be available if there exists at
least one path comprising a chain of available components from s to t.

Both FTA and RBD are confined to analysis of static systems and do not
take dynamic aspects like maintenance and repair into consideration
[95]. However, both methods comply with the stated requirements
with one exception; the analysis framework shall be aligned with
general rules of modeling. RBDs allow multiple instantiations of single
components to capture k-out-of-n structures, which would call for two
separate modeling languages - one for architecture modeling and
another for analysis using RBDs. FTA does not suffer from this problem
and is the favored candidate method.

The assessment method presented in this book uses Fault Tree Analysis
(FTA) together with enterprise architecture modeling and analysis.

Assumptions in Fault Tree Analysis

A first assumption in FTA is independence of failures among different
component - implying that there are no common cause failures - which

simplifies the modeling task [102]. However, if the same application is
implemented on multiple nodes we model the application as one
instance and thus a single failure affects each of them equally. This partly
classifies as a common cause failure.

When dealing with redundancy of components we have the aspect of
redundancy types. Depending on the situation and criticality of
component's redundancy can be implemented with various properties
such as active redundancy - components operating in parallel and sharing
the load; and passive redundancy - the main component has all load and
the reserve component is first activated once the main component fails.
There are ways to deal with such property for example by using dynamic
fault tree models [103]. We do, however, restrict the data gathering
presented in this book to a single type of redundancy and leave that to
future work.

When we consider components in the analysis another approximation
made is that a repaired item is in an "as good as new" condition i.e.
assuming perfect repair. If not, assuming a constant MTTF over infinite
time will not be valid but instead the component would be in a different
state after repair with a different probability of failure. In the ISO 9126-2
standard a similar assumption is stated implicitly [104].

Calculating average system availability using FTA

Availability is often defined as

Availability =
MTTF

MTTF + MTTR

74

Chapter 7 Service availability

where MTTF denotes "Mean Time To Failure" and MTTR "Mean Time To
Repair", respectively. MTTF is the inverse of the failure rate of a component

MTTF =
1
λ

and MTTR is the inverse of the repair rate of a component

MTTR =
1
μ

The average availability Aavg of a component can now be computed:

Aavg =
μ

μ + λ

The quotient is easy to interpret as the time that a system is available as a
fraction of all time.

Systems rarely consist of a single component. To model availability in
complex systems, three basic cases are used as building blocks. These are
used recursively to model more advanced situations. The basic cases are
illustrated in Figure 31. All calculations assume independent component
availabilities.

The AND case models systems where the failure of a single component is
enough to bring the system down. The OR case models redundant
systems where a single working component is enough to keep the system
up. The k-out-of-n case models systems that are functioning if at least k
components are functioning.

A simple example of how the building blocks and their mathematical
equivalents are put together recursively is illustrated in Figure 32.

75

Figure 31: The basic cases for parallel, serial and k-out-of-n
systems, respectively. Figure 32: A simple example of system availability calculations.

Chapter 7 Service availability

7.2 The service availability viewpoint

This section describes the service availability viewpoint, cf. Figure 33.
The viewpoint has the following main concepts:

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• BehaviorElement

- BusinessProcess

- ApplicationFunction

- InfrastructureFunction

• ActiveStructureElement

- ApplicationComponent

- Node

Concerns

The service availability viewpoint addresses the concern of determining
the availability of services in the present (as-is) and future (to-be)
enterprise architecture.

Stakeholder

The stakeholders for the service availability viewpoint are service
managers and end-users.

Theory

The service availability viewpoint utilizes Fault Tree Analysis (FTA)
[100] for the availability analysis.

A first assumption in FTA is independence of failures among different
components - implying that there are no common cause failures - which

76

Chapter 7 Service availability

Figure 33: The service availability viewpoint.

simplifies the modeling task [102]. However, if the same application is
implemented on multiple nodes we model the application as one
instance and thus a single failure affects each of them equally. This partly
classifies as a common cause failure. We make the assumption of passive
redundancy, with perfect switching and no repairs, [95]. When we
consider components in the analysis another approximation made is that
a repaired item is in an "as good as new" condition i.e. assuming perfect
repair. If not, assuming a constant MTTF over infinite time will not be
valid but instead the component would be in a different state after repair
with a different probability of failure. In the ISO 9126-2 standard a
similar assumption is stated implicitly [104].

The service availability viewpoint can be found in Figure 33. The
viewpoint incorporates FTA in line with the theory presented in the
previous section. The behavior elements are represented by Services
and BehaviorElements (or Functions for brief). Both of these have an
availability which is represented in the Service.Availability and
Function.Availability attributes respectively. The availability
attribute gets a value x , where {x ∈ R : 0 ≤ x ≤ 1} . A high value indicates
that the service/function is more likely to be available.

Services are realized by Functions represented with the realize
relationship available in both AND and OR options. Conversely,
Functions use Services through the use relationship, also with both
AND and OR options. The properties of the AND and OR options
have been presented in section 3.1.1.

Services are merely externally visible containers of application behaviors
and their availability is as such only dependent on the realizing BehaviorE-
lements. BehaviorElements.Availability on the other hand de-
pends also on the ActiveResourceElement to which it is assigned. When
the BehaviorElements uses Services, BehaviorElements.Availability
i s the product o f the Services.Availability and the
ActiveResourceElement.Availability, since there is an implicit AND
relationship between the underlying services and the application realiz-
ing the BehaviorElements. The Availability is calculated as
shown in Figure 32 for the AND and OR options.

Sometimes, there is a need to set the availability directly on a Function or
Service, and this can be done using the attribute
Function.EvidentialAvailability or Service.EvidentialAvailability
respectively. The attribute is given as evidence x in the model, where
{x ∈ R : 0 ≤ x ≤ 1}.

Guidelines for use

The following steps should be taken in order to use the service availability
viewpoint.

Firstly, there is a need to identify and scope the service or services of
interest, either from a service catalog or through interviews. Defining the
service properly is essential to defining what the service being 'available'
means. Secondly, use the viewpoint to qualitatively model the application
and infrastructure architecture connected to the service. Thirdly, elicit
quantitative measures of component availabilities. Usually, the easiest way

77

Chapter 7 Service availability

of obtaining the component availability is to ask the respondent (typically
a system owner or similar) to estimate how often the component breaks
down and estimate the repair time. Fourthly, run the analysis.

A service availability view example

To probe deeper into the rumors flourishing at ACME Energy regarding
the incidents affecting the availability of the application service called
study maintenance, the analysts performed an initial round of
interviews with system administrators to obtain qualitative data
concerning the architecture realizing the application service. This was
modeled according to the service availability viewpoint described above.
Quantitative data regarding component availabilities were collected
during a second round of interviews.

In Figure 34 we see the result. The aggregated availability was found to
be 98%, which is considered acceptable to most users. Thus, the analysts
decide to scrutinize other aspects of the architecture.

In order to model the service availability view example (cf. Figure 34) of
ACME Energy follow these steps:

1. Add the classes Study Maintenance (application service), Generate
Failure Statistics (application function), Compile Maintenance KPIs
(application function), and CMMS (application component). These
should/could be re-used form previous modeling examples
(modifiability, data accuracy, and application usage views).

2. The Study Maintenance service is Realized by both functions (AND),
and both functions are Assignees of the CMMS component. Add these
relationships. These relationships are automatically generated if you
are re-using the classes from the previous examples.

3. The CMMS components has an Availability of 0.995. Add this as
attribute evidence.

4. Add three Infrastructure Services and name them Generate GUI,
Data Retrieval primary site, and Data Retrieval secondary site.

78

Figure 34: A service availability view example.

Chapter 7 Service availability

5. The Generate Failure Statistics function Use the Generate GUI and one
of the Data Retrieval sites. That is there is an OR-relationship to the
two Data Retrieval sites and an AND-relationship to the Generate GUI
service. Add these relationships.

6. The Generate GUI has an Evidential Availability of 0.99, the primary
site 0.992, and the secondary site 0.991. Add this as attribute evidence.

7. Press calculate, the analysis should declare that the Availability of
the Study Maintenance application service is 98 %.

79

Chapter 7 Service availability

8 A description of MAP’s  
interoperability viewpoint.

Interoperability
Additional author: Johan Ullberg

81

Interoperability is a sought after quality for
enterprises in today’s competitive
environment that has been approached from
many different points of view and
perspectives [105]. Several definitions of
interoperability have been proposed, one of
the most well known and the one employed
in this book is that of IEEE [38], the ability of
two or more systems or components to
exchange information and to use the
information that has been exchanged. Based
on this definition interoperability can be seen
from the perspective of a decision maker as
the problem of ensuring the satisfaction of a
set of communication needs throughout the
organization.

The original work that this section is based on
can be found in [23, 24, 106].

8.1 How to measure interoperability

Several initiatives on interoperability have
proposed interoperability frameworks to
structure issues and concerns in different
ways. The European Interoperability
Framework in the eGovernment domain [107]

defines three aspects of interoperability:
semantic, technical and organizational. A
similar approach was also proposed in the e-
Health interoperability framework [108] which
identified three layers: organizational,
informational and technical interoperability.
The ATHENA Interoperability Framework
(AIF) proposes to structure interoperability
issues and solutions at the three levels:

conceptual, technical and applicative [109].
The Framework for Enterprise Interoperability
[110] is another interoperability framework
that focuses on the problem dimension of
interoperability. The objective is to tackle
interoperability problems through the
identification of barriers which prevent
interoperability from occurring. This is done
by defining a problem space as the

Movie 7: Availability

Chapter 8 Interoperability

intersections of the two dimensions concerns and barriers. Together with a
third dimension, approaches to mitigate the problems, the solution space
is defined. Using the framework it is possible to classify interoperability
knowledge. All these interoperability frameworks provide means to
classify the interoperability problems and solutions. At the same time they
lack the ability to describe the interoperability situations where the
problems occur and are solved.

The Ontology of Interoperability (OoI) [111] is one approach towards a
deeper understanding of interoperability than what is offered by the
interoperability framework. OoI prescribes a set of metamodels to
describe interoperability from various viewpoints, once again mainly
aiming at classifying various problems and decision alternatives. OoI
does however also provide a communication metamodel aimed at
describing interoperability situations.

Several methods for assessing interoperability on a general scope have been
suggested. The Levels of Information Systems Interoperability (LISI) [112],
developed by MITRE and the C4ISR Integration task force, uses a maturity
model for assessing interoperability ranging from the isolated level to the
enterprise level. The assessment in LISI is based on an assessment process
and utilizes a score card method and interoperability metrics. Employing
LISI would require more domain knowledge in the field of interoperability
than the assessment method presented in section 8.2. There are several
similar approaches to LISI, such as Systems of Systems Interoperability
(SoSI) [113] and Levels of Conceptual Interoperability Model (LCIM) [114]
coupled with the same drawbacks as LISI.

The i-Score [115] is a methodology for quantitative interoperability
assessment. The assessment is based on the concept of operational
threads, a sequence of activities each supported by exactly one system.
Such operational threads can be created from for instance an UML
activity diagram [115]. For each pair of activities and their supporting
systems in the thread an interoperability spin is calculated and then
aggregated into an i-Score.

The interoperability analysis framework presented by Ullberg et al. [23,
24, 106] contains a number of classes and attributes for interoperability
analysis e.g. Actor, Message-passing System, and Communication
Need. The main goal is to assess is if the attribute Communication
Need is satisfied or not (or to what degree).

The assessment method presented for interoperability in this book uses
a simple check, namely whether a service, function, or data set share a
common language for communication. This is evaluated in the
architecture model by analyzing if two classes share a common
language, we then assume that the communication need can be
satisfied. Thus, the analysis used here is a simplified version of what
Ullberg et al. presents.

8.2 The interoperability viewpoint

This section describes the interoperability viewpoint, cf. Figure 35. The
viewpoint has the following main concepts:

82

Chapter 8 Interoperability

83

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

• BehaviorElement

- BusinessFunction

- ApplicationFunction

- InfrastructureFunction

• Language

Concerns

Using the interoperability viewpoint makes it
possible to determine whether data can be
exchanged between services and functions
without any loss due to deficiency in the
communication. It also makes it possible to

tell what services, functions, and data objects
that speak a certain language.

Stakeholders

The typical stakeholder for the interoperability
viewpoint is the integration and/or solution
architect, but it could also come in use for

developers implementing software that is
integrated with other software.

Theory

Interoperability is assessed based on two
assumptions: 1) Two entities are interoperable
if the communication is successful between

Chapter 8 Interoperability

Figure 35: The interoperability viewpoint.

these two. 2) The communication between two entities is successful if
they share a common language.

If L is a Language, BE is an Behavior Element, PCS is a Passive Compo-
nent Set, then

f (BE . CommunicatesSuccessfully) =

 if PCS ⊆ BE . read
true and L ⊆ BE . language ∪

PCS . writer . language
false otherwise

Guidelines for use

To use the interoperability viewpoint follow this process: Firstly, model
the services (business, application, and infrastructure), behavior ele-
ments (business processes, application functions, and infrastructure func-
tions), and passive component sets (representation sets and data sets).

These are all typical classes used in enterprise architecture thus finding
this information can either be done by using existing models or by inter-
viewing relevant stakeholders (e.g. enterprise architects, business archi-
tects, information architects, application architects, infrastructure/
technology architects). Secondly, find out what languages that are used
related to all modeled classes and insert this information into the model.
Thirdly, run the analysis.

An interoperability view example

The integration architect at ACME Energy is planning some major
changes in the form of integrating some new functions. A first step for
our architect is to model the As-Is state of the architecture, so that any
future To-Be state can be analyzed with this as a baseline. The CIO has
pointed out that one important part of their business is the compilation
of maintenance KPIs based on the closed workorders. This includes

84

Figure 36: An interoperability view example.

Chapter 8 Interoperability

several processes and functions that read and write to different data sets.
In the current state everything is interoperable because they speak or are
written in the same language. The as-is model verifies this, cf. Figure 36.

In order to model the interoperability view example (cf. Figure 36) of
ACME Energy follow these steps:

1. Add a Close Workorder business process, a Generate Failure
Statistics application function, and a Compile Maintenance KPIs
application function. These have all been modeled in previous
example, please re-use.

2. Add a Representation Set called Raw Failure Descriptions, a Data
Set called Processed Failure Descriptions, a Data Set called Failure
Descriptions with Stats, and a Data Set called Maintenance KPIs.
These have all been modeled in previous examples, please re-use.

3. Have the Close Workorder Read from the Raw Failure Descriptions
and Write to the Processed Failure Descriptions. Have the Generate
Failure Statistics Read from the Processed Failure Descriptions and
Write to the Failure Descriptions with Stats. Have the Compile
Maintenance KPIs Read from the Failure Descriptions with Stats
and Write to the Maintenance KPIs. These relationships are
automatically generated if the classes are re-used.

4. Add a Language class and call it Multi-maintenance Language.

5. The Representation and Data Sets are all of this language type.
Add three IsOfLanguage relationships.

6. The Business Process and the Application Functions can all speak
the Multi-maintenance Language. Add three SpeaksLanguage
relationships.

7. Press calculate and make sure that the communication is
successful for all processes and functions.

85

Chapter 8 Interoperability

9 A description of MAP’s  
cost viewpoint.

Cost
Additional author: Per Närman

87

The use of information systems permeates all
modern organizations; virtually every existing
business process is supported by some sort of
information system solution. As a consequence,
system related operational and capital
expenditures consume a substantial part of the
overall budgets. This was illustrated in a survey
of the IT spending of 2007 by Gartner where it
was reported that information system costs
consumed 4, 4 % of European firms revenue.
Gartner (An information technology research
and advisory company) further concluded that
the information system costs were likely to
grow, at least in absolute terms. Another study
performed by the Bureau of Economic Analysis
in the United stated concluded that the share of
IT in business equipment investments in USA
rose to above 50 percent in year 2000 [3]. The
great importance of information systems for
running a competitive business together with
the significant costs associated with system
investments has made it imperative to increase
the quality of decisions concerning information
systems management. Bad decisions not only
jeopardize the smooth running of the business,
they also cost a fortune. Information systems

often stay with their organizations for a very
long time, systems that were developed in the
seventies still support core processes in some
industries. The longevity of information
systems means that cost assessment must not
inly include the initial costs, but also the yearly
costs associated with a system. This could for
instance be maintenance, support, and license
costs.

The original work that this section is based on
can be found in [116].

9.1 How to measure cost

A frequently cited method for estimating IT
development efforts is Barry Boehm et al.s
COCOMO (COnstructive COst MOdel)
method and its successor, aptly named
COCOMO II, [36,117]. The method offer a

Movie 9: Cost of IT-systems.

Chapter 9 Cost

framework and an algorithm to predict the number of man-months
needed to complete software development projects. This effort estimation
is based on the size of the software, an approximate productivity constant
A, an aggregation of five scale factors E (precentedness, development
flexibility, architecture/risk resolution, team cohesion, and process
maturity), and effort multipliers to 15 cost driving attributes Although
based on qualitative experiences and a substantial amount of quantitative
data, the method is limited to software development projects, which

excludes procurement and implementation of Commercial-Off-The-Shelf
(COTS) products, and in particular does not address the entire life-cycle
cost of IT investments. The COCOMO community has acknowledged the
need to make estimations of COTS{related costs as well, which gave rise to
COnstructive COTS (COCOTS) [118-120]. COCOTS explores technical
factors related to integration of COTS products, but instead fails to address
maintenance related costs or the costs related to the organizational change.

88

Figure 37: The cost taxonomy by Närman et al [116].

Chapter 9 Cost

A more holistic approach taking softer cost drivers into account is
presented in a number of IT cost taxonomies proposed by Irani et al.
[121-123]. These taxonomies emphasize the importance intangible costs
derived from for instance the introduction of new work practices that are
associated with introducing new IT technology. Although complementing
the more technical views expressed in COCOMO and COCOTS, the
taxonomy says little on how to use cost factors to calculate IT investment
costs in practice.

The assessment method for cost presented in this book focuses on the
initial and yearly costs for different elements of EA. What these costs
actually include depends on what costs a specific company using this
viewpoint actually do have. The initial cost of an application could for
instance include procurement, training, and configuration costs. While,
the yearly cost could include maintenance, support, and license costs.
The yearly cost for a certain role in an organization could include salary
and educational costs. Närman et al. presents a cost taxonomy that could
be used as a point of reference [116], cf. Figure 37.

9.2 The cost viewpoint

This section describes the cost viewpoint, cf. Figure 38. The viewpoint
has the following main concepts:

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• BehaviorElement

- BusinessFunction

- ApplicationFunction

- InfrastructureFunction

• ActiveStructureElement

- ApplicationComponent

- Role

- Node

89

Chapter 9 Cost

Figure 38: The cost viewpoint.

Concerns

The cost viewpoint aims at showing what direct costs that is associated
with the elements of the enterprise architecture. E.g. it aims at answering
what a certain service or process costs.

Stakeholders

The typical stakeholder for the cost viewpoint is the CIO or someone in
similar position with a financial responsibility. Project managers or
architects with cost requirements could also use this viewpoint when
managing the budget plans.

Theory

The cost of an entity is assessed based on the initial and yearly costs of
the related entities. This means, that if for instance two services share a
function then the cost of this function is divided between the services.
Or, e.g. if one service is realized by two functions then the cost of the
service is a sum of the costs of the two functions.

Service.Cost (S.Cost) the cost of the Service is calculated by adding up
the cost from all behavior elements that realize the Service. The cost from
the BehaviorElement is equally distributed among the services. If
BE = {be1, . . . , ben} is a list of BehaviorElements, S is a Service, and
BE ⊆ S . realizedByAND ∪ S . realizedByOR then

f (S . Cost) =
n

∑
i=1

bei . Cost
|bei . realizesAND ∪ bei . realizesOR |

.

V(S . Cost) = {x ∈ R : 0 ≤ x} .

BehaviorElement.Cost (BE.Cost) the cost of the BehaviorElement
consists of the costs from all services that the BE is using and the cost of
the active structure elements that are assigned to the BE. The cost from the
services and ActiveStructureElements is equally divided amongst
all BEs to which it is used by/assigned. If A = {a1, . . . , an} is a list of active
structure elements, BE is a BehaviorElement, S = {s1, . . . , sn} is a list of
services, A ⊆ BE . assignee and S ⊆ BE . usesAND ∪ BE . usesOR then

f (BE . Cost) =
n

∑
i=1

ai . Init ialCost
|ai . assignor |

+

n

∑
i=1

ai . YearlyCost
|ai . assignor |

+

n

∑
i=1

si . Cost
|si . userAND ∪ si . userOR |

.

V(BE . Cost) = {x ∈ R : 0 ≤ x} .

ActiveStructurElement.InitialCost (ASE.InitialCost) the initial
cost of an ActiveStructureElement is set as evidence in the model
with the same currency used throughout the model.

V(ASE . Init ialCost) = {x ∈ R : 0 ≤ x} .

ActiveStructureElement.YearlyCost (ASE.YearlyCost) the yearly
cost of an ActiveStructureElement is set as evidence in the model
with the same currency used throughout the model.

V(ASE . YearlyCost) = {x ∈ R : 0 ≤ x} .

90

Chapter 9 Cost

Guidelines for use

To use the cost viewpoint follow this process: Firstly, model the services
(business, application, and infrastructure), behavior elements (business
processes, application and infrastructure functions), and active structure
elements (roles, application components, and nodes). As stated in, for in-
stance, the interoperability viewpoint these classes are typical elements
of any enterprise architecture model. Thus, existing EA models could be
re-used or the typical stakeholder of EA could be interviewed for
information. Secondly, find out what the initial and yearly costs are for
the active structure elements. Thirdly, run the analysis.

A cost view example

The CIO of ACME Energy has a tight budget for the coming year and
since new technology have just been procured and some more is on the
way there is a wish to manage these costs. The CIO asks the architects to
calculate the expenses for the coming year based on the current
architecture solution. The new elements of the architecture include a
maintenance manager, three databases/servers, and the CMMS
component. It is important for the CIO to divide the expenses between
the business units of the company based on the amount that they
actually do use. In this case the maintenance department, which owns
the study maintenance business process, will be budgeted the expenses
of the new maintenance manager, the three databases/servers, as well as
the CMMS component (cf. Figure 39).In order to model the cost view
example (cf. Figure 39) of ACME Energy follow these steps:

In order to model the cost view example (cf. Figure 39) of ACME Energy
follow these steps:

1. Add the Study Maintenance business process, the Close Workorder
business process, the Study Maintenance application service, the
Generate Failure Statistics application function, the Compile
Maintenance KPIs application function, the CMMS application
component, the Generate GUI infrastructure service, the Data
Retrieval primary site infrastructure service, and the Data Retrieval

91

Figure 39: A cost view example.

Chapter 9 Cost

secondary site infrastructure service. These have all been modeled in
previous example views, re-use existing classes if possible.

2. The Study Maintenance process Uses the Study Maintenance service.
Which in turn is Realized by both the Generate Failure Statistics and
Compile Maintenance KPIs functions. Both these functions are
Assignees of the CMMS component. The Generate Failure Statistics
function Uses the Generate GUI service (AND) and one of the two Data
Retrieval services (OR). These relations are all automatically generated
based on the previously modeled views if the classes are re-used.

3. Add a new Role and name it Maintenance Manager. Assign it to the
Study Maintenance and the Close Workorder processes.

4. Add three Infrastructure Functions and name them GUI, Failure Data
primary and Failure Data secondary.

5. The Generate GUI service is Realized by the GUI function, the Data
Retrieval primary site is Realized by the Failure Data primary
function, and the Data Retrieval secondary site is Realized by the
Failure Data secondary function. Add these three relationships.

6. Add three Nodes and name them GUI Application Server, MySQL
Database, and SQLite Database.

7. The GUI Application Server node is Assigned to the GUI function,
the MySQL Database is Assigned to the Failure Data primary
function, and the SQLite Database is Assigned to the Failure Data
secondary function. Add these three relationships.

8. Add the initial and yearly costs according to Table 5.

9. Press calculate and evaluate the cost of the Study Maintenance and
Close Workorder business processes. These should read 1.795.000
and 550.000 SEK respectively.

92

Table 5: Initial and yearly cost data for cost view example.

Class Initial Cost Yearly Cost

Maintenance manager 100.000 1.000.000

CMMS 1.000.000 100.000

GUI Application Server 30.000 10.000

MySQL Database 45.000 10.000

SQLite Database 40.000 10.000

Chapter 9 Cost

10 A description of MAP’s  
utility viewpoint.

Utility

“Nature has placed mankind under the governance of two sovereign masters,
pain and pleasure. It is for them alone to point out what we ought to do, as well
as to determine what we shall do. On the one hand the standard of right and
wrong, on the other the chain of causes and effects, are fastened to their throne.
They govern us in all we do, in all we say, in all we think: every effort we can
make to throw off our subjection, will serve but to demonstrate and confirm it.
In other words a man may pretend to adjure their empire: but in reality he will
remain subject to it all the while. The principle of utility recognises this
subjection, and assumes it for the foundation of that system, the object of which
is to rear the fabric of felicity by the hands of reason and of law.” – Jeremy
Bentham [126].

As far back as 1780 Jeremy Bentham presented utility in the following
way: “By utility is meant that property in any object, whereby it tends to
produce benefit, advantage, pleasure, good, or happiness…” [126]. The
idea was that utility over an act can be measured. This was followed by
the felicific calculus which describes how such measurement can be con-
structed [127]; with the two units hedons, a unit of pleasure, and its anto-
nym dolors, the unit of pain. When assessing the utility the following cir-
cumstances have to be considered: its intensity, its duration, its propin-
quity, its fecundity, its purity and its extent. Over the years, utility theory
has evolved. In 1947 John von Neumann and Oskar Morgenstern pre-
sented the four axioms of rationality and a real-value utility function.
This was later extended by, amongst others, Peter C. Fishburn, Ralph L.
Keeney and Howard Raiffa, providing solid foundations to preference
structures, independences and utility functions. This has been applied in
game theory, healthcare and economics, where the satisfaction gained

from goods and services can be measured in utility. The utility theory
has been used to construct models for better decision making [128] and
trade-off analysis to obtain the best outcome.

Utility is a representation of preferences that one has over something.
Utility might be a bit abstract, but let’s illustrate it in terms of money. A
person would most probably prefer to have $100 on her bank account
rather than zero; the same person would probably prefer to have even
more. However, there comes a point where more money ceases to be as
useful for this person as they were in the beginning. The effort in obtain-
ing more, or trade-off to other things, might be too high. When having 10
or 10.1 billion dollars on her bank account the excess of $100 million
might not bring that much extra utility to this person, her financial situa-
tion will be sound any way. The general idea is that when needs and re-
quirements are not fulfilled the person is unhappy; utility is zero or very
low. As the needs and requirements are meet the utility increases and
when even wishes and desires are satisfied the person is completely
happy and utility reaches its max.

In this book, utility is defined as the quality or condition of being useful.
The method is based on individual preference structures (including inde-
pendence assumptions) to perform the utility calculations [128]. This al-
lows the decision to be presented in a quantifiable and comparable form.
A significant change in utility between two alternatives implies that it
would be a good idea to go for the higher scoring alternative. For exam-
ple for an ordinary person, the increase in utility could be greater when
wealth changes from $0 to $100 and worth working for. When wealth

94

Chapter 10 Utility

changes from $10.000 to $10.100 the utility might not increase that much,
the person might find it less rewarding to do the extra work to go from
$10.000 to $10.100. #

Utility theory has the potential to aid decision makers to evaluate
enterprise architecture as-is and to-be scenarios and comparing them
against each other. A business service which does not meet the require-
ments of the company is of no or little utility to the enterprise. At the
same time a business service exceeding the requirements and wishes by
far might not bring that much extra utility compared to if the service
meet the requirements and just passes the extra wishes. The utility the-
ory can aid the decision maker in making the trade-offs and decisions on
what is important and which solution to implement.

An enterprise architecture can incorporate many quality attributes. The
decision maker usually has to balance these attributes against each other
to obtain the best possible architecture. This chapter presents a system-
atic and formal way of assessing the quality of an enterprise architecture
based on a decision maker's preferences. The method presented aims to
provide support to the task of making trade-off decisions and balancing
the enterprise architecture.

10.1 How to measure utility

Utility is a subjective matter. It therefore needs to be evaluated based on
a set of individual preferences. An absolute number specifying the utility
of a certain state can be difficult to assess, but when given a choice of

two or more it is somewhat easier to tell which is better or when the
stakeholder is indifferent to them.

The following notation will be used throughout the utility chapter.
X = {X1, X2, . . , XN} is a set of N attributes or properties, X1, which are in-
cluded in the domain under which the decision maker will make her
decision. An example of attributes in the EA domain is the non-
functional attributes: availability, A, security, S, interoperability, I , and
modifiability, M. Where X = {A, S, I, M}. The complement of an attribute,
X1, is denoted X̄1 = {X1, . . , XI−1, XI+1, . . , XN}. In the previous EA example
the complement of the security attribute is S̄ = {A, I, M}. Each attribute,
X1, can be assigned a state or value, x, which is within a state/value
range containing two or more values, x = {x1, x2, . . , xn}, it can be both dis-
crete or continuous. The non-functional attribute interoperability could
for instance have the two states true or false. Meaning that it is either in-
teroperable or not, interoperabilit y = {true, false}. The availability can
be expressed in a percentage value range going from completely unavail-
able, 0%, to always available, 100%, availabilit y = {0 % , . . ,100%}. The
decision maker has to be able to tell if one value is preferred over an-
other, xi ≻ xj, or if she is indifferent of the two. The preference relations

are:

•# Strict preference ≻ , is a transitive relation. If xi ≻ xj and

xj ≻ xk then xi ≻ xk.

•# Indifference ∼, is a transitive, reflective relation, xi ∼ xi for all
x, and symmetric, xi ∼ xj → xj ∼ xi.

95

Chapter 10 Utility

96

•# For each pair of , xi and xj, only

one of xi ≻ xj, xj ≻ xi or xi ∼ xican hold.

•# Weak preference ⪰ , is transitive
and complete, for all pair of, xi and xj, either

xi ⪰ xj or xj ⪰ xi.

Preference relations are discussed in greater
detail in [129, 132].

The utility of all attributes is denoted
U(X) = U(X1, X2, . . , XN), and has a range
0 ≤ U(X) ≤ 1. The utility for a specific
attribute X1 with the value xi is denoted ui(xi).
The conditional utility function, which is the
utility function over one attribute, has a range
of 0 ≤ ui(xi) ≤ 1, where the least preferred
outcome of the attribute u0

i (xi) = 0 and the
most preferred outcome u*i (xi) = 1. If xi ≻ xj

then ui(xi) > uj(xj) (Note: preference relation,

≻. Inequality relation, >). If xi ∼ xj then

ui(xi) = uj(xj). Returning to the availability

attribute, let’s say that the stakeholder’s least
preferred outcome of availability on a system
is 90%, u0

a(90%) = 0. The most preferred
outcome is 100%, u*a (100%) = 1. The
stakeholder would typically prefer the higher

availability and the conditional utility
function would approach and reach 1 as the
availability increases from 90% to 100%,
given any two values in-between and the
stakeholder can tell which one is the most
preferred.

Scaling constants are important in addition to
the conditional utility functions, ui(xi), when
assessing the total utility, U(X). The scaling
constants are used to scale the utility
functions. This is done in order to keep them
within the proper value range but also to
reflect the decision maker’s preferences on
how important each attribute is. The scaling
constants can be seen as a weight to each
conditional utility function. The scaling
constants to each conditional utility function,
ki, have a range of 0 < ki < 1. In some cases an
additional scaling constant k is used. k is a
non-zero scaling constant, k > − 1. More
about scaling constants and how to assign
them is presented under each type of utility
function.

Lotteries are an important concept to utility
theory. The lotteries are used to elicit the

stakeholder’s preferences and to validate
independence assumptions. [130] has
provided a definition of a lottery. Given a set
of prizes, $, “A lottery on $ is a device for
deciding which prize in $ you will receive,
on the basis of a single observation that
records which one of a set of mutually
exclusive and exhaustive uncertain events
took place. It is possible that with each of
these uncertain events there is associated a
known chance; for example, this would be so
if we were observing a single spin of a well-
made roulette wheel.”

Let’s consider the lottery of flipping a
perfectly balanced coin. $ = {heads, tails},
where there is the known chance of 50% for
either of the two. This lottery is graphically
presented in Figure 40.

Chapter 10 Utility

Figure 40: A coin flip lottery.

97

Independence

To simplify the tailoring of the utility function to the stakeholder there
are three different kinds of independence assumptions which can be
made, and validated with the stakeholder’s preferences. The purpose is
to reduce the workload when determining how the utility function
behaves. The different kinds of independencies are explained below.
Each kind of independence is accompanied by an example using the
attributes availability A, interoperability I and cost C where X = {A, I, C}
is the set of all three attributes. For the sake of the example uA(80%) = 0,
uA(100%) = 1, u1(false) = 0, u1(true) = 1, uC($5000) = 0 and uC($0) = 1.

Preferential independence

The preferential independence is important to determine to ensure if the
stakeholder’s preferences over one attribute remains the same regardless
of the other attributes.

If attribute XI ∈ X, then XI is said to be preferentially independent of its
complement X̄I if the preference order, xi ⪰ xj, for the outcome (xi, x̄i),

where the values are fixed, does not depend on the fixed amount [128,
131].

•# If xi, xj ∈ XI, xi ⪰ xj and xi ∈ X̄I, XI is preference independent of

X̄I if ∀x̄i((xi, x̄i) ⪰ (xj, x̄i)).

In other words, preferential independence means that a decision maker’s
preference over an attribute, XI, is not dependent on any other attribute.
[128, 131].

The two attributes XI and XJ are mutually preference independent if XI is
preference independent of XJ and XJ is preference independent of XI. On
a similar note the attributes X1, X2, . . , XN−1 and XN are mutually
preference independent if, for every subset I ⊆ {1,..,N} the set XI of these
attributes is preference independent of X̄I. [132].

Example of preferential independence  

Let’s take the two attributes availability A, and cost C. If the stakeholder
always prefers a low cost compared to a high, no matter in which state
the availability is, then C is preference independent of A. So if C is
preference independent of A, the stakeholder would e.g. prefer ($0; 85%)
over ($5000; 85%) and ($450; 85%) over ($451; 85%). If there exists an
availability state where the stakeholder would prefer a more expensive
service compared to a cheaper service, then C is not preference
independent of A. In the case of availability and cost, it might be obvious
that one prefers to pay less regardless of the value of the availability
attribute. Let us leave the systems and services to illustrate an example
when you would not be preference independent. Given the domain of
the human body we can look at the two attributes blood glucose
concentration BGC, and insulin I. When there is an excess of glucose in
the blood, insulin is produced in order to decrease the blood glucose
concentration. If the blood glucose concentration is normal and insulin is
produced it would cause a glucose deficiency. The body strives to keep a
balanced blood glucose concentration. The two attributes are not
p r e f e r e n t i a l l y i n d e p e n d e n t o f e a c h o t h e r s i n c e
(I − not produced; BGC − normal) i s p r e f e r r e d o v e r

Chapter 10 Utility

98

(I − produced; BGC − normal), but if we
change the fixed amount in blood glucose
c o n c e n t r a t i o n t o b e h i g h
(I − produced; BGC − high) is preferred over
(I − not produced; BGC − high) .

Utility independence

If attribute XI ∈ X, then XI is said to be utility
independent of its complement X̄I if the
preference order over lotteries on Xi, (xi, x̄i),
with X̄Ifixed, does not depend on the fixed
amount of x̄i. [128, 131]. The attributes in X
are mutually utility independent if every
subset of {X1, X2, . . , XN} is utility independent
of its complement [128].

Example of utility independence  

If the complement values to attribute are
held fixed at the least desirable level , what is
the decision maker’s certainty equivalent for
a 50/50 gamble yielding values 80% and
100% on the availability attribute? The
certainty equivalent is the guaranteed
amount from an outcome which to the
decision maker is equally desirable as a
gamble with known chance. Now let’s say
that the decision maker would be indifferent

between the gamble and the certain outcome
if the availability of the certain option is 90%.
This scenario is illustrated in Figure 41.

If the complement values were held fixed at
some other level, let’s say the most desired
outcome, ā*, would the decision maker’s
certainty equivalent, 90%, be? If the decision
maker sticks to the same certainty equivalent,
the attribute is utility independent of its
complement.

Utility independence can also be elicited
using combinations of multiple lotteries. The
decision maker is given a choice between the
two lotteries like the one shown in Figure 42.

The decision maker may prefer lottery 1 over
lottery 2 because there is less risk associated

with regards to cost and availability in
System 1. No matter which lottery the
decision maker prefers, if the choice over the
two lotteries remains the same when the
interoperability is changed to , then cost and
availability are utility independent of
interoperability.

Additive independence

Two attributes, XI and XJ are additive
independent if the paired preference
comparison of any two lotteries (like the two
lotteries previously shown in Figure 42),
defined by two joint probability distribution
on Xi × XJ, depends only on their marginal
probability distribution (the probability of
one variable taking a specific value
irrespective of the values of the other) [128]. If
the two lotteries in Figure 43 are equally
desirable then XI and XJ are additive
independent.

Example of additive independence  

Let’s have a look at the two attributes
availability and interoperability. If the
decision maker thinks that the two lotteries

Chapter 10 Utility

Figure 41: Certainty equivalent as-
signed to 90% for a 50/50 gamble.

shown in Figure 44. Additive independence example are equally
preferable, then the two attributes and are additive independent of one
another.

In both lotteries there is a 50% chance of getting the most and the least
preferred outcome on each attribute.

Utility functions

The general utility function over the outcome of the attributes in X is
u(x1, x2, . . , xn) = f (f1(x1), f2(x2), . . , fn(xn)), the downside with this utility
function is that it can be resource consuming to define the behavior of
function f. The conditional utility functions fi always have to be
determined and there is some assistance to get when defining the utility
function f. This section presents three common utility functions. The key
idea is to investigate the previous mentioned independence assumptions
with the stakeholder to see if any of them apply. When the independence
assumptions have been validated, the right utility function can be
chosen to fit the stakeholder preferences. If none of the independence
assumptions applies the reader is advised to read [128].

There are five stages to go through when determining the utility function
for a decision maker [128]:

• Introducing the terminology and ideas.

• Identifying relevant independence assumptions.

• Assessing conditional utility functions.

• Assessing the scaling constants.

• Checking for consistency and reiterating.

99

Figure 42: Paired preference comparison to elicit if interoperability
is utility independent of cost and availability.

Figure 43: Paired preference comparison lottery to elicit additive in-
dependence.

Figure 44: Additive independence example.

Chapter 10 Utility

100

Additive utility

If the attributes are all additive independent
of each other the utility is calculated using the
additive utility function, Equation 1. The
additive utility function simply sums up the
utility of each conditional utility function
with a weight on how important each
attribute is to the stakeholder. These weights
are subsequently called scaling constants.

U(X) =
n

∑
i=1

kiui(xi)

Equation 1.

All the scaling constants ki, should be

normalized so that
n

∑
i=1

ki = 1.

Assessing the scaling constants  

When assessing the scaling constants, the
stakeholder needs to rate the importance of
each attribute. This can be done in a
numerous of ways. In the end, the assessed
weight for each attribute has to be
normalized. One way of assessing the
weights is to have the stakeholder assigning
utility of u(x*i ; x0

i) = pi. The weight can also be

evaluated by proposing a bet, letting the
stakeholder assign the probability pi,
illustrated in Figure 45.

The scaling constants are then normalized:
ki =

pi

∑n
i=1 pi

 .

Multiplicative utility

If each attribute in is utility independent of
its respective complement then the
multiplicative utility function holds. The
multiplicative utility function multiplies the
conditional utility functions with each other
using both individual scaling constants ki and
a final scaling constant k to ensure that
0 ≤ U(X) ≤ 1.

1 + kU(X) =
n

∏
i=1

(1 + kkiui(xi))

Equation 2.

To calculate the scaling constant k, all
attribute utility functions are set to 1,
ui(xi) = 1 and so U(X) = 1. This gives:

1 + kU(X) =
n

∏
i=1

(1 + kkiui(xi))

Equation 3.

Out of which k can be calculated. Keep in
mind that k ≠ 0 and k > − 1. If k = 1 the
multiplicative utility function is reduced to
the additive form.

Assessing the scaling constants  

The same approach as presented in additive
case can be used to assess the ki values in the
multiplicative utility function. The
stakeholder assigns the utility of u(xi; x̄0

i) = pi.
The weight can also be evaluated by
proposing a bet, letting the stakeholder assign
the probability pi, illustrated in Figure 45,
ki = pi.

Figure 45: Assessing the weight

Chapter 10 Utility

101

Example of the multiplicative utility function 

The example scenario is based on the four attributes in
X = {X1, X2, X3, X4}. Lets assume that the weights have been set by a
stakeholder: k1 = 0.95, k2 = 0.07, k3 = 0.4 and k4 = 0.67. k can then be
calculated by using Equation 3.

1 + k = (1 + 0.95k)(1 + 0.07k)(1 + 0.4k)(1 + 0.67k)

0 = k3 + 19.33k2 + 80k + 61.16

0 = (k + 13.886)(k + 4.455)(k + 0.988)

Equation 4.

Since k > − 1 it follows that k = − 0.98. Let’s assume that in this example
scenario the conditional utility functions have evaluated to u1(x1) = 0.9,
u2(x2) = 0.6, u3(x3) = 1 and u4(x4) = 0.1. Now Equation 2. can be used to
calculate the utility of the service.

1 − 0.988U(X) = 0.083

U(X) = 0.926

Multi linear utility

If the attributes in X are mutually utility independent, the multi linear
utility function should be used.

The multi linear utility function is a generalization of the additive and
multiplicative utility functions. To setup the multi linear utility function
2n − 2 scaling constants have to be assessed by the stakeholder. When
there are four or more attributes, the overhead of assessing the 14 or
more scaling constants can be too time and effort consuming and the
result can often be approximated using the additive or multiplicative
utility functions dependent on the independence characteristics of the
attributes [133].

" U(X) =
n

∑
i=1

(kiui(xi)) +
n

∑
i=1

∑
j>i

(kijui(xi)uj(xj))+

 " " +
n

∑
i=1

∑
j>i

∑
l>j

(kijlui(xi)uj(xj)ul(xl)) + … + k123..nui(xi)uj(xj)…un(xn)

Figure 46: The k polynomial

Chapter 10 Utility

A two attribute example

This subsection presents a small example containing two attributes,
availability and modifiability. Availability is measured in percentage
ranging from 0 to 100. Modifiability is measured on a scale from 1 to 14.
After introducing the utility concept to the decision maker the individual
attribute utility functions are assessed.

Identifying relevant independence assumptions

First, the decision maker is questioned about potential preferential
independence over a set of outcomes like the one in Table 6. Preferential
independence question example where the decision maker’s preferred
outcome is marked with bold text.

Where:

*1: (x+
α , xβ

m) or (x−
α , xβ

m)

*2: (x+
m, xβ

α) or (x−
m, xβ

α)

The table shows that the two attributes are mutually preference
independent, since the higher availability is always preferred over the
lover when the modifiability is fixed. The same thing goes with the
modifiability where the decision maker always prefers the higher
modifiability independent of which fixed stat the availability is.

Thereafter, the decision maker is faced with setting the certainty
equivalent for the 50/50 gamble vs. certain outcome for the two
attributes. The purpose with this task is to validate the utility

independence assumption. Let’s say that the decision maker’s certainty
equivalent for the proposed 50/50 gamble yielding values 80 and 100 on
the availability is 84 if the modifiability is 10. The same certainty
equivalent was also given for another modifiability value of 13,
illustrated in Figure 47.

The procedure is repeated with different attribute values and for both
attributes. The decision maker remains consistent when setting the
certainty equivalents and the utility independence assumption is valid.

102

Table 6: Preferential independence question example.

A preference independent of
M

M preference independent of
A

(100%;1) or (0%;1) (14;50%) or (1;50%)

(53%;10) or (49%;10) (7;50%) or (8;50%)

(90%;14) or (75%;14) (9;23%) or (5;23%)

(98%;11) or (99%;11) (14;100%) or (13;100%)

*1 *2

Chapter 10 Utility

The additive dependence is then explored as explained earlier. The
decision maker is faced with the task of comparing the two lotteries in
Figure 48. The attribute values are changed over and over to see if the

decision maker’s replies are consistent. In the example scenario the
decision maker doesn’t find the two lotteries to be equally desirable. The
two attributes are therefore not additive independent.

Assessing the conditional utility functions

Starting with availability, the decision maker is asked to determine the
endpoints of the conditional utility functions. The least desirable

103

Figure 47: Utility independence example

Figure 48: Paired lotteries for the additive independence example

Figure 49: Availability and modifiability utility functions.

Chapter 10 Utility

availability in the example is 80% and 100% is considered the most
attractive, ua(80) = 0 and ua(100) = 1. Thereafter, the respondent is asked
to assess a few points in between the threshold values. When those have
been assessed, the attribute utility function can be determined by
interpolation. The same procedure is carried out for the modifiability
attribute. An example of this is shown in Figure 49. where the squares
indicate the stakeholder’s assessments.

Assessing the scaling constants

Starting with the availability attribute the stakeholder is requested to
assess u(100 % ; 9) = pi or equally:

Let’s say that the stakeholder sets pi = 0.95. The same procedure is done
for the modifiability attribute where the stakeholder assigns
u(14; 80%) = 0.3. The next step is to evaluate k.

The utility function

When the independence assumptions, conditional utility functions and
scaling constants have been assessed, the multi attribute utility function
can be derived.

1 − 0.87U(A, M) = (1 − 0.87 * 0.95 * ua(xa)) * (1 − 0.87 * 0.3 * um(xm))

The utility function is visualized in Figure 51. The availability in this
example scenario turned out to be 92% and the modifiability scored 12;
ua(92%) = 0.9, um(12) = 0.6 . The final utility score can then be calculated
by inserting these values in the function:

1 − 0.87U(92 % ,12) = (1 − 0.87 * 0.95 * 0.9) * (1 − 0.87 * 0.3 * 0.6)

U(92 % ,12) = 0.9

104

Figure 50

Figure 51: A multiplicative utility function over the two attributes
availability and modifiability

Chapter 10 Utility

10.2 The utility viewpoint

This section describes the utility viewpoint, cf. Figure 52. The viewpoint
has the following main concepts:

• Stakeholder

• ProcessServiceInterface

• Requirement

- ServiceRequirement

- ApplicationServiceRequirement

- InterfaceRequirement

- InformationRequirement

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

Concerns

Using the utility viewpoint makes it possible to estimate the utility of the
system in modeled architectures. The use of the utility viewpoint provides
a high abstraction level measurement that can be suitable for easy
comparison between competing scenarios.

105

Figure 52: The utility viewpoint.

Chapter 10 Utility

Stakeholders

The stakeholder for the utility viewpoint is the actor who has requirements
on a service. The stakeholder is modeled in the viewpoint.

Theory

The utility in this book is evaluated as follows. In ArchiMate a stakeholder is
de_ned as the role of an individual, team, or organization (or classes thereof)
that represents their interests in, or concerns relative to, the outcome of the
architecture. In the utility viewpoint the Stakeholder is defined in the same
way. The Stakeholder contains one attribute Utility.

Stakeholder.Utility The utility in the Stakeholder class is based on
the utility of each requirement the stakeholder has. The utility of each
requirement evaluated based on the importance of the requirement and
the overall utility score is a sum of this. If R = {r1, . . . , rn} is a list of
Requirements and R ∪ Stakeholder . concern then

f (Stakeholder . Utilit y) =
n

∑
i=1

ri . Utilit y * ri . Impor tanceOf Requirement

V(Stakeholder . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

In ArchiMate a requirement is de_ned as a statement of need that must be
realized by a system. In this viewpoint the statement of need is specified in
terms of utility. If the requirement is not fulfilled there is no utility. On the
other end, if the aspect on which the requirement is stated is above a certain
value the utility is 1. The Requirement class has two attributes, Utility
and ImportanceOfRequirement. The Requirement class is not intended

for modeling but acts as a superclass to ServiceRequirement,
ApplicationRequirement , InterfaceRequirement a n d
InformationRequirement.

Requirement.Utility The utility of the requirement is evaluated as a
product of all utility from each aspect the requirement is measuring. A
ServiceRequirement for instance has four aspects, availability,
functionality, interoperability and cost. If sr is a ServiceRequirement then

f (sr . Utilit y) = sr . Utilit yOfAvailabilit y *
sr . Utilit yOf Functionalit y * sr . Utilit yOf Interoperabilit y * sr . Utilit yOfCost

V(Requirement . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

For each aspect the requirement is measuring, a threshold maximum, and
threshold minimum value, is defined by the stakeholder, and added as
evidence in the two attributes associated with the aspect. If we follow the
example of a ServiceRequirement one of the measured aspects is
availability. The ServiceRequirement has the two attributes (amongst
other) AvailabilityThresholdMax and AvailabilityThresholdMin.
The threshold min value is added as evidence with the lowest availability
the stakeholder accepts from the service. The availability threshold max
value is added as evidence where the service is not considered to provide
more utility if it is more available. For illustrative purposes let’s say a
stakeholder has the requirement on a service where the service is of no use
if the availability is less than 80% and an availability higher than 98% is
too resource consuming for the organization. The stakeholder sets the
threshold minimum to be 80% and the maximum to 98%, the utility curve

106

Chapter 10 Utility

of this is shown in Figure 53. If sr is a ServiceRequirement the utility
of availability would then be

f (sr . Utilt yOfAvailabilit y) =
1

sr . Availabilit yThresholdMa x − sr . Availabilit yThresholdMin
*

sr . requirementOn . Availabilit y
V(Requirement . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

When dealing with cost, a low cost gives a high utility. For illustrative
purposes a stakeholder thinks a service is really good if the cost is less
than 8000. If the service cost more than 25000 the stakeholder thinks that
it is too expensive and therefore of no utility. A cost utility curve example
of this scenario is shown in Figure 54.

The threshold values do not necessarily need to reach zero. An illustration
of this is when evaluating the utility of modifiability in an application
service. Even though the modifiability is zero the stakeholder might still
be provided with some utility from the service. For illustrative purposes,
the stakeholder thinks that the utility of a certain application service is 0.4
when the modifiability is 0 and it is sufficient if the modifiability is 11. A
utility curve example of this scenario is shown in Figure 55.

For attributes such as interoperability which has binary states (true/false)
the threshold minimum value is the utility of the interoperability when it
is evaluated to false. The threshold maximum value is the utility of the
interoperability when it is evaluated to true. Let's assume a stakeholder
considers the service to have a interoperability utility of 0.2 when the
interoperability is evaluated to false and 1 if the service has full

Figure 53: An example of service availability utility.

Figure 54: An example of service cost utility.

107

Chapter 10 Utility

interoperability (evaluated to true), the utility of this example is shown in
Figure 56.

Guidelines for use

To use the utility viewpoint follow this process: Firstly, select the
intended stakeholder and add the stakeholder in the model. Add the
services, interfaces and passive component sets on which the
stakeholder has requirements. For each of these add a requirement of
right type in between the stakeholder and the services, interfaces and
passive component sets. Secondly, have the stakeholder set the
importance of the requirements and the threshold values and add these
as evidences to the model. Thirdly, run the analysis.

A utility view example

At ACME Energy the CIO is concerned with the maintenance management
process. An analysis to see if the application service for maintenance
management fulfills the organizations requirements is conducted.

In order to model the utility view example (cf. Figure 57) of ACME
Energy follow these steps:

• Add the Study Maintenance and the ProcessServiceInteface, they
have been modeled in previous example views, re{use existing
classes if possible.

• Add a new Stakeholder and name it CIO.

• Add a new ApplicationServiceRequirement and name it Study
Maintenance Requirement.

Figure 55: An example of service modifiability utility.

Figure 56: An example of service interoperability utility.

108

Chapter 10 Utility

• Add a new InterfaceRequirement and name it Maintenance Interface
Requirement.

• Connect the two requirements to the stakeholder. Connect the
Study Maintenance Requirement with Study Maintenance. Connect
Maintenance Interface Requirement to ProcessServiceInteface.

• By now you are familiar with both ACME and the process of adding
evidences. You may now act as the CIO and set your requirements.

• Press calculate. Does the application fulfill you requirements?

Figure 57: A utility view example.

109

Chapter 10 Utility

11 A guide through the
process of creating class
models.

This chapter introduces to
creating class models
using the EAAT Class
Modeler.

Creating
metamodels Author: 

Margus Välja

The EAAT tool and numerous metamodel viewpoints were introduced
in earlier chapters. Now we come to the next question. What if we want
to analyze attributes that are not supported by the metamodel that was
described. The solution here is to create the metamodel by oneself with
EAAT Class Modeler, which is another part of the EAAT family of model-
ing tools [134]. This chapter explains the relationship between the EAAT
Class Modeler and the EAAT Object Modeler and contains a short meta-
modeling tutorial.

The EAAT family of modeling tools consists of two different applica-
tions. The first one you are already familiar with from previous chapters
– the EAAT Object Modeler. The purpose of the EAAT Object Modeler is
to allow modeling real life situations with the help of metamodels. In
this book the MAP metamodel was introduced, which is divided into
viewpoints for enterprise architecture analysis. These viewpoints are ap-
plication modifiability, data accuracy, application usage, service availabil-
ity, interoperability, cost, and utility. In each of the chapters that intro-
duced those viewpoints, an example was included about how to model
the viewpoint with the EAAT Object Modeler. We call this type of model
object model. The second application of the EAAT family is the EAAT
Class Modeler, and its purpose is to create metamodels like MAP, which
can be later used with the EAAT Object Modeler. For the purpose of sim-
plicity we will call the metamodels that can be created in the EAAT Class
Modeler from now on class models. Anyone can create a class model, but
for the class model and corresponding object model to be useful, they
have to rely on scientific theories and common sense. Like the theories

already covered in earlier chapters for MAP viewpoints. Therefore the
tools are meant for different audiences.

11.1 Concerns

The EAAT Class Modeler is designed for creating class models for the
EAAT Object Modeler. A class model is an implementation of an analysis
theory in UML, OCL and P2AMF that is used for calculation purposes.
The calculations based on class models can later be done in the EAAT Ob-
ject Modeler tool using an object model structure, evidence, and chosen
calculation method. While the class model contains theory, the object
model reflects some real life situation. The calculation results show val-
ues about one or more enterprise attributes in a specific situation that the
object model depicts. A summary of the tools and their purpose is pre-
sented in Table 7.

Note that while the design purpose of the EAAT software is to analyze
enterprise architecture, it is in no way restricted to doing that.

11.2 Stakeholders

The audience for the EAAT Object Modeler tool is enterprise architects,
or similar decision makers. The architect that wants an answer to a spe-
cific enterprise related question does not need to worry about the under-
lying theories. He or she can choose a class model or viewpoint and
based on that start modeling with the EAAT Object Modeler. After the
structure of the model is ready, evidence has been included, the results

111

Chapter 11 Creating metamodels

can be calculated. These results tell what the underlying theory of class
model shows about the enterprise’s situation that was modeled.

The EAAT Class Modeler, however, is directed towards more scientific
audience. This tool is for those who want to research and create class
models of certain enterprise properties that are later used by a wider
audience. These can be for example students or researchers. It is easy to
create a class model in the EAAT Class Modeler tool, but the worth of
the class model depends on the underlying theory.

11.3 The Theory behind the two tools

UML and OCL

The EAAT tools use UML notation for visual representation. The UML
entities present are:

• classes that can be instantiated as objects in the EAAT Object Modeler,

• associations and inheritance that are two ways of connecting the
classes.

Classes can contain invariants, attributes, operations, and operations can
have parameters. Attributes can either be derived or non-derived. The
way classes interact with each other and how calculations are done, is
defined using Object Constraint Language (OCL). OCL is a declarative
language for describing Meta-Object Facility (MOF) based models, and
is maintained by Object Management Group (OMG) [135]. OCL is able to
be used to describe restrictions for classes and provide object query ex-
pressions. In the EAAT Class Modeler, OCL can be used for defining in-
variants, operations, derived attributes and derived relationships.

P2AMF

Both tools of the EAAT family support uncertainty modeling with the
Predictive, Probabilistic Architecture Modeling Framework (P2AMF). By
using P2AMF syntax, the uncertainties of objects, relations and attributes
can be expressed.

112

Table 7: EAAT modeling.

Step Step description EAAT tool used

1 Define the problem N/A

2
Choose or create a conceptual

model
N/A

3
Turn the conceptual model into a

UML, OCL and P2AMF based EAAT
class model (metamodel)

Class Modeler

4
Create an executable model that

addresses the problem
Object Modeler

5
Calculate results with the

executable model
Object Modeler

Chapter 11 Creating metamodels

The probabilistic assessments based on P2AMF are possible in the EAAT
Object Modeler. The P2AMF syntax is used for generating samples in a
chosen calculation process in Monte-Carlo fashion. The calculations are
done in the EAAT Object Modeler and the amount of samples generated
can be defined in that tool together with the calculation method and nu-
merous other properties.

An example of the P2AMF syntax is the expression of a normal distribu-
tion that can be used as evidence or part of operations.

mySer ver . availabilit y = normal(1,0.1)

Here the object’s attribute named availability is assigned a value from
normal distribution, where the mean value is 1 and deviation is 0.1.

An example of the existence property is shown below. It depicts the case
of object existence uncertainty and is mandatory for all classes.

P(mySer ver . E) = 0.8

Here the syntax tells us that there is an 80% probability that the object
myServer exists. This affects the calculation process in a way that there
are certain samples that show results without that object.

The syntax and available calculation methods are explained in detail in
the EAAT manual.

Analysis in the EAAT Object Modeler

The calculations are possible only in the EAAT Object Modeler tool.
There are three sampling algorithms that are supported to infer the val-
ues of the attributes that are part of the created model. The ones imple-
mented are: forward sampling, rejection sampling and Metropolis-
Hastings sampling, each having advantages and disadvantages. For-
ward sampling is available also in an extended version, allowing evi-
dence injection.

For all sampling algorithms, the first step is to generate random samples
from the existence attributes’ probability distribution P(X) : x1, …, xM. For
each sample, xi, and based on the P2AMF object model, a reduced object
model, Ni ∈ N, containing only those objects and links whose existence
attributes, Xj, were assigned the value true, is created. Some object mod-

els generated in this manner will not conform to the constraints of UML.

The details of the calculation methods are explained further in the latest
version of the EAAT manual.

11.4 Guidelines for the EAAT Class Modeler

The graphical user interface (GUI)

The Class Modeler tool consists of the modeling canvas in the center and
various other windows that allow to specify details of the model and to
see messages generated by the tool. Figure 58 shows the graphical user
interface of the tool.

113

Chapter 11 Creating metamodels

The two important windows besides the main canvas are Palette and
Class Explorer. Palette is located on the right side of canvas and by default
is hidden. It can be invoked by clicking on the arrow in the right upper
corner. Palette window lists all the objects and sub-objects that can be
used for creating a class model. These are classes, invariants, attributes,
operations and parameters for operations. The lower part of the palette
shows the ways of connecting the elements – associations and inheri-
tance relationship. Class Explorer lists the classes that have been created

in the model and allows easy access to them. This is the place to access
also created templates. Templates are a way of grouping classes together
for easier modeling and comprehensibility in the EAAT Object Modeler
tool. The templates can be created only in the EAAT Class Modeler tool.

The details of the class can be defined in the windows directly under the
main canvas. After an attribute or an operation of a class has been se-
lected, OCL and P2AMF syntax can be inputted to the Derivation win-
dow. This code can be validated in the EAAT Class Modeler tool, and the
validation results are displayed in the Model Validation window. All the
elements that can be used for modeling have properties and those can be
changed from the Properties window, also available below the main can-
vas. The errors that are not related to model validation are displayed in
the Error Log.

Complex class models can be divided into viewpoints, while retaining
the functionality of the model. A viewpoint should represent an analyti-
cal capability of the class model, but doesn’t have to. In the previous
chapters the viewpoints of one class model that we called MAP, were ex-
plained.

Note that invariants and other elements can be hidden in a view. If you
don’t see an element you think you should, check the view properties by
clicking in a random place in the main canvas, so that all elements
would be deselected, and by opening the Properties window from down
below. For example Invariants should be set to true for them to be visible
in the main canvas.

114

Figure 58: EAAT Class Modeler GUI with a new class and a new
attribute.

Chapter 11 Creating metamodels

The modeling process

A recommended process for creating a class model (metamodel) with the
EAAT Class Modeler consists of 8 steps.

1. Model classes. Classes can be instantiated as objects later in the
EAAT Object Modeler.

2. Create relationships between the classes. A relationship shows
that the connected objects can navigate to other connected ob-
jects. How this navigation is possible, is defined with the type of
connecting element and multiplicity.

3. Define relevant attributes. There are two kinds of attributes, de-
rived and non-derived ones. Non-derived attributes are the data
that the creator of the object model needs to input as evidence
before calculation. Also, we need to differentiate between value
types available like real, integers, and boolean.

4. Define attribute derivation. Derived attributes contribute to, or
show, our analysis results. This is were the most critical part of
the logic of the model together with operations is defined.

5. Define operations. Operations are used to derive values and aid
with the calculation process. They can have arguments. There’s
an example with a recursive operation in the next chapter, which
demonstrates the use of parameters.

6. Define invariants. Invariants are for enforcing business rules.
They can also be used to exclude samples that don’t correspond
to some criteria to fine tune calculations.

7. Create templates. Templates can group various classes of same
type or purpose together. They are needed to make the visual
models more comprehensible and the creation and handling of
models easier.

8. Create viewpoints. Viewpoint functionality is especially useful
if a metamodel is large. Then it can be used to create smaller
sub-metamodels by hiding certain model elements. Hiding ele-
ments does not change the analytical capabilities of the meta-
model, but helps with visual comprehension.

The first 4 steps of the process are the most important ones, while the
rest depend on the specifics of the theory chosen for the model, and the
preferences of the modeler. An actual modeling process might happen in
iterative manner, where all 8 steps are repeated in some point of time.

The next section follows the described modeling process. It is a walk-
through tutorial showing how to create a class model.

An example class model

The scenario that we choose to model is the following.

In our scenario we have a medium sized company that offers financial
services. The company has several web applications that are accessible

115

Chapter 11 Creating metamodels

only to company’s employees. The applications cater to different needs,
mostly offering real time reports or data processing services. We have us-
ers with various data reading and writing needs that have been divided
into role based groups and given access to the applications accordingly.
The IT department is now planning to set up a new data warehouse to
consolidate data from different applications and needs to know how
much space is needed for the new data warehouse. They also want check
whether the disk space currently available for different applications is
enough according to the number of servers already running. The IT de-
partment doesn’t know the exact number of employees, nor are certain if
applications are used the way they are said to be used. So to incorporate
uncertainty and stochastic values, the head of the department has de-
cided to use EAAT for modeling purposes. He now turns to you as an
employee of the department and asks first to create a framework of con-
cepts and business logic. You rely on common sense to create the frame-
work.

To create the class model we follow the steps shown earlier.

1. Model classes. First we identify what type of objects we need to
create in the object model (with the EAAT Object Modeler). In our
example, these are a user group, a web application, a data ware-
house and a server.

Create a class for each object in the EAAT Class modeler by drag-
ging Class element from Palette to the main canvas and renaming
them with type names. The suggested names are UserGroup, We-

bApplication, DataWarehouse and Server. If other names are cho-
sen, then these names must be used throughout this tutorial.

2. Create relationships between classes. As a next step we need to
define basic relationships between the created classes. In the EAAT
Class modeler we have two types of connections available, and we
choose association, which is the most basic one. Inheritance is ex-
plained in the next chapter.

Create a connection between UserGroup and WebApplication,
then WebApplication and DataWarehouse, and finally WebApplica-
tion and Server.

Now set multiplicities. Because a user group has different needs
for various applications, the multiplicity between the UserGroup
and the WebApplication is 1 to many (*) , where * is on the user
group side. We have dedicated servers for web applications, but a
web application can be virtualized to run on several servers, so de-
fine the relationship between WebApplication and Server as 1 on
the WebApplication side and * on server side. Now we come to the
last relationship, and here we have several web applications and
only one data warehouse. The assumption is that all web applica-
tions will be connected to a single data warehouse. Set the multi-
plicities correspondingly.

Note that multiplicity determines what type of data will be avail-
able by traversing to the connection. It can be either a single value
or several values in a set.

116

Chapter 11 Creating metamodels

3. Define relevant attributes. We want to analyze space require-
ments, so we need attributes to do that. Here we have to divide the
attributes into two groups – derived and non-derived ones. For
now we just drag the attributes from the Palette. Note that there are
different type of attributes - real, integer, boolean.

Add the following integer attributes to the classes. To UserGroup
memberAmount, to DataWarehouse differentDatabases. Add the
following real attributes to the classes. To UserGroup member-
SpaceNeeded, to WebApplication databaseSize and application-
Size, to Server diskSize, to DataWarehouse sizeRequired.

Note that default values need to be assigned to the non-derived at-
tributes. They must be placed where the statements for the derived
attributes are normally put, and can use P2AMF syntax, like nor-
mal(10, 0.1), if probabilistic distributions are desired.

4. Define attribute derivation. Attributes have properties that can be
changed from the Properties window, after selecting the correspond-
ing attribute in the main canvas. This way one can change an attrib-
ute from a non-derived state to derived one. However, an attribute
will automatically change to derived state if OCL code is detected
from its Derivation field. We chose the following attributes to be de-
rived: databaseSize, diskSize, sizeRequired, differentDatabases,
diskSize.

Add the following code to the attributes, where “--” designates a
comment:

• WebApplication – databaseSize:

-- We aggregate the output of an operation totalNeed  

 -- for all connected user groups. The operation totalNeed 

 -- shows the data needs for a single user group. 

 self.userGroup.totalNeed()->sum()

• Server – diskSize:

-- We calculate the amount of disk size needed for 1 server 
 -- as the division results of two operations, 

 -- which get the amount of data needed by a web app and the 

 -- amount of servers running it 

 self.webApplication.totalSize()/self.webApplication.connectedServers()

• DataWarehouse – sizeRequired:

-- The operation totalSize is invoked and summed for all  

 --connected web applications 

 self.webApplication.totalSize()->sum()

• DataWarehouse – differentDatabases:

-- The amount of web applications is counted 

 self.webApplication ->size()

Note that although comments are not necessary for a class model
to function, they are a good way to keep track of functionality and
to communicate its purpose to others who want to use the model.

117

Chapter 11 Creating metamodels

5. Define operations. Operations can be used within derived attrib-
utes. Operations help the programmer to structure the code. In our
example we use operations to calculate the total data needs for
user groups and web application and to find the amount of servers
providing service to a web application. We already put the follow-
ing operation names into our derived attributes, assuming they
will return certain type of information: totalNeed(), connectedServ-
ers(), totalSize(). Create them now in your class model with the fol-
lowing content:

• UserGroup – totalNeed()

-- Amount of space is calculated by multiplying a member space 

 -- need with amount of members 

 self.memberSpaceNeed * self.memberAmount

• WebApplication – connectedServers()

-- Amount of connected servers is calculated. 

 self.server->size()

• WebApplication – totalSize()

-- Data needs for a web application are calculated by  

 -- summing user needs with application size. 

 self.databaseSize + self.applicationSize

Note that operations have return values. Set the return value of the
operation connectedServers() to integer, others to real.

6. Define invariants. Invariants are used to exclude unwanted sam-
ples and to make calculations more accurate. In our case, we use an
invariant to specify that the amount of space needed for users can-
not be negative. We use another one to specify that web applica-
tion size cannot be negative.

Add an invariant named spaceNeedNonNeg to UserGroup, and
appSizeBiggerZero to WebApplication.

Add the following content to the spaceNeedNonNeg:

self.memberSpaceNeed >= 0

Add the following content to the appSizeBiggerZero:

self.applicationSize >= 0

More information about template creation can be found from the
next chapter. Viewpoints are covered in the latest version of the
EAAT manual. The final class model is shown in Figure 59.

118

Figure 59: The example class model

Chapter 11 Creating metamodels

Don’t forget to validate code using the Validate Model functionality. If
errors are shown, fix them before using the class model.

Congratulations, you have now created a framework for modeling a
data warehouse space needs! The model can be used in an object
model to obtain the following values:

• Database size needs for a web application

• Disk size requirement for servers, assuming that the space is di-
vided equally between the connected servers.

• Total space required for the data warehouse and the amount of dif-
ferent databases that need to be merged.

Now it’s time to try to use this model in the EAAT Object Modeler to
model a real life situation. An example object model based on the cre-
ated class model is shown in figure 60.

119

Figure 60: An example object model.

12 A collection of modeling
patterns and practices that
aid you in creating
powerful and maintainable
class models.

The chapter attempts to
address common
challenges with class
modeling, present reusable
solutions to them, and
show the application of the
solutions in concrete
examples.

Modeling patterns
and practices Authors: 

Matus Korman 
Margus Välja

Creating a class model (an abstract model, a meta-model) of a piece of
reality, which defines an automated evaluation and at the same time
shall be general enough to allow for accurate modeling of a reasonable
range of phenomena of interest within its target domain through object
models, is not trivial. Having attempted to model a piece of reality this
way, as the authors of the previous chapters have done, the reader surely
recalls and understands the difficulty of the task. Moreover, that is just a
part of the challenge picture. Another challenge turns up when creating
models that are to be maintained over longer time. In other words, creat-
ing models and writing their code so that the code remains understand-
able and readable, requires some discipline and extra work, without
which the value of the models is prone to deteriorate heavily in the long
run.

This chapter presents a collection of reusable solutions to modeling chal-
lenges, also called modeling patterns here. Their purpose is to prepare
the modeler for easily coping with a range modeling challenges – chal-
lenges that are likely to occur when trying to tailor a class model to cap-
ture some view of reality. This chapter also presents a collection of prac-
tices, which aim at helping the reader create class models that are easier
to read, comprehend, and maintain.

This chapter focuses on tools that have served as the basis for creating
the models presented earlier in this book. They are the Enterprise
Architecture Analysis Tool (EAAT) [17-20], which implements the Predic-
tive, Probabilistic Architecture Modeling Framework (P2AMF) [21]. For help

on how to use EAAT, please refer to chapter 11 or consult the EAAT user
manuals [139].

P2AMF is based on two well-known concepts - Unified Modeling Lan-
guage (UML) [136] and Object Constraint Language (OCL) [137], which
is a part of the UML standard. P2AMF [23, 24] makes use of UML and ex-
tends OCL by a few elements, among other the possibility to specify
probability distributions such as the normal distribution, or the binomial
distribution, including their respective parameters. On top of UML and
OCL, P2AMF is a probabilistic framework for quantitative prediction
and employs Monte Carlo simulation methods. EAAT is a graphical soft-
ware tool, which implements P2AMF, and allows a computer user to cre-
ate class models, object models, and run evaluations on the latter.

At a first glance, even creating class models in P2AMF (i.e., not only mod-
eling concrete architectures according to some existing class model, but
actually modifying or creating class models) may seem as a simple and
straightforward task. There are, however, a few moments one is better
off prepared for. Perhaps the major hill to overcome is to get accustomed
with the way programming in OCL is done. OCL is a declarative pro-
gramming language, and as such it is considerably different from impera-
tive programming languages such as Java, C# or C/C++. Without previ-
ous experience with declarative programming, it might take a few tries
to gain fluency in OCL. In such case, consulting an OCL guide (e.g.,
[138]) might be a good start. The OCL specification [137] could also help,
and serve well as a reference. When modeling your own concepts, less or

121

Chapter 12 Modeling patterns and practices

more advanced, it is likely for you as a modeler to also face other types
of challenges, however.

The rest of the chapter is structured into two major parts. The first part
presents a collection of modeling patterns (i.e., reusable solutions to mod-
eling challenges). The second part describes a collection of coding prac-
tices that relate to writing effective and clean OCL code.

Modeling patterns

In the context of this chapter, we define a modeling pattern as a reusable
solution to a problem related to modeling or evaluation of object models
through means defined in a class model.

We have identified the following candidates for modeling patterns:

• Stochastic values (value uncertainty)

• Stochastic existence of objects and relations (structural uncertainty)

• Class inheritance (child classes)

• Polymorphism

• Aggregation gates

• Self-associations

• Templates

• Derived connections

Following, we present the above mentioned patterns in more detail and
with examples.

Stochastic values (value uncertainty)

Challenge/need. Often, our knowledge of a domain is not sufficient for
us to create accurate deterministic models. On the other hand, we could
have observed that a parameter of our interest varies in a specific range
of values in a specific way, for example, reflecting a known probability
distribution (e.g. a normal distribution with a known mean and vari-
ance).

Solution and benefit. Instead of having to generalize our parameter us-
ing its mean value according to our observation, we can specify it in a
richer way through the probability distribution it seems to reflect. Let us
consider trying to create a class model for traffic safety. Given certain spe-
cific circumstances, an accident tends to occur each two months. Given
data from our hypothetical observations, there is a rather large variance,
since there are periods of several months without an accident, as well as
single months, in which several accidents occurred. Instead of trying to
assign a static yearly frequency of accidents to six, which yields the same
result each time (for each sample), we can specify that the yearly fre-
quency of accidents corresponds to a normal distribution with a mean of
six and a variance of nine and a half accident, according to our hypotheti-
cal observations. Although stochastic (non-deterministic), our new value
definition is richer, because it reflects the observed reality in a more
authentic way.

122

Chapter 12 Modeling patterns and practices

123

Example implementation. In P2AMF, such an
expression reads e.g., “Normal(6, 9.5)”, in-
stead of simply “6”. P2AMF uses Monte Carlo
simulation and evaluates models through
sampling. For each sample in the evaluation
of an object model, the expression will obtain
a numeric value that corresponds to the prob-
ability distribution. The larger amount of
such samples, the more the mean of the sam-
pled values closes in to the six, although the
specific values are different from sample to
sample.

Stochastic existence of objects and rela-
tions (structural uncertainty)

Challenge/need. Imagine that a set of objects
are normally connected to another object
(such as e.g., a set of transport means to a trav-
eler), but it is uncertain whether they are
available or reachable for the object. As a con-
crete example, imagine an employee of a com-
pany who wants to travel to work in the
morning. The person has several alternatives
to choose between, namely to travel by bicy-
cle, car, public transportation and to walk.
Each of the options have implications on the

total time duration through the waiting time,
travel time, and the time spent by moving be-
tween the endpoints of the travel by the trans-
portation means. Also, the means might not
always be available - they might be broken
down, or not in service for some other reason.
Given a set of probabilities for the different
time durations and availabilities, let us formu-
late a question: How long time is it probable for
the person to spend traveling to work? Let us not
only obtain an average value, but an actual
distribution of the probability over the differ-
ent time durations.

Solution and benefit. One way of approach-
ing the problem of uncertainty of object avail-
ability is algorithmically in the OCL code. An-
other and simpler way is through defining sto-
chastic existence of objects on the object mod-
eling level, by setting the object attribute
called Existence to a real number between
zero and one. This number serves as an input
to a Bernoulli distribution, which for each
sample simply yields whether the object ex-
ists (is available), or not. The same (stochastic
existence) is applicable to relations, also

through their Existence attribute, just as with
objects.

Example implementation. For the example
mentioned above, we employ both stochastic
values and stochastic existence of objects, al-
though we mainly focus on the latter. Let us
consider a class model that defines a traveler

Figure 12.1. An example class model for
demonstration of structural uncertainty.

Chapter 12 Modeling patterns and practices

and a transportation means, each of them having their attributes de-
fined. The class model is shown in figure 12.1.

The attributes waitingTime, travelTime and movingTime represent the time
durations spent on waiting for the transport means to come and start
traveling (e.g., a bus), the actual traveling time, and the time needed to
move to or from them in order to start or finish the travel, respectively.
The total time simply sums up the three previously mentioned attrib-

utes. The last attribute in the TransportMeans class is preferencePriority. It
determines how much preferred is the transport means for the traveler.
Finally, the traveler chooses the most preferred means out of the ones
available in each sample in the calculation. The Traveler class has only
one attribute, duration, which calculates the time spent traveling for each
sample. It is defined by the following OCL code:

 let highestPriority : Real = self.transportMeans.preferencePriority->max() in 

 let chosenMeans : TransportMeans = self.transportMeans->  
 select(t : TransportMeans | t.preferencePriority =

highestPriority)-> 
 asSequence()->first() in  
 
 chosenMeans.totalTime

An object model corresponding to the class
model and the example described above is
shown in figure 12.2. The time durations
are defined stochastically, since they in real-
ity change from case to case, and it is argua-
bly reasonable to assume that they follow a
normal distribution. The availability of dif-
ferent transport means can depend on
many factors. For example, employees of
transport operators may occasionally strike,
or something extraordinary may be happen-
ing, such as a heavy snowfall, which pre-
vents the public transportation from operat-
ing. At the same time, a car may break
down, but the traveler’s wife or husband

124

Figure 12.2. An object model for demonstration of structural uncertainty, with attribute values (evi-
dences) added.

Chapter 12 Modeling patterns and practices

may also be using it that day, which makes it unavailable to our traveler.
Finally, the traveler may not consider bicycling as an alternative during a
rainy day at all. These arbitrary assumptions were used to estimate the
attribute values in the object model. The specific values seen in figure
12.2 (i.e., preference priorities and time distributions) were made up
freely, not based on empirical data such as measurements or a specific
person’s answers.

Finally, the answer to our question, the probability distribution of time
durations, is shown in figure 12.3.

As shown in the result, the travel would most often take around 16 min-
utes, sometimes up to around 30 (when taking bicycle). Although quite
unlikely to happen, the least preferred case, walking, can also become

the only available alternative, taking between roughly 90 to 130 minutes.
According to our model and the chosen preference priorities, the traveler
would only walk when all of the three more preferred transportation
means were unavailable. To sum up, we used stochastic existence of ob-
jects to emulate the uncertain availability of the different transportation
means.

Class inheritance (child classes)

Challenge/need. Let us suppose that we are creating a model about soft-
ware deployment. The class model has already become quite large in
size, and a few of the classes we use show notable likeness - software in-
stallation, operating system, software service and application client. Moreover,
there are operations defined for each of the classes, which enable evalua-
tion of software-architectural properties. The most straightforward way
of implementing the class model is to implement the operations for each
of these classes, although the operations are the same from one class to
another. That solution, however, would not be very elegant, nor optimal
- both with regards to the workload needed, and with regards to the de-
creased maintainability of the class model: Consider for instance that one
finds a bug in one of the operations - one then needs to rewrite them all
across the different entities.

Solution and benefit. A more elegant solution to the above mentioned
challenge is to use class inheritance (i.e. is-a relationships between
classes), so that we can set up inheritance relations between one class
(called a base class, or a parent class) and others (the parent’s child
classes), and implement the otherwise redundantly defined operations

125

Figure 12.3. The resulting probability distribution of travel durations
from the example.

Chapter 12 Modeling patterns and practices

and attributes within the base class. Consequently, both the operations
and the attributes defined in the base class will be defined and accessible
for the child classes, too. Thus, we minimize the amount of work to per-
form when modeling, and eliminate the unnecessary redundancy in the
model, which keeps it more tidy and clean.

Example implementation. The implementation of inheritance can be
shown using the example classes mentioned earlier. Let there be a base
class (e.g., software installation) that defines and implements the opera-
tions common for all software installations. Let then the other classes (op-
erating system, software service and application client) inherit from the soft-

ware installation class. These child classes can define further operations
upon need, while on any of them; any of the base classes’ operations can
be defined. The same applies to attributes, as well. This is depicted in fig-
ure 12.4. The inheritance relation is denoted by a non-filled arrow point-
ing at the parent class (following the UML notation [136]).

Polymorphism

Challenge/need. Let us suppose that we have a collection of classes that
inherit from a single base class. Let us further suppose that the base class
defines an operation, which is therefore also defined for all of its child
classes, but the operation at child classes calculates the result slightly dif-
ferently from one another, dependent on the specifics of the actual sub-
class. As a more concrete example, consider a base class called Car (an
arbitrary car), which defines an operation CalculateFuelConsumption re-
turning the fuel consumption in liters per hundred kilometers. The opera-
tion takes in three parameters as inputs - rpm (rounds per minute of the
engine), appliedTorque (what torque the engine currently applies to the
shaft) and velocity (how fast the car moves). There are a set of different
cars with different engines our model needs to consider, but the Calculate-
FuelConsumption operation is equally needed for them, requires the same
input parameters and produces the same type of output. On the other
hand - in different cars the consumption is calculated using different con-
stants and in some cases perhaps even different formulas. Now, we want
to call the operation (CalculateFuelConsumption) for an arbitrary set of sub-
classes (specific cars) to the base class (Car). It is clear that the logic for
the operation that calculates the consumption cannot be elegantly writ-

126

Figure 12.4. Example of class inheritance (the lower part of the fig-
ure),

Chapter 12 Modeling patterns and practices

ten in the body of the base class, because each time a new car is added,
removed or modified in the model, the base class itself would have to be
modified, as well as the code of the operation implementation would be
confusingly long, unnecessarily complicated and thus little comprehensi-
ble. Such implementation tends to be error-prone and difficult to main-
tain.

Solution and benefit. A solution to the above mentioned problem is to
use polymorphism: We only access the objects as instances of the base
class, and so access the value of the attribute for each object. This way is
opposed to accessing the objects as instances of the multiple different
subclasses, which requires more work, more code, and is more error-
prone. Put even simpler, we can temporarily ignore the fact that the ob-
jects are instances of the different subclasses as long as the subclasses in-
herit from a common base class and we do not need the specifics defined
by the subclasses. In our case, we only want to access an attribute that all
of the classes inherit from the base class. Hence, we heavily simplify the
way to access and read the values we need.

Let us come back to our concrete example from the world of cars. Our
logic to calculate the fuel consumption for all the cars supported by our
model can be implemented in the body of each of the classes correspond-
ing to a specific car model, all of which inherit from our Car base class.
The specific class’ implementation of the operation simply overrides the
implementation of the equally named base class operation (for all objects
of the specific class, including other objects that eventually further in-
herit from the specific class). Hence, when we call the operation to obtain

its result, we do not need to distinguish what specific car model (specific
class) the object we are just dealing with corresponds to. We know that it
inherits from the Car class, and therefore has the CalculateFuelConsump-
tion method implemented - we access it only as an object of the Car base
class. The OCL interpreter (or the EAAT tool, taken more generally) im-
plicitly invokes the appropriate calculation with regards to the specific
object being accessed (the calculation defined in its corresponding spe-
cific class). Hence, if we simply access a Car object that happens to be is a
Volkswagen Golf GTI with 2.0 TSI engine and a manual transmission, we
will get the consumption for this car model instead of some other model
(say, Toyota Aygo+ 1.0), or a dummy calculation defined by the base
class, on the level of which all details required to calculate an accurate
consumption estimate are not known.

Example implementation. To implement a model for the above de-
scribed sample scenario, we first create a Car class (in the class modeler).
Within the Car class, we create an operation called CalculateFuelConsump-
tion, which outputs a real number and takes three real inputs (rpm, ap-
pliedTorque and velocity)... or some other set of inputs as appropriate for
the specific modeling purpose. Subsequently, we write some default
(dummy) value this operation returns (e.g., zero), since at this point, a
valid estimate of [an unknown car’s] consumption cannot be made.
Now, we can start to implement specific car models. For each such, we
create a class, name it, and relate it with our Car class using an inheri-
tance relation (i.e., our specific car inherits from the Car class). In our spe-
cific car class, we need to define an equally named operation CalculateFu-
elConsumption, which takes in the same set of inputs and produces the

127

Chapter 12 Modeling patterns and practices

same type of output as the Car class’ operation. This operation, however,
is implemented validly (fully), and actually calculates the estimate ac-
cording to some formula and surely a set of constants, too (defined
within the calculation). For the polymorphism itself to work in an object
model created on this class model, this would suffice. In order to show
(visualize) the results in a simple way however, we define a few attrib-
utes on the Car class, which simply call a current object of the Car class’
C a l c u l a t e F u e l C o n s u m p t i o n o p e r a t i o n (e . g . ,
self.CalculateFuelConsumption(1800, 30, 50)), each time with different

input parameters - just to see that our calculations actually work. The
class model should then look similar to the one depicted in figure 12.5.

In order to see some calculations and how the polymorphism works, we
need to run object modeler, load the class model, simply instantiate three
specific cars and calculate. The model should look similar to the one de-
picted in figure 12.6.

Given that different non-equivalent formulas were used for the consump-
tion estimation in the operation and that the attributes on the Car class
(e.g., case1Consumption, …) call the operation with different parameters
that should yield non-equal results, each attribute will have different cal-
culation result for different cars, and even the different attributes calcu-
lated for the same car will differ. To recapitulate slightly, polymorphism
is now being used in the definition of the attributes of the Car class. The
attributes call the CalculateFuelConsumption operation of a car object, the

128

Figure 12.5. Example implementation of polymorphism (in class
modeler).

Figure 12.6: Example instance model of fuel consumption of cars
(in object modeler). Each attribute has different calculation results
for each car, because the implementation is different for each spe-
cific car, although invoked by the same code and in the same way.
The consumption values are purely hypothetical, not based on evi-

dence.

Chapter 12 Modeling patterns and practices

specific class of which is unknown in that context. Even though, the OCL
runtime engine in EAAT chooses the appropriate calculation implicitly,
returning the appropriate result.

On a final note, polymorphism works this seamlessly in EAAT only
when overriding operations, not derived attributes. In case one would
like to override the derivation of attributes, explicit code would be re-
quired at the base class, which would distinguish the specific type of the
subclass, and call the operation from the object type-casted to the specific
class. This would, again, not be particularly elegant. Overriding attrib-
utes in that way can be avoided through a design that overrides opera-
tions instead (and achieves the same computational result).

Aggregation gates

Challenge/need. Imagine that we want to write a class model for evalua-
tion of reliability using a simplified variant of a fault tree analysis (FTA).
Put simply, a node can connect to other nodes, on which it depends. The
dependence can be of different kinds, such as when the upper-level node
depends on all of the other nodes, or the function of one of the other
nodes is enough to satisfy the function of the upper-node. The former is
commonly denoted by an AND-dependence relationship and the latter
by an OR-dependence one. Suppose that you want to model a depend-
ency structure consisting of multiple such levels, each having an upper
node and one or more lower nodes, on which the upper node depends.
Imagine for instance a simple model of an airplane. For the airplane to
be safely operable, a number of conditions have to be satisfied. The air-
frame needs to be firm enough to hold the tensions it is exposed to dur-

ing a flight. At least one of two engines needs to be operational in order
for the plane to stay airborne. At least one of three brakes needs to be op-
erational in order for the plane to safely land and stop. On a level below
this, air supply system has to be operational as well as there has to be
some fuel in the plane for an engine to work. And so on.

Solution and benefit. A solution is to use AND- and OR-gates, which
help us model the aggregations, so as to reflect and evaluate the simpli-
fied FTA dependency structure. Since the nodes can also model other
than AND and OR relations, such as XOR, priority AND et cetera, let us
simply call the gates aggregation gates. The benefit is that we can aggre-
gate dependencies between objects in a tidy and hierarchical way.

Example implementation. An example implementation of the above
mentioned solution is depicted in figure 12.7. There are three classes.
First, a node represents a system, a function, a service, or simply some-
thing that can work, or can be broken. Second, an AND gate requires all
nodes connected to it as lowerNodes (that “feed in” to the gate) to work,
in order for the gate to work (i.e., be satisfied). Third, an OR gate requires
at least one of the nodes connected to it as lowerNodes to work. Each gate
needs to have at least one lower node, and exactly one upper node. An
example of an object model (instance model) is shown in figure 12.8. For
completeness, the attribute Node.works is derived using the following
OCL code:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 -- it is a leaf node and should not be derived; either it works or it does not 
 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 

129

Chapter 12 Modeling patterns and practices

 else 
 if (self.lowerAndGate->size() > 0) then  
 -- there is an AND gate attached... is it satisfied?  
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else 
 -- an OR gate is attached... is it satisfied? 
 if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

Similarly, AND_gate.works is derived as self.lowerNode.works->min()
and OR_gate.works as self.lowerNode.works->max().

In a concluding note, it is clear from figure 12.7 that a node is technically
allowed to have a lower AND gate and a lower OR gate at the same
time. Such state is, however, erroneous with regards to the FTA logic. Al- though this case is not safeguarded in the example provided above, a

130

Figure 12.7. Example implementation of AND- and OR-gates (in
class modeler).

Figure 12.8. Example object model of nodes and gates (in object
modeler).

Chapter 12 Modeling patterns and practices

possible solution is to introduce a base class called Gate, from which both
AND_gate and OR_gate would inherit. Then a relationship between an
upper node and a gate could be set to (1)..(0..1), as well as the relation-
ships between an upper node and a lower [AND/OR] gate removed.
This would also be an example of using polymorphism as a necessity for
such a solution. Yet another solution to the model in figure 12.7, perhaps
even more elegant, could be to simply add an OCL constraint within the
context of the Node class, stating that at most one gate can be connected
as a lower gate at a time.

Self-associations

Challenge/need. Let us suppose that we need to create arbitrary hierar-
chies between objects of the same class. For a more concrete example, let
us consider modeling the encapsulation of protocol data units (PDUs) in
data communication in a computer network. A PDU typically contains of
a header part (meta-information typically providing addressing
information, data length, etc.) and a data part (the actual payload that is
being transmitted by the PDU). Following the Open Systems Interconnec-
tion reference model1 (RM OSI), different protocols which provide net-
work communication functions on different abstraction levels, encapsu-
late the PDUs of each other. More precisely, lower-level protocols encap-
sulate the PDUs of higher-level protocols. Such encapsulation means
that the whole higher-level PDU (both its header and its payload) be-
comes just the payload for the lower-level PDU, while a header for the
lower-level pdu is created and added before the new payload. For in-
stance, when an HTTP request (data) is produced by a web browser, it is

first encapsulated into a TCP segment. The TCP segment is then encapsu-
lated into an IP packet. Further, the IP packet is encapsulated into an Eth-
ernet frame, which is then transmitted through cables in a binary fashion
using physical signals. Each PDU except the HTTP one, which is at the
top of the stack in this example, encapsulates one higher-level PDU in
itself, only treating it as its data (payload). The question is how to model
such PDUs and their encapsulation that both need to be defined at the
level of instance modeling. Abstractly speaking, the problem is that we
can’t pre-create a definite structure in the class model, because it could,
and in fact certainly would, be too inflexible to satisfy our object model-
ing needs. Thus, on the level of class modeling we only need to create a
frame to enable structuring further at the level of object modeling.

Solution and benefit. There is a simple solution - associations of a class
with the class itself. The benefit is that arbitrary hierarchies that are just
“frame-wise” defined in the class model, can be defined in the object
model. In other words, multiple objects of the same class can be hierarchi-
cally ordered or otherwise structured in the object model. As a concrete
example, different PDUs (all objects of the PDU class) can be modeled as
encapsulating each other so that the Ethernet frame encapsulates the IP
packet, which encapsulates the TCP segment, which finally encapsulates
the HTTP request.

Example implementation. Let us try to model the above mentioned
PDU encapsulation. We create a Protocol class, which represents the pro-
tocol used (e.g., HTTP, TCP or IP). We also create a LogicalNode class,
which represents an application or a device that is able to operate with

131

Chapter 12 Modeling patterns and practices

PDUs. Finally, we create a PDU class, which represents an instance of a
PDU. A logical node has to support a protocol in order to process PDUs
corresponding to the protocol. Hence, we add such association between
LogicalNode and Protocol. As we know, each PDU corresponds to a spe-
cific protocol, so we add a association between them, too. Since a PDU is
created and sent, as well as intended to be received by some addressee,
we create two associations between PDU and LogicalNode. The first asso-
ciation represents the source node for a PDU (the originator), and the
other a set of targets (intended recipients). Finally, we add a self-
association of PDU with itself, in order to be able to model that some con-
crete PDU object encapsulates other PDU objects (later in our object mod-

els). Having performed these steps, the class model should look similar
to the one depicted in figure 12.9.

An object model corresponding to the described encapsulation case
could look similar to the one depicted in figure 12.10 (simplified view)
and 12.11 (more comprehensive view). The choice and interconnection of

132

Figure 12.9. Example implementation of a class model using a self-
association (on the PDU class).

Figure 12.10. A simplified object model describing structures be-
tween objects of the same class (PDU) defined on the level of ob-

ject modeling. The diagram only contains objects of the PDU class,
not their connections to objects of other associated classes.

Chapter 12 Modeling patterns and practices

133

objects reflects the description of how a HTTP re-
quest gets encapsulated down to an Ethernet
frame (RM OSI layer 1 and 2). As a peculiarity,
there are two ethernet frames encapsulating the
same IP packet. This is the case because we con-
sider that a single layer 3 switch is placed be-
tween the client computer on which the web
browser runs and the computer on which the
queried web server runs. Since each of the nodes
(computers or the switch) have their own Ether-
net addresses and the network is connected
through the switch using a star topology (i.e.,
there is no direct Ethernet connection from the
client computer directly to the server computer),
first a separate Ethernet frame flows from the cli-
ent computer to the switch, and then the switch
forwards the IP packet under the frame further
to the server computer, by creating a new Ether-
net frame with the same data, but an Ethernet
header that differs from the previous one in that
the frame targets the server computer).

Templates

Challenge/need. Imagine a need to model a com-
plex architecture with many repeating elements.
Doing it in the same fashion as was used in exam-

Figure 12.11. A more comprehensive version of the same object model as in figure 10. Somewhat
exotic style of the association lines in the diagram was chosen due to a minor technical issue that

is not detailed here.

Chapter 12 Modeling patterns and practices

ples described above, the modeling could easily become tremendously
time-consuming, boring and error-prone. Moreover, it could make the
model very difficult to modify. Put simply, it would be a poor and im-
practical approach to such modeling problems. Let us illustrate the idea
on the following example. Consider modeling a company IT environ-
ment with the aim to evaluate its cyber-security disposition. Since the do-
main of cyber-security is very broad, a truly comprehensive model
would be very extensive and detailed, even for small IT environments.
For simplicity in this illustrative case, let us therefore limit ourselves to a
few aspects only. Let us only consider applications, services, operating
systems and network interconnections in a company. The company has a
few services being run on servers located within the company, as well as
a few offices, where each employee has a workstation or a laptop, a mo-
bile phone and eventually also a tablet. All of these inter-networked IT
devices run an operating system, have a variety of applications and serv-
ices installed, and some of these have access to data or services that are
considered sensitive for the company (e.g., e-mails or a central file shar-
ing repository). If we are going to model each such device including
some specifics of their operating systems, applications and services,
there is going to be a great deal of repetition. For example, a typical work-
station running Microsoft Windows 7, Apple Mac OS or some Linux dis-
tribution comes with a number of broadly used applications, as well as a
number of services pre-installed and activated by default. Similarly, this
applies to server systems. In any such case, we are talking about tens of
elements per such system that do not change much from one worksta-
tion or server to another. Now consider having to model all these repeti-

tively, say fifty times. That would be clearly annoying and wasteful, to
say the least. We need some automation here. We need a feature that
would compress the amount of this trivial work, or else we need to liter-
ally waste our time. The larger our models and the more repetition in
them, the more trivial, boring and error-prone work we need to do,
which in addition leads to heavily decreased maintainability of the mod-
els.

Solution and benefit. A solution is to define and use templates on the
level of the class model, which are able to “box in” a set of entities and
their associations, which the modeler can use as a single box instead of
explicitly modeling instances of everything what is inside the box (the
template). If the template changes, one only needs to apply the change to
the template, not necessarily to its multiple instances in the object model.
This is a huge benefit both as to simplicity and efficiency of modeling, as
well as maintainability of such models over time.

Example implementation. An example of a simplified class model that
would help us to model an IT environment can be constructed as fol-
lows. There is an entity NetworkDevice (any device capable of network-
ing), which can have many NetworkConnections (connections between net-
work devices) and vice versa. This allows modeling one network device
as connected with other network devices through network connections.
NetworkDevice can be further specialized as Computer (an advanced, typi-
cally multi-purpose, computational device) or NetworkConcentrator (e.g.,
a network switch). A computer has an operating system, which can host
three different types of software - applications, services and libraries. In

134

Chapter 12 Modeling patterns and practices

our model, these can mutually use each other, too. The class model de-
scribed above is depicted in figure 12.12.

As mentioned before, modeling applications, libraries and services of
each operating system that is run by each computer we wish to model,
would make up to an unnecessarily extensive model. What we can do
instead, is to define templates in the class model, according to the prob-
ability (our certainty) that the templates will save a lot of unnecessary

work, provide for more elegance and maintainability. Two example tem-
plates are depicted in figures 12.13 and 12.14. The former, called Windows-
Workstation, simply wraps a computer and its respective operating sys-
tem (itself a template). The latter, called BasicWindowsWorkstationOS de-
fines the applications, services, libraries, and their mutual usage, so that
all that can be used as a single box anywhere we wish to use it - in the
object model, or in other templates we choose to define. As is readily ap-
parent, templates can use other templates that are defined. Cyclic use of
templates, however, cannot work. Having a case in which template 1
uses template 2, an attempt to use template 1 from template 2 (creating a
dependency cycle), would be erroneous.

135

Figure 12.12. An example class model for modeling an IT environ-
ment (computers, operating systems, software and network intercon-

nections).

Figure 12.13. Definition of a template called WindowsWorkstation,
in class modeler. Note the gray rectangle with text, to which an ar-

rowed dashed line points. It is a so called port; an external interface
of the template that makes it connectable to in an object model.

Chapter 12 Modeling patterns and practices

136

Let us now model a simple IT environment
consisting of three networks - one office LAN
(local area network), one server network, and
one DMZ (demilitarized zone). In the office
LAN, there are a few workstations, some of

them connected by network cables, the rest
using a wireless connection. In the server net-
work, there is a domain server and an inter-
nal file server. Finally, the DMZ hosts systems
with increased exposure to the Internet, such

as web server and e-mail server. This
architecture modeled using a few templates,
is shown in figure 12.15. Omitting templates
and modeling all basic entities in every single
instance of a server or workstation, the object
model would consist of around sixty boxes
instead of just nineteen2. That makes a differ-
ence. The difference becomes even clearer
when modeling larger IT environments.

Derived connections

Challenge/need. Imagine that there are two
classes, which are associated. Imagine further
that you wish to associate objects of the one
class with objects of the other class based on a
condition, which depends on values of the
concrete objects. It is clearly desirable to have
some automation in the process of connecting
the objects, so as to avoid tedious manual
work. Although a collection of objects satisfy-
ing such a condition can be made accessible
purely algorithmically through OCL, this
comes at the expense of somewhat higher
code complexity and lower comprehensibil-
ity. That might render the model slightly

Figure 12.14. Definition of a template called BasicWindowsWorkstationOS, in class modeler.

Chapter 12 Modeling patterns and practices

137

more difficult and thus more error prone to
develop and maintain.

Solution and benefit. Derived connections
provide an elegant solution to such problems,
which would otherwise have to be solved

through some filtering or search implemented
in an OCL operation. A derived connection is
generated on the level of calculation (evalua-

Figure 12.15. An example object model using templates (at all leaves in the “graph” of entities above).

Chapter 12 Modeling patterns and practices

tion) of an object model. On the level of class modeling, it has the form
of an association with a derivation expression in OCL. Defining derived
connections has some peculiarities, however. Such an association (that
defines derived connections) is unidirectional. Hence, one has to choose
one end of the association as a starting point for the derivation (or keep a
default one), and write the OCL expression for the derivation accord-
ingly. An OCL expression for the derivation having its starting point at
one class, is supposed to return a set of objects of the other class. A con-
crete case is described below.

Example implementation. Consider a very simple scenario. Let us have
a set of products and a set of buyers. Each product has a price and each
buyer has a budget for shopping. Now, we wish to define an association
between classes, which would act as a derived connection between ob-
jects, so that each buyer would only connect to the product he or she has
the budget to buy. In a similar fashion, each product would connect to
the buyers that have a real potential of buying the product, given their

budget and the price of the product. The class model can look as follows
in figure 12.16.

The derived connection is created as an association, the derivation of
which is defined by an OCL-expression. In this example, it is enough to
define one association to model both the product affordability and the
buying potential. The OCL expression for the association (the derived
connection) can be defined in two directions - as a collection of objects
from the one class (Product), or from the other (Buyer). In this example
the former is true, and the expression reads as follows:

 -- from all products, reject those more expensive than the buyer's budget allows to buy 
 Product.allInstances()->reject(p : Product | p.price > self.budget)->asSet()

If it was defined in the other direction (from Buyer), it would read as fol-
lows:

" -- from all buyers, reject those that have smaller budget than the product's price 
 Buyer.allInstances()->reject(b : Buyer | b.budget < self.price)->asSet()

In this case, both of the above mentioned alternative definitions yield
equal sets of connections between objects of the classes.

Each of the two classes has two attributes. One is defined on the level of
object modeling, and the other simply obtains the number of potential
buyers for a product, or the number of affordable products for a buyer,
respectively. The other attribute can be derived as follows (for buyer):

 self.affordableProduct->size()

138

Figure 12.16. A class model defining derived connections (in fact in
form of associations between classes).

Chapter 12 Modeling patterns and practices

139

An object model corresponding to the above
described class model is shown in figure
12.17.

OCL coding practices

In the context of this chapter, we define a cod-
ing practice as a specific way of writing pro-
gram code (i.e., OCL code for P2AMF class
models).

One may ask why or how something like a
coding practice matters to those who model
and those who have responsibility for the
models. Although there could be a broad dis-
cussion on this topic, large body of experi-
ence from the practice of software engineer-
ing may shed sufficient light on it. Perhaps
even your own personal experience. In any
case, the authors see two major challenges
that often make the use of coding practices

reasonable. The first challenge comes in form
of entropy (disorder) that keeps deteriorating
the orderliness of our models over time as we
keep changing them (e.g., due to mainte-
nance), but also our knowledge about them
(i.e., we are forgetting over time). It ulti-
mately leads to that the models become too
messy and difficult to maintain, or otherwise
unusable, so that we throw them away and
start from scratch, or try to address the needs
they fulfilled in some other way. The second
challenge is that we tend to come about great
ideas rather seldom out of the blue. Our readi-
ness to write a proper piece of software (or a
model) at a reasonable cost (e.g., time) largely
depends on how many relevant concepts we
know, are able to choose from and use. Such
concepts can be of the nature of modeling pat-
terns discussed previously, or coding prac-
tices. Given conditions, using such concepts
renders the implementation more effective
than others. That said, one needs to know in
what conditions it is useful to use a concept
and when different ones fit better. The ambi-
tion of this text is to describe a set of coding

Figure 12.17. An object model showing derived connections and the values of the visible ob-
jects’ attributes.

Chapter 12 Modeling patterns and practices

practices. Thorough discussion about the suitability and alternatives in
different conditions is out of scope, however.

We have identified a collection of coding practices worth considering
when developing P2AMF class models. These are grouped into two
groups, according to their purpose. The first group aims primarily at im-
proving the cleanness of the OCL code, and thus the maintainability of
the class model, especially when considering its lifetime in the long run.
The second group aims primarily at achieving more evaluative power/
effectiveness. The coding practices are as follows (in their purpose
groups):

Purpose: Achieving cleanness of code, thus maintainability of the class model

• Code comments

• Indentation

• Naming conventions

• Subdivision of code into multiple operations

• Structuring expressions into paragraphs

Purpose: Achieving more evaluative power/effectiveness

• Defining local variables through let expressions

• Recursive calls in operations

• Translating mathematical formulas  

Cleanness and maintainability

Challenge/need. Knowing the structure of your code and where to find
what you look for, is vital for being able to maintain the code, not to men-
tion the importance of enjoying one’s work. You might have experienced
revisiting a code that you yourself wrote years ago, perhaps just months
ago; or code you “inherited” from your colleague or a friend. In compa-
nies, turnover is a reality - new people are being employed while other
retire, change position, responsibilities, team role, or workplace as such.
At the same time, software that is being used, as well as models that are
being used, must be maintained continuously. This means that new peo-
ple often become responsible for maintaining code that they themselves
haven’t written. Often, it is not little code. Organizations therefore need
to keep themselves ready for such events through having their work-
force maintain their code clean, understandable and well maintainable
for themselves as well as their colleagues and new unknown people that
are once likely going to take over responsibilities for the piece of code
one is writing right now. Although there are a number of well-
established and validated techniques and principles available to achieve
these goals and keep them achieved over time (e.g., refactoring, pair pro-
gramming, pair review etc.), this text only provides a handful of simple
ones. The reason is that the authors do not currently perceive demand-
ing practices (those that demand considerable time, resources and sys-
tematic devotion) nearly as justified in the practice of class modeling
(meta-modeling) as they are in the practice of complex software develop-
ment. Moreover, the selection of the practices described below is based
on a limited body of experience, and locally experienced benefits and
needs we met when modeling.

140

Chapter 12 Modeling patterns and practices

Code comments

Proposed practice and expected benefit. In OCL, comments start with
two dashes (“--”) and end with the end of the line. The content put be-
tween these delimiters does not have any effects on the interpreted OCL
code. Dependent on the complexity of the OCL code one is dealing with,
code comments might have the potential to achieve greater comprehensi-
bility. Again, one should always consider one’s eventual successors in
maintaining or otherwise having to deal with the code. One should, how-
ever avoid writing comments just to have comments written. Each and
every comment should serve a rather clear purpose. OCL can be a
counter-intuitive language to read and think in, especially when code
statements get long and complicated. Comments can aid the modeler try-
ing to read the code through describing the semantics of it in natural lan-
guage, or so provide any other information that may be helpful for un-
derstanding the code. However, comments should not state what is
plainly obvious from reading the OCL statements, such as the following:

 self.someOperation() -- call someOperation on self .

Writing comments that state the obvious is just introducing unnecessary
content and therefore making it all more messy. One needs to learn to see
in what contexts a comment is appropriate and helpful, and when it is
safe or even better to omit. This can require practice and experience.

Example. If we take the following example, we can see that parts of the
code are just not readily obvious:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else  
 if (self.lowerAndGate->size() > 0) then  
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else  
 if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

It might be obvious to the modeler right after having designed a solution
and being mentally fully tuned to the context of it. However, the same
person might have a difficult time recalling the context just a few months
later, not to mention other people. Such an unnecessary difficulty can be
remediated by appropriate commenting:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 -- it is a leaf node and should not be derived; either it works or it does not 
 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else  
 if (self.lowerAndGate->size() > 0) then  
 -- there is an AND gate attached... is it satisfied? 
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else  
 -- an OR gate is attached... is it satisfied? 
 if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

It might be beneficial to also comment at the beginning of operations, de-
rived attributes and derived connections – simply any elements that em-
ploy some OCL code. Such comments should briefly and conceptually

141

Chapter 12 Modeling patterns and practices

explain what the operation/attribute/connection does, but without go-
ing into implementation specifics. An example follows:

 -- This attribute derivation evaluates the functional availability of a node. 
 [OCL code⋯]

Indentation

Proposed practice and expected benefit. Indentation refers to placing
the text further to the right to separate it from the rest of the text. In the
context of OCL coding and programming in general, there can be arbi-
trarily many levels of indentation the modeler/programer uses. Using
them we strive to separate different blocks of code, in order to achieve
greater comprehensibility.

Example. Imagine the following code, which is not indented:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else if (self.lowerAndGate->size() > 0) then 
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

Although the code at least spans over several lines (is not written in one
continuous line), the comprehensibility is rather limited compared to the
following (indented code):

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 
 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else 

 if (self.lowerAndGate->size() > 0) then  
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else  
 if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

Indenting code reduces the unnecessary workload required for one to
identify its structure, so as to comprehend the content piece by piece in a
divide-and-conquer manner.

Naming conventions

Proposed practice and expected benefit. Naming conventions have to
do with how we name classes and objects, attributes, operations, local
variables (defined by let-expressions), etc. Names affect the comprehensi-
bility of our code to a large extent. They can make the code read more
like a prose, a normal human-readable text. Of course, here one needs to
balance how much information to put in names, too. If the names are too
short and uninformative, although equally machine-friendly, they make
little sense to humans, which need to orient themselves well in the code.
If the names are too long, on the other hand, they are make writing code
cumbersome. The art here is to choose shortest possible names that medi-
ate information needed for the developer to comprehend what the code
does. Things should not be underdone, nor overdone, but finding the
right balance given conditions is not always easy, unfortunately. As other
practices, becoming tuned to choosing effective names might require
some time and experience.

142

Chapter 12 Modeling patterns and practices

Example. Consider our example again, with almost random-like, unin-
formative names:

 if (self.g1->size() = 0 and self.g2->size() = 0) then 

 let b : Boolean = bernoulli(0.5)  
 if b = true then 1 else 0 endif 
 else 
 if (self.g1->size() > 0) then 
 if (self.g1.v > 0) then 1 else 0 endif 
 else 
 if (self.g2.v > 0) then 1 else 0 endif 
 endif 
 endif

Here comes the original one (with comments left out):

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else 
 if (self.lowerAndGate->size() > 0) then  
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else 
 if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

Subdivision of code into multiple operations

Proposed practice and expected benefit. When creating a model, per-
haps a simple, non-ambitious one, one might tend to put a lot of code
into an attribute derivation, or an operation. The problem is that such
code quickly becomes messy. A rule of thumb is that one operation
should do one thing (i.e., fulfill one coherent function) - or at least as lit-

tle more as possible. Every programmer probably knows the term called
“God methods” - methods (operations) that are several screens long. Often
even a few dozens of lines qualifies an operation as too long. Such long
operations are no fun to read, because they are usually difficult to com-
prehend as to the functional whole they represent. Moreover, such pro-
gramming typically reflects the lack of reuse in code at a micro level. To
remediate such problems, one can subdivide the large operation by defin-
ing and calling within several more operations according to their logical
purposes, which are then called from the original operation. Such prac-
tice both increases comprehensibility and maintainability, since the meth-
ods can be called from different places in the model, and if they become
updated, the update applies to the whole model, not just a single in-
stance in which the code is used.

Example is omitted for brevity.

Structuring expressions into paragraphs

Proposed practice and expected benefit. Dependent on what one mod-
els, it might be necessary to have attribute derivations or operations that
span across several lines. In case the code consists of logically separable
blocks, where one part of the code does something specific, some other
does something else, it is a good idea to separate these parts by an empty
line. Such separation increases comprehensibility of the code, similarly
as indentation (described further above) does. It helps the one who reads
the code to separate logical parts, which eliminates the need to addition-
ally identify code structure needed to do such separation in the reader’s
mind anyway.

143

Chapter 12 Modeling patterns and practices

Example. Let us consider the following code:

" let param1 : Real = 1.8375 in 

 let param2 : Real = 2.4398 in 

 let param3 : Int = 7 in 

 let param4 : Boolean = false in 

 
 [the calculation code here as an OCL expression]

Putting the space between the block of let expressions and the calcula-
tion expression is an example. Similarly, one can separate pieces of code
into blocks within the expression that contains the calculation code.

Evaluative power/effectiveness

Challenge/need. While the coding practices that target cleanness and
maintainability of code, discussed above, are rather supportive and de-
fensive in the sense that they remedy sneaky and conditional problems
that start to hurt with some delay (from days to years), practices that tar-
get increased evaluative power or effectiveness often have a more “offen-
sive” character. They primarily aim to solve problems that are readily ap-
parent and perceivable, sometimes even before one starts to write code;
although they can also be used to increase clearness and maintainability,
just as the previous ones.

Usually, there is more than one single way to implement a solution to a
specific problem. Such implementation alternatives, however have differ-
ent dispositions in different regards, e.g., as to how much code and/or
complexity is needed for a functional implementation. In some cases it
might be so that different alternative implementations have different lim-

its in achieving results. The limits can be computational demands
(throughput performance), precision, accuracy, or even correctness as
such, etc. It is advisable to consider several alternative solutions (if sev-
eral can be identified), and reason on which ones are going to satisfy rele-
vant needs the best, or at least well enough. To find what are the relevant
needs, however, is itself non-trivial. In real-world situations, one seldom
obtains a complete and consistent set of requirements, so that one can
jump straight into engineering a solution. One often needs to first ascer-
tain that the right questions are being asked and that the solutions are
going to be measured and matched against the right criteria. Thus, the
question is broad and open; universal and unconditional answers should
not be expected. After one makes the set of criteria for a solution explicit
and accepts them, one can reasonably analyze, compare and discrimi-
nate between different implementation approaches. The coding practices
mentioned below attempt to provide a few tips, which you can consider
using when facing a specific modeling task or problem.

Defining local variables through let expressions

Proposed practice and expected benefit. In OCL, let expressions allow
defining locally scoped variables within the code. Although there are
many similar specifics in OCL and this text does not aim to introduce
them all, we consider let a particularly helpful tool to remind about, or
introduce to (if the reader is choosing a more hands-on approach than
studying OCL first).

Among other, locally scoped variables enable us to declare constants in a
separate block of code than that in which they are used. If the implemen-

144

Chapter 12 Modeling patterns and practices

145

tation of an operation or derivation of an attribute requires multiple con-
stants or other values to be accessed by its name instead of a complicated
sub-statement, it is reasonable to define them somewhere above the core
calculation in the operation. If we only keep them spread across the code
without assigning them a name, it might become non-apparent what
they actually represent in the context in which they are used, as well as
the overall structure and comprehensibility might suffer. Locally scoped
variables declared through let expressions hence aid simplicity in pro-
gramming as well as cleanness and maintainability of code.

Example. The structure of an expression statement is the following:

" let [variable name] : [variable type] = [expression] in [expression]

The first expression provides a value for the local variable, and the other
expression, the rest of the code, is the one, in and under which the local
variable is defined. The “in” keyword seems to be optional, although it
is advisable to use for more clarity. A let expression can be used as fol-
lows:

 [some eventual code] 
 let localVariable : Real = self.neighbor.anotherNeighbor->someOperation() in 
 [rest of the code (in OCL always as a single expression)]

or equivalently, just without “in”:

! [some eventual code] 
! let localVariable : Real = self.neighbor.anotherNeighbor->someOperation()  
! [rest of the code (in OCL always as a single expression)]

For multiple such local variables, let-expressions can be stacked up as fol-
lows:

 [some eventual code] 
 
 let localVariable : Real = self.neighbor.anotherNeighbor->someOperation() in  
 let localVariable2 : Real = self.neighbor->someOtherOperation() in 
 let localVariable3 : Real = localVariable->.yetAnotherNeighbor->someOperation() in 
 
 [rest of the code (in OCL always as a single expression)]

Let expressions can define any variables. They can be fetched from some-
where in the object model that is being evaluated.

Recursive calls in operations

Proposed practice and expected benefit. In procedural programming lan-
guages (also assuming Turing completeness3), looping algorithmic prob-
lems can be solved iteratively or recursively; while for each iterative solu-
tion has a recursive exists, and vice versa. Using declarative program-
ming languages OCL, this might be the case for some problems, but for
others, one might only be left to find a recursive solution to. In an itera-
tive approach, there is a loop, which iterates through elements of a collec-
tion until a specific condition is reached. One can also use multiple loops
under each other. In OCL, operations such as iterate or forAll enable for
iterative solutions. In a recursive approach, one defines an operation so
that it performs partial steps that lead to solving the problem and calls
itself further (i.e., recursively calls itself), until a termination condition
occurs. If a termination condition occurs, the operation just returns a
value and does not recur further. Recursion thus creates a tree of calls of
the same operation, each time with different input parameters. Given a
limited amount of operating memory and stack size, recursive ap-
proaches to a same problem might pose tighter limits than iterative ones.

Chapter 12 Modeling patterns and practices

Sometimes however, recursion might be considerably more
straight-forward and elegant to read in code, and thus more
than welcome by a programmer who deals with some ad-
vanced computation. A potential challenge with recursion
arises, however, when it comes to making sure that the termi-
nating conditions are appropriately defined and imple-
mented so that the recursion finishes after a finite amount
steps given any possible combination of valid inputs. Also,
correct implementation and eventual debugging of an ad-
vanced algorithmic design such as recursion is none of the
simplest tasks, even more difficult given the limited feature
set and rather low level of maturity of the tools that enable
OCL development to date. Therefore, extra care is needed
when using recursion. Not only it can be difficult to arrive at
a correct implementation, but also make such an implementation operate
efficiently. The benefit of using recursion may be decreased amount of
code to write to implement some calculation. At other times, a recursive
solution to a problem might be considerably more intuitive to compre-
hend than an iterative one. Yet at other times, it might not be practical to
implement an iterative solution, which could justify for a recursive one
in case it was more practical.

Example. For an example, let us revisit the PDU encapsulation model
mentioned in relation to self-associations of a class. You might wish to
refer back to the example to recall the context. Let us say that we want to
calculate the number of PDUs that carry some specific PDU in a specific
hierarchy. It is even difficult to think of an iterative solution, but let us

look at a recursive solution to the problem. A slightly modified class
model from figure 12.9 is depicted in figure 12.18. To the definition of the
PDU class, two things were added - an integer attribute, called numberOf-
Carriers, and an operation called getCarriers. The operation takes in two
parameters - a PDU object to begin the search from and a set of PDUs to
exclude from all subsequent rounds in the search (as will read from the
code given further below). The operation returns a set of PDUs - the ac-
tual carriers found. It not only returns direct carriers, but searches the hi-
erarchy transitively.

The integer attribute numberOfCarriers is derived as follows:

" self.getCarriers(self, Set{})->size()

146

Figure 12.18. Modification of the class model from the example given in the descrip-
tion of the self-association pattern (see the attribute numberOfCarriers and the opera-

tion getCarriers in the PDU class).

Chapter 12 Modeling patterns and practices

The operation, getCarriers(thisPdu : PDU, pdusToExclude : Set(PDU)) :
Set(PDU) is defined as follows:

 let pdusToConsider : Set(PDU) = 

 thisPdu.carryingPdu->asSet()->excluding(pdusToExclude) in 
 
 if (pdusToConsider->size() = 0) then  
 -- no carriers for this PDU 
 pdusToConsider -- this is an empty set 
 else 
 -- return the carriers considered in this round and 
 -- those that carry them (in a transitive fashion) 
 let newPdusToExclude : Set(PDU) = pdusToExclude->union(pdusToConsider) in 
 pdusToConsider->union( 
 pdusToConsider->collect(p : PDU |  
 self.getCarriers(p, newPdusToExclude) -- the recursive call 
) 
) 
 endif

A corresponding object model, which was only modified by the change
in the class model and adding the numeric values besides the object
boxes, looks as depicted in figure 12.19.

Translating mathematical formulas

Proposed practice and expected benefit. OCL has no built-in facilities
for advanced mathematical calculations to date. In case such calculations
are needed (e.g., exponential functions), the modeler needs to translate
the mathematical formulas so that OCL is able to calculate the result. De-
pendent on how advanced the calculations are, it might be a matter of
simply transforming the formula, or one might need to implement the

operations in a satisfactory way through the facilities OCL readily pro-
vides.

Example. For example, formula for a power of three of a real value does
not exist in the OCL standard, but can be simply translated as follows:

147

Figure 12.19. An object model corresponding to the class model de-
picted in figure 18.

Chapter 12 Modeling patterns and practices

" let value : Real = [expression for the value to be powered] in 
 value * value * value

Clearly, that example would not work for all formulas, simply because of
its lacking generality. A more general power function can be imple-
mented as a recursive operation. Let us consider operation power(base :
Real, exponent : Int) : Real on a class defined as follows:

" self._calculatePower(base, base, exponent)

And also the operation _calculatePower(value : Real, base : Real, exponent :
Int) : Real, which we call from the power operation:

" if (exponent = 0) then 
 -- a number powered by zero equals one 
 1 
 else 
 if (exponent = 1) then 
 -- a number powered by one equals the number itself 
 value 
 else 
 -- otherwise we multiply the value by base and call the 
 -- operation recursively with a decremented exponent 
 _calculatePower(value * base, base, exponent - 1) 
 endif 
 endif

The calculation can then be called on the class through power([some
base], [some exponent]) in an OCL expression. In the above provided ex-
ample, however, the power operation only works with non-negative inte-
ger exponents. It is also possible to develop more general operations for
arbitrary mathematical functions, which is out of scope for this text,
though.

This is no longer a part of the above example. Here it is important to
mention that although the OCL standard does not require the implemen-
tation of a power function, the EAAT tool now implements this. Hence,
instead of needing to write the above code (which now only serves an
illustration purpose), one can, and should, simply write the following to
achieve the same functionality (equally applicable to integer as it is to
real values):

" let value : Real = [some value] in value->power([some exponent])

Another such mathematical functionality that might often come handy is
now supported by EAAT – linear interpolation:

" let x : Set(Real) = Set { [some comma separated values] } in -- a set of x-values 
 let y : Set(Real) = Set { [some comma separated values] } in -- a set of y-values (equally

many) 
  
 x->linear(y, [some y-value]) -- lin. interp. of an x-value that corresponds to the y-value given

Concluding remarks

This text has described several modeling patterns (cf. our definition of a
modeling pattern) and several OCL coding practices. The authors hope
that you as the reader will find the information found here useful or in-
spiring. All in all, the patterns and practices described are no magical or
definitive solutions to concrete real problems, and a lot of mental work is
required for a modeler to apply them to solve a real problem. On the one
hand, the descriptions provided in the text are rather simple and far
from being comprehensive. On the other hand, their prime purpose is to
serve as a source of advice and inspiration for you as a modeler, who

148

Chapter 12 Modeling patterns and practices

might face more difficult and complex modeling problems, decomposi-
tions of which might allow you to constructively apply even as simple
and general patterns as those, in order to solve your modeling chal-
lenges in ways that are satisfactory to you.

149

References

1. R. Schiesser, IT systems management. Prentice Hall, 2010.

2. P. Ceruzzi, A history of modern computing. The MIT press, 2003.

3. Bureau of Economic Analysis, “National Economic Accounts, Table:
5.5.6.Real Private Fixed Investment in Equipment and Software by
Type," Feb. 2007. [Online]. Available: www.bea.gov

4. P. Gottschalk, “Strategic management of IS/IT functions: the role of
the CIO in Norwegian organisations,” International Journal of
Information Management, vol. 19, no. 5, pp. 389-399, 1999.

5. J. Zachman, “A framework for information systems architecture”
IBM systems journal, vol. 26, no. 3, pp. 276-292, 1987.

6. TAFIM, “Technical Architectural Framework for Information Manage-
ment, Version 2.0,” Department of Defense, Technical standard, 1994.

7. C4ISR Architecture Working Group, “C4ISR architecture framework
version 2.0” US Department of Defense, Technical standard, 1997.

8. Department of Defense Architecture Framework Working Group,
“DoD Architecture Framework, version 2.0” US Department of
Defense, Technical standard, 2007.

9. NAF, ”NATO C3 Technical Architecture, Volume 1-5, Version 7.0”
NATO, Technical standard, 2005.

10. MoDAF, “Ministry of Defense Architecture Framework Overview,
version 1.0” Ministry of Defense, Technical standard, 2005.

11. The Open Group,, The Open Group Architecture Framework (TOGAF) -
version 9. The Open Group, 2009.

12. H. Mintzberg, The structure of organizations: A Synthesis of the Research.
Prentice-Hall, 1979.

13. M. Lankhorst, Enterprise architecture at work: Modelling, communication
and analysis. Springer-Verlag New York Inc, 2009.

14. P. Närman, P. Johnson, and L. Nordström, “Enterprise architecture: A
framework supporting system quality analysis” in Enterprise Distributed
Object Computing Conference, 2007. EDOC 2007. 11th IEEE International.
IEEE, 2007, pp. 130-130.

15. P. Närman, M. Schönherr, P. Johnson, M. Ekstedt, and M. Chenine,
“Using enterprise architecture models for system quality analysis” in
Enterprise Distributed Object Computing Conference, 2008. EDOC'08.
12th International IEEE. IEEE, 2008, pp. 14-23.

16. P. Närman, M. Buschle, and M. Ekstedt, “An enterprise architecture
framework for multi-attribute information systems analysis” Systems
and Software Modeling., 2012, accepted to be published 2012.

17. P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg, “A tool for
enterprise architecture analysis” in Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007. 11th IEEE International. IEEE,
2007, pp. 142-142.

cli

References

http://www.bea.gov
http://www.bea.gov

18. M. Ekstedt, U. Franke, P. Johnson, R. Lagerström, T. Sommestad, J.
Ullberg, and M. Buschle, “A tool for enterprise architecture analysis
of maintainability” in Software Maintenance and Reengineering, 2009.
CSMR'09. 13th European Conference on. IEEE, 2009, pp. 327-328.

19. M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad,
“A tool for enterprise architecture analysis using the prm formalism”
Information Systems Evolution, pp. 108-121, 2011.

20. M. Buschle, P. Johnson et al., “A Tool For Enterprise Architecture
Analysis," 2012, submitted.

21. P. Johnson, J. Ullberg, M. Buschle, K. Shahzad, and U. Franke,
“P2AMF: Predictive, Probabilistic Architecture Modeling Framework”
2012, submitted.

22. J. Ullberg, U. Franke, M. Buschle, and P. Johnson, “A tool for
interoperability analysis of enterprise architecture models using Pi-
OCL” Enterprise Interoperability IV, pp. 81-90, 2010.

23. J. Ullberg, P. Johnson, and M. Buschle, “A modeling language for
interoperability assessments” Enterprise Interoperability, pp. 61-74, 2011.

24. J. Ullberg and P. Johnson, “Predicting interoperability in an environ-
mental assurance system” Enterprise Interoperability V, pp. 25-35, 2012.

25. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison Wesley Longman / Software Engineering Institute, 1998.

26. W. Harrison and C. Cook, “Insights on improving the maintenance
process through software measurement” in Proc. of the IEEE Software
Maintenance Conf., Nov. 1990.

27. T. Pigoski, Practical Software Maintenance. John Wiley & Sons, 1997.

28. S. Jarzabek, Effective Software Maintenance and Evolution: A Reuse-Based
Approach. Auerbach Publications, Taylor & Francis Group, 2007.

29. L. Laird and C. Brennan, Software Measurement and Estimation: A Practical
Approach. IEEE Computer Society / John Wiley & Sons, 2006.

30. R. Lagerström, “Analyzing system maintainability using enterprise
architecture models” Journal of Enterprise Architecture, vol. 3, no. 4,
pp. 33-42, 2007.

31. R. Lagerström and P. Johnson, “Using architectural models to predict
the maintainability of enterprise systems” in Software Maintenance
and Reengineering, 2008. CSMR 2008. 12th European Conference on.
IEEE, 2008, pp. 248-252.

32. R. Lagerström, P. Johnson, D. Höök, and J. König, “Software change
project cost estimation-a bayesian network and a method for expert
elicitation” in Third International Workshop on Software Quality and
Maintainability (SQM 2009), 2009.

33. R. Lagerström, P. Johnson, and M. Ekstedt, “Architecture analysis of
enterprise systems modifiability - a metamodel for software change
cost estimation” Software Quality Journal, vol. 18, pp. 437-468, 2010.

clii

References

34. R. Lagerström, P. Johnson, and D. Höök, “Architecture analysis of
enterprise systems modifiability-models, analysis, and validation”
Journal of Systems and Software, vol. 83, no. 8, pp. 1387-1403, 2010.

35. R. Lagerström, “Enterprise systems modifiability analysis - an
enterprise architecture modeling approach for decision making” Ph.D.
dissertation, KTH - the Royal Institute of Technology, Apr. 2010.

36. B. Boehm, R. Madachy, B. Steece et al., Software Cost Estimation with
COCOMO II. Prentice-Hall, 2000.

37. P. Oman, J. Hagemeister, and D. Ash, “A definition and taxonomy for
software maintainability” Software Engineering Lab, Tech. Rep., 1992.

38. IEEE Standards Board, “IEEE standard glossary of software engineer-
ing technology” Published as IEEE Std 610-12-1990, The Institute of
Electrical and Electronics Engineers, Tech. Rep., Sep. 1990.

39. M. Halstead, Elements of Software Science (Operating and programming
systems series). Elsevier Science Inc., 1977.

40. S. Henry and D. Kafura, “Software structure metrics based on
information flow” Software Engineering, IEEE Transactions on, vol. SE-
7, no. 5, pp. 510-518, Sep. 1981.

41. M. Frappier, S. Matwin, and A. Mili, “Software metrics for predicting
maintainability” Software Metrics Study: Tech. Memo, vol. 2, 1994.

42. T. McCabe, “A complexity measure” IEEE Transactions on Software En-
gineering, no. 4, pp. 308-320, 1976.

43. R. Park, “Software size measurement: A framework for counting
source statements” DTIC Document, Tech. Rep., 1992.

44. B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software
design process for large systems," Communications of the ACM, vol.
31, no. 11, pp. 1268-1287, 1988.

45. V. Maraia, The Build Master: Microsoft's Software Configuration
Management Best Practices. Addison-Wesley Professional, 2005.

46. C. Jones, Applied software measurement: assuring productivity and quality.
McGraw-Hill, Inc., 1991.

47. N. Fenton and A. Melton, “Deriving structurally based software meas-
ures” Journal of Systems and Software, vol. 12, no. 3, pp. 177-187, 1990.

48. D. Strong, Y. Lee, and R. Wang, “Data quality in context” Communications
of the ACM, vol. 40, no. 5, pp. 103-110, 1997.

49. T. Redman, Data quality for the information age. Artech House, 1996.

50. C. Batini and M. Scannapieca, Data quality: Concepts, methodologies
and techniques. Springer-Verlag New York Inc, 2006.

51. P. Närman, H. Holm, P. Johnson, J. König, M. Chenine, and M.
Ekstedt ”Data accuracy assessment using enterprise architecture”
Enterprise Information Systems, vol. 5, no. 1, pp. 37-58, 2011.

52. P. Närman, P. Johnson, M. Ekstedt, M. Chenine, and J. König,
“Enterprise architecture analysis for data accuracy assessments” in

cliii

References

Enterprise Distributed Object Computing Conference, 2009. EDOC '09.
IEEE International, Sep. 2009, pp. 24-33.

53. R. Wang, M. Ziad, and Y. Lee, Data quality. Kluwer Academic Pub, 2001.

54. Y. W. Lee, L. L. Pipino, J. D. Funk, and R. Y. Wang, Journey to data quality.
Cambridge, Mass.: MIT Press, 2006.

55. R. Y. Wang, Information quality [Elektronisk resurs]. Armonk, N. Y.: M.
E. Sharpe, 2005.

56. D. P. Ballou and H. L. Pazer, “Modeling data and process quality in
multiinput, multi-output information systems” Management Science,
vol. 31, no. 2, pp. 150-162, 1985.

57. B. E. Cushing, “A mathematical approach to the analysis and design of in-
ternal control systems” The Accounting Review, vol. 49, no. 1, pp. 24-41, 1974.

58. E. Brynjolfsson, “The productivity paradox of information technology”
Communications of the ACM, vol. 36, no. 12, p. 77, 1993.

59. J. Ross, P. Weill, and D. Robertson, Enterprise architecture as strategy:
Creating a foundation for business execution. Harvard Business Press, 2006.

60. G. Riempp and S. Gieffers-Ankel, “Application portfolio management:
a decision-oriented view of enterprise architecture” Information
Systems and E-Business Management, vol. 5, no. 4, pp. 359-378, 2007.

61. D. Simon, K. Fischbach, and D. Schoder, “Application Portfolio
Management - An Integrated Framework and a Software Tool

Evaluation Approach” Communications of the Association for
Information Systems, vol. 26, no. 1, p. 3, 2010.

62. W. DeLone and E. McLean, “Information systems success: the quest
for the dependent variable” Information systems research, vol. 3, no. 1,
pp. 60-95, 1992.

63. ….., “The DeLone and McLean model of information systems success:
A ten-year update” Journal of management information systems, vol. 19,
no. 4, pp. 9-30, 2003.

64. S. Devaraj and R. Kohli, “Performance impacts of information
technology: Is actual usage the missing link?” Management Science,
vol. 49, no. 3, pp. pp. 273-289, 2003. [Online]. Available: http://
www.jstor.org/stable/4133926

65. P. Weill and M. Vitale, “Assessing the health of an information systems
applications portfolio: An example from process manufacturing” MIS
quarterly, vol. 23, no. 4, pp. 601-624, 1999.

66. P. Närman, H. Holm, D. Höök, N. Honeth, and P. Johnson, “Using
enterprise architecture and technology adoption models to predict
application usage” Journal of Systems and Software, 2012, online first.

67. F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology” MIS Quarterly, vol. 13, no. 3,
pp. 319-340, 1989.

cliv

References

http://www.jstor.org/stable/4133926
http://www.jstor.org/stable/4133926
http://www.jstor.org/stable/4133926
http://www.jstor.org/stable/4133926

68. P. J. Hu, P. Y. K. Chau, O. R. L. Sheng, and K. Y. Tam, “Examining the
technology acceptance model using physician acceptance of telemedicine
technology” J. Manage. Inf. Syst., vol. 16, pp. 91-112, September 1999.

69. D. Gefen and D. Straub, “Gender differences in the perception and
use of e-mail: An extension to the technology acceptance model” Mis
Quarterly, vol. 21, no. 4, pp. 389-400, 1997.

70. P. Y. K. Chau, “An empirical assessment of a modified technology
acceptance model” J. Manage. Inf. Syst., vol. 13, pp. 185-204, September 1996.

71. P. Pavlou, “Consumer acceptance of electronic commerce: Integrating
trust and risk with the technology acceptance model” International
Journal of Electronic Commerce, vol. 7, no. 3, pp. 101-134, 2003.

72. K. Mathieson, “Predicting user intentions: comparing the technology
acceptance model with the theory of planned behavior” Information
systems research, vol. 2, no. 3, pp. 173-191, 1991.

73. V. Venkatesh and F. Davis, “A theoretical extension of the technology
acceptance model: Four longitudinal field studies” Management
science, vol. 46, no. 2, pp. 186-204, 2000.

74. V. Venkatesh, “Determinants of perceived ease of use: Integrating con-
trol, intrinsic motivation, and emotion into the technology acceptance
model” Information systems research, vol. 11, no. 4, pp. 342-365, 2000.

75. E. Karahanna, D. W. Straub, and N. L. Chervany, “Information
technology adoption across time: A cross-sectional comparison of

pre-adoption and post-adoption beliefs” MIS Quarterly, vol. 23, no. 2,
pp. pp. 183-213, 1999.

76. D. Goodhue and R. Thompson, “Task-technology fit and individual
performance” Mis Quarterly, vol. 19, no. 2, pp. 213-236, 1995.

77. I. Zigurs and B. Buckland, “A theory of task/technology fit and
group support systems effectiveness” MIS quarterly, vol. 22, no. 3,
pp. 313-334, 1998.

78. D. Goodhue, “Development and measurement validity of a task/
technology fit instrument for user evaluations of information
system” Decision Sciences, vol. 29, no. 1, pp. 105-138, 1998.

79. M. Dishaw and D. Strong, “Supporting software maintenance with
software engineering tools: A computed task-technology fit analysis”
Journal of Systems and Software, vol. 44, no. 2, pp. 107-120, 1998.

80. C. Lee, H. Cheng, and H. Cheng, “An empirical study of mobile com-
merce in insurance industry: Task-technology fit and individual dif-
ferences” Decision Support Systems, vol. 43, no. 1, pp. 95-110, 2007.

81. J. Gebauer, M. Shaw, and M. Gribbins, “Task-technology fit for mobile
information systems” Journal of Information Technology, 2010.

82. T. Ferratt and G. Vlahos, “An investigation of task-technology fit for
managers in Greece and the US” European Journal of Information
Systems, vol. 7, no. 2, pp. 123-136, 1998.

clv

References

83. A. Majchrzak, A. Malhotra, and R. John, “Perceived Individual
Collaboration Know-How Development Through Information
Technology-Enabled Contextualization: Evidence from Distributed
Teams” Information systems research, vol. 16, no. 1, pp. 9-27, 2005.

84. P. Legris, J. Ingham, and P. Collerette, “Why do people use information
technology? A critical review of the technology acceptance model”
Information & management, vol. 40, no. 3, pp. 191-204, 2003.

85. N. Venkatraman, “The concept of fit in strategy research: Toward
verbal and statistical correspondence” Academy of management review,
vol. 14, no. 3, pp. 423-444, 1989.

86. I. Vessey, “Expertise in debugging computer programs: An analysis
of the content of verbal protocols” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 16, no. 5, pp. 621-637, Sep. 1986.

87. J. Henderson and J. Cooprider, “Dimensions of I/S Planning and
Design Aids: A Functional Model of CASE Technology” Information
Systems Research, vol. 1, no. 3, p. 227, 1990.

88. D. Scott, “How to Assess Your IT Service Availability Levels” Apr. 2009.

89. U. Franke, M. Ekstedt, R. Lagerström, J. Saat, and R. Winter, “Trends
in enterprise architecture practice - a survey” in Trends in Enterprise
Architecture Research, ser. Lecture Notes in Business Information
Processing, vol. 70. Springer Berlin Heidelberg, 2010, pp. 16-29.

90. IBM Global Services, “Improving systems availability” IBM Global
Services, Tech. Rep., 1998.

91. A. Bharadwaj, M. Keil, and M. Mähring, “Effects of information
technology failures on the market value of firms” The Journal of
Strategic Information Systems, vol. 18, no. 2, pp. 66-79, 2009.

92. P. Närman, U. Franke, J. König, M. Buschle, and M. Ekstedt,
”Enterprise architecture availability analysis using fault trees and
stakeholder interviews” 2012, online first.

93. O. Holschke, P. Närman, W. Flores, E. Eriksson, and M. Schönherr,
“Using enterprise architecture models and bayesian belief networks
for failure impact analysis” in Service-Oriented Computing-ICSOC
2008 Workshops. Springer, 2009, pp. 339-350.

94. J. Raderius, P. Närman, and M. Ekstedt, “Assessing system availability
using an enterprise architecture analysis approach” in Service-Oriented
Computing-ICSOC 2008 Workshops. Springer, 2009, pp. 351-362.

95. A. Høland and M. Rausand, System reliability theory: models and
statistical methods. Wiley New York, 1994.

96. D. Stamatis, Failure mode and effect analysis: FMEA from theory to
execution. Asq Pr, 2003.

97. S. Meyn, R. Tweedie, and J. Hibey, Markov chains and stochastic
stability. Springer London et al., 1993.

clvi

References

98. S. Mannan and F. Lees, Lee's loss prevention in the process industries:
hazard identification, assessment, and control. Elsevier, 2005.

99. J. Andrews and C. Ericson, “Fault tree and Markov analysis applied
to various design complexities” Proceedings of the 18th International
System Saftey Conference, 2000.

100. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J.
Railsback, “Fault tree handbook with aerospace applications” 2002,
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf.

101. B. Johnson, Design and analysis of fault-tolerant digital systems.
Addison-Wesley Reading, MA, 1989.

102. V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment
of uml based software models," in WOSP '02: Proceedings of the 3rd
international workshop on Software and performance. New York, NY,
USA: ACM, 2002, pp. 302-309.

103. J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree models for
faulttolerant computer systems” Reliability, IEEE Transactions on, vol.
41, no. 3, pp. 363-377, 2002.

104. International Organization for Standardization - ISO, “Iso-iec
9126-2:2003 software engineering - product quality - part 2: External met-
rics” JTC 1/SC 7 - Software and systems engineering, Tech. Rep., 2003.

105. J. Ullberg, D. Chen, and P. Johnson, “Barriers to enterprise
interoperability” in 2nd IFIP WG5.8 Workshop on Enterprise Interoperability
(IWEI 2009), Oct. 2009.

106. J. Ullberg, R. Lagerström, and P. Johnson, “Enterprise architecture: A
service interoperability analysis framework” Enterprise Interoperability
III, pp. 611-623, 2008.

107. E. Commission et al., “European interoperability framework for
paneuropean egovernment services” IDA working document,
version, vol. 2, 2004.

108. NEHTA, “Interoperability framework, version 2.0” National E-
Health Transition Authority, Tech. Rep., 2007.

109. A. Berre, B. Elvesæter, N. Figay, C. Guglielmina, S. Johnsen, D.
Karlsen, T. Knothe, and S. Lippe, “The athena interoperability
framework” Enterprise Interoperability II, pp. 569-580, 2007.

110. D. Chen and N. Daclin, “Framework for enterprise interoperability”
Interoperability for Enterprise Software and Applications, pp. 77-88, 2006.

111. T. Ruokolainen, Y. Naudet, and T. Latour, “An ontology of
interoperability in inter-enterprise communities” Enterprise
Interoperability II, pp. 159-170, 2007.

112. M. Kasunic and W. Anderson, “Measuring systems interoperability:
Challenges and opportunities” 2004.

clvii

References

http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

113. E. Morris, L. Levine, C. Meyers, D. Plakosh et al., “System of systems
interoperability (sosi): Final report” DTIC Document, Tech. Rep., 2004.

114. A. Tolk and J. Muguira, “The levels of conceptual interoperability
model” System, no. September, pp. 14-19, 2003.

115. T. Ford, J. Colombi, S. Graham, and D. Jacques, “The
interoperability score” in Proceedings of the Fifth Annual Conference on
Systems Engineering Research, 2007.

116. P. Närman, T. Sommestad, S. Sandgren, and M. Ekstedt, ”A framework for
assessing the cost of IT investments” in Portland International Conference on
Management of Engineering and Technology (PICMET), Aug. 2009.

117. B. Boehm, Software engineering economics. Prentice-Hall, 1981.

118. V. Basili and B. Boehm, “COTS-based systems top 10 list” Computer,
vol. 34, no. 5, pp. 91-95, 2001.

119. C. Abts, B. Boehm, and E. Clark, “COCOTS: A COTS software
integration lifecycle cost model - model overview and preliminary
data collection findings” in ESCOM-SCOPE Conference. USC Center
for Software Engineering, 2000.

120. B. Boehm and C. Abts, “COTS integration: Plug and Pray?” Computer,
vol. 32, no. 1, pp. 135-138, 1999.

121. Z. Irani, J. Ezingeard, and R. Grieve, “Costing the true costs of IT/IS
investments in manufacturing: a focus during management decision
making” Logistics Information Management, vol. 11, no. 1, pp. 38-43, 1998.

122. P. Love, Z. Irani, A. Ghoneim, and M. Themistocleous, “An
exploratory study of indirect ICT costs using the structured case
method” International Journal of Information Management, vol. 26, no.
2, pp. 167-177, 2006.

123. Z. Irani, A. Ghoneim, and P. Love, “Evaluating cost taxonomies for
information systems management” European Journal of Operational
Research, vol. 173, no. 3, pp. 1103-1122, 2006.

124. P. Farquhar, “Utility assessment methods” Management science,
pp. 1283-1300, 1984.

125. W. Edwards and F. Barron, “Smarts and smarter: Improved simple
methods for multiattribute utility measurement” Organizational
Behavior and Human Decision Processes, vol. 60, no. 3, pp. 306-325, 1994.

126. J. Bentham, An introduction to the principles of morals and
legislation. Clarendon Press, 1879.

127. W. C. Mitchell, "Benthamís felicific calculus," Political Science
Quarterly, vol. 33, no. 2, pp. 161ñ183, 1918.

128. R. L. Keeney, Decisions with multiple objectives: preferences and
value trade-offs. Cambridge University Press, 1993.

129. P. C. Fishburn, "Utility theory for decision making," Publications in
operations research/Operations Research Society of America (ISSN
0079-7723, no. 18, 1970.

clviii

References

130. F. J. Anscombe and R. J. Aumann, "A definition of subjective
probability," The annals of mathematical statistics, vol. 34, no. 1, pp.
199ñ205, 1963.

131. R. L. Keeney, "Multiplicative utility functions," Operations Research,
vol. 22, no. 1, pp. 22ñ34, 1974.

132. J. S. Dyer, "Maut-Multiattribute Utility Theory," Multiple Criteria
Decision Analysis: State of the Art Surveys, vol. 78, p. 265, 2005.

133. D. Von Winterfeldt and G. W. Fischer, Multi-attribute utility theory:
Models and assessment procedures. Springer, 1975.

134. KTH ICS, "Enterprise Architecture Analysis Tool," 2013. [Online].
Available: http://www.ics.kth.se/eaat. [Accessed: 31-Jan-2013].

135. OMG, "Object Management Group," 2013. [Online]. Available: http://
www.omg.org/. [Accessed: 31-Jan-2013].

136. OMG, “Unified Modeling Language”, 2013. [Online]. Available
http://www.omg.org/spec/UML/. [Accessed: 10-June-2013].

137. OMG, “Object Constraint Language”, 2013. [Online]. Available
http://www.omg.org/spec/OCL/. [Accessed: 10-June-2013].

138. J. Cabot, “Object Constraint Language: A definitive guide”, 2012.
[Online]. Available http://www.slideshare.net/jcabot/ocl-tutorial.
[Accessed: 10-June-2013].

139. KTH, “Manuals”, 2013. [Online]. Available http://www.kth.se/ees/
omskolan/organisation/avdelningar/ics/research/sa/p/eaat/
manuals-1.387301. [Accessed: 10-June-2013].

clix

References

http://www.ics.kth.se/eaat
http://www.ics.kth.se/eaat
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML

	Table of Contents

	1.
Introduction
	2. Basic enterprise architecture

	3. The Multi-Attribute Prediction (MAP) class diagram

	4. Application modifiability

	5. Data accuracy

	6. Application usage

	7. Service availability

	8. Interoperability

	9. Cost

	10. Utility

	11. Creating metamodels

	12. Modeling patterns and practices

	References

