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Today, there are information systems for most of the tasks performed in an 
enterprise. There are customer management systems, contract management 
systems, product design systems, production systems, financial systems, hu-
man resource systems, business intelligence systems, asset management 
systems, waste management systems, document management systems, 
workflow management systems, and hundreds of other systems. In recent 
years, these systems have been integrated with each other to such an extent 
that it is oftentimes necessary to view them, not as hundreds of different 
systems, but one single system of systems.

The resulting enterprise-wide information system is under constant change. 
Every year, new systems are developed and introduced, old systems are ex-
tended, modified, integrated with each other, and retired. In large enter-
prises, these changes are the result of many different stakeholders' require-
ments and many developers' actions. It has become increasingly evident 
that there is a need to plan and manage the evolution of this system in order 
to keep chaos at bay.

In this book, we describe an approach to enterprise information systems 
management that relies on models of the information systems and their 
environment. The main idea is very old. Instead of building the enterprise 
information system using trial and error, we propose a set of models to pre-
dict the behavior and effects of changes to the system. The enterprise 
architecture models allow reasoning about the consequences of various 
scenarios and thereby support decision-making. In order to predict 
whether scenario A or B is preferable, three things are needed. Firstly, mod-
els over the two scenarios need to be created. Secondly, it is necessary to 

define what is desirable; the goals. Do we want the systems to support 
business process efficiency or is organizational flexibility more important? 
Is high system availability more important than high information security 
or maintainability? Thirdly, we need to understand the causal chains from 
scenario selection to goals. Scenario A features hardware redundancy that 
positively affects the system reliability which in turn improves the service 
availability, leading to more efficient business processes. However, sce-
nario B is built on a loosely coupled technology, which promotes the modi-
fiability of the system. This, in turn, may be expected to have positive ef-
fects on the organizational flexibility.

In this first chapter we present a brief history of enterprise information systems, 
the most common types of systems found today and the general architectures 
for the interaction between these systems, a brief history of enterprise 
architecture, and finally some background information describing our view of 
enterprise architecture for IT management.

1.1 A brief history of enterprise information systems

In this section, we describe three epochs of enterprise information 
systems. We consider each era in terms of the technology, the users, and 
the maintainers and developers.

1.1.1 Mainframes and mini-computers

The first electronic computer was the ENIAC (Electronic Number Inte-
grator And Calculator), which was developed in 1946 by the account-
ing industry and the emerging electronics industry in a joint effort. 
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Comprising of 17,468 vacuum tubes, the 
ENIAC filled a large room requiring air con-
ditioning due to the intensive heat caused 
by the machine. The ENIAC and its succes-
sors were programmed one program at a 
time and were served data using punch 
cards - stiff pieces of papers with presence 
or absence of holes in predefined positions. 
The end-users were typically engineers, 
who communicated punch card decks to an 
intermediary, the mainframe operator, who 
in turn ran the programs. Executing a pro-
gram could take hours, sometimes days, 
and when the program terminated, the user 
received his card deck back together with 
the output data.

In the 1950's the demand for computers 
slowly increased and mainframes were sold 
to large organizations including universi-
ties, corporations and civil and military gov-
ernment agencies. Universities bought com-
puters to perform scientific calculations of 
engineering problems, whereas enterprises 
mainly bought computers for business-
oriented issues, such as managing payrolls. 
The government bought computers for 

these purposes and also for supervision and 
real-time control over physical processes, 
such as air space surveillance. Computers 
were designed for specific purposes, so a 
computer designed for handling business 
purposes could do just that, and not be util-
ized for scientific calculations or real-time 
control. As the needs of organizations ex-
tended into several different areas, this ma-

chine specialization became a problem of 
both economics and convenience. Another 
problem was that differences between jobs 
in for example memory and storage usage 
often required tedious manual interven-
tions when different programs within the 
same domain were executed. The operating 
system might have needed to be repro-
grammed and sometimes the computer 

Movie 2: On the Importance of Information Systems
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needed to be rewired as well. As these problems grew, the need for an 
all-round computer emerged [1].

In the middle of the 1960's IBM released the S/360 mainframe, the first 
general-purpose computer. Besides enabling different types of programs 
to be executed on the same computer simultaneously, this was the first 
computer making a difference between architecture and implementation. 
This enabled IBM to release a suite of compatible designs at different 
price levels, promising customers that migration to more powerful ver-
sions would be possible as their needs grew. Some consider the introduc-
tion of the IBM S/360 on the market as the biggest advancement of IT in 
business and society as a whole [2]. In the same period as the IBM S/360 
entered the market, the smaller minicomputers started to establish their 
own markets. The minicomputers possessed the same components as 
large mainframes but with reduced memory capacity and slower process-
ing speeds. Before the advent of the minicomputer industry in the 1960's, 
companies wishing to automate their data processing were forced to use 
mainframes. Because of its performance limitations the minicomputer 
did not impose a threat to the mainframes. Instead, the minicomputer, 
with about the size of about a refrigerator, opened up new application 
areas and allowed managers to choose computers with substantially 
lower costs than mainframes. While, the mainframes were at that time 
handled by specific operators who managed the direct interaction with 
the machine, the smaller minicomputer enabled direct interaction be-
tween the multiple users and the computer. Their establishment in the 
market in late sixties has been seen as a cultural, technological and eco-
nomic phenomenon [2]. One of the earlier successful models was the 

PDP-8 from Digital Equipment Corporation. The data centers managing 
the computers, were typically offshoots from different organizational de-
partments, such as accounting. The specific-purpose characteristics 
among early computers often further increased the decentralization of 
system management and often resulted in a number of different data cen-
ters connected to each department, one for each specific purpose and 
computer. As computers broadened their application domain, these cen-
ters were centralized into larger ones, providing services to multiple or-
ganizational departments. The increased volumes of data gathered in da-
tabases and the criticality of the data to business called for methods to 
assure rigidity and handle the system configurations. With centralized 
systems, a centralized IT governance structure became possible.

1.1.2 Terminals, workstations and PCs

In the seventies, increased memory size led to a shift from batch-oriented 
operating systems to online processing systems, where data could be en-
tered and response would be immediate. Until this point, mainframes 
had mainly supported back-office functions. In the seventies, local net-
works were set up, connecting the mainframes and minicomputers to ter-
minals, allowing hundreds of users to simultaneously interact with the 
systems. At this time, a yet smaller computer entered the scene; the mi-
crocomputer, intended only for a single user. These machines and their 
operating systems, such as Microsofts DOS, were simple in comparison 
to minicomputers and mainframes.

As the costs of the microprocessor hardware became lower and the 
cost of deploying local area networks decreased in the eighties, the 
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microcomputers popularity increased in business applications. The 
microcomputers eventually evolved into personal computers, replac-
ing the terminals, while the minicomputers migrated into servers for 
PC networks. The use of PCs instead of mainframes and terminals 
had an important impact on the software industry. Traditionally, soft-
ware and hardware had been bought from one single vendor, and in 
the fifties and sixties, computers were often leased from developers 
for a time span of several years. As the PC revolution came, the soft-
ware market changed and was filled with different vendors selling 
high volumes to push prices down.

The PC revolution in late eighties and early nineties moved computing 
power from the centrally located mainframes to distributed microcom-
puters. This made users less dependent on data centers and computer 
manufacturers, but with consequences for the IT department. Configura-
tion management, backups and security became more difficult as PCs re-
placed terminals and mainframes. The shift towards online systems and 
databases containing business critical information introduced areas such 
as online transactions, database management and access security. This 
meant new responsibilities for the IT department.

Moreover, the users' increased independence from the IT department 
and the regional and international expansion of many enterprises drew 
the previously centralized IT organization closer to the business and IT 
management decentralized to become more responsive to the needs 
from business [1].

1.1.3 Extensive networks

As the business value of personal computers became clear to enterprises, the 
next logical step was to link them together. The US Defense Advanced Re-
search Projects Agency's ARPANET initiative in the sixties and early seven-
ties was the dawn of efficient and large-scale networking. In the early nine-
ties it reached a global impact with the Internet. As the interconnected net-
works grew, the power and number of applications using them increased, 
and consequently their importance grew. With the evolution of extended 
computer networks, the computer itself lost its position as the main focus, 
which instead shifted to the availability and capacity of the networks.

The weak economy during the early 1990 forced companies to save costs. 
The decentralization of IT management during the eighties had made the IT 
departments more responsive to the needs from the business, but with dupli-
cated efforts and lost economics of scale as a consequence. Outsourcing was 
seen as one way of controlling costs and when Kodak outsourced their data 
center operations to IBM on a ten-year deal in 1989, a new trend was born. 
Not all enterprises adopted the trend of outsourcing, but since they faced 
the same problem with high costs, many enterprises again started to central-
ize their IT management. The previous decentralized organization structure 
had besides inefficiency resulted in various, incompatible, technologies 
across enterprises that complicated this centralization process.

In addition to a technically heterogeneous information system portfolio, 
the need for enhanced IT management is also the result of the business's 
everincreasing dependence on the information systems as a means to per-
form work and communicate internally and externally. The share of IT in 
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business equipment investments in USA rose 
to above 50 percent in year 2000 [3]. This 
meant that the demand of IT knowledge 
among personnel in general and IT specialist 
in particular increased. The importance of 
information systems is reflected in the fact 
that the role of the Chief Information Officer 
(CIO), with an enterprise-wide responsibility 
for IT, is nowadays typically reporting di-
rectly to chief executives or the president [4].

1.2 The information systems of 
today

Today, information systems are employed in 
virtually all parts of modern enterprises and 
the systems as such are extremely business 
critical being an integrated part of most depart-
ments. In this section, we review the most com-
mon services provided by the systems, and we 
also consider four very general architectures 
for the interaction between the systems.

1.2.1 Application services

We begin the information system walk-through 
with those systems that are closely related to the 

physical world and move toward the more ab-
stract domains.

Industrial control systems provide measure-
ment and control functionality for large-scale, 
possibly geographically distributed, physical 
processes, such as electricity generation, elec-
tric power transmission, electricity distribu-

tion, district heating, water distribution, pulp 
and paper production, manufacturing, de-
fense, transport, chemical and telecom indus-
try. In one end of the system, the sensors and 
actuators either measure or act on the process 
objects, and in the other end, human opera-
tors typically monitor the process. Functions 
provided include forecasting and planning, 

Movie 3: On the Difficulties of Information Systems Management
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remote measurement as well as control over the physical process, auto-
matic control, and alarm and notification functionality.

Product management systems, or product life cycle management systems, 
handle most functions used during a products lifecycle, from conception 
and design to manufacturing and service. In the conception phase, these 
systems provide functionality for requirements management and design. 
The design phase is supported by computer aided design (CAD) 
functionality, supplying the developer with 2D or 3D drawing functions, as 
well as simulation, validation and optimization functions. Also the 
manufacturing phase is supported by for instance computer aided 
manufacturing (CAM) functionality. Other functions supported in this 
phase are process simulation and production planning. Further support 
may be provided for product testing. In the service phase, functionality 
provides customers and service engineers with information on the finished 
products, such as repair and maintenance information. Special kinds of 
product management systems are software development tools. These 
provide functionality for requirements management, design, production 
(compilation) and testing of software products.

Asset management systems provide functionality used for organizing and 
processing assets within an enterprise. The assets can be digital, for 
instance images, documents and presentations. They can also be of a 
physical nature, e.g. equipment and facilities. Asset management systems 
usually provide functions for collecting, managing, searching, retrieving, 
and archiving information about the assets. An important issue for these 
systems is the availability of the stored information. They may therefore 

offer mobility solutions, for instance allowing remote access via handheld 
terminals. Systems designed specifically for managing real estate are 
sometimes called property management systems.

Inventory management systems are used for monitoring quantity, location 
and status of the enterprises inventory, as well as supporting the shipping 
and receiving processes.

Geographical information systems may be used to maintain records of the 
whereabouts of the assets in enterprises with a geographically distributed 
infrastructure. These systems are based on databases of geographical maps 
over the region of interest. Satellite photographs, road maps, and asset 
information are then superimposed on these maps.

Human resource management systems are designed to support the re-
sponsibilities of the human resource department. These systems there-
fore provide functionality for the tracking of employee data like personal 
history, addresses and phone numbers, but also for tracking the employ-
ees skills and capabilities. The automatic gathering and calculation of 
information for the salary payment process like time, attendance, deduc-
tions and taxes are other functions of human resource management 
systems. Additionally, the systems may support administration and 
tracking of employee participation in benefit programs as well as the 
planning and tracking of learning activities.

To make sure that work is performed according to procedure, workflow 
management systems may be employed. These are systems that help or-
ganizations to specify, execute, monitor, and coordinate the flow of 
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work. The typical use is the flow of documents through an administra-
tive process, e.g. the flow of tax declarations through the internal reve-
nue service, where various persons and applications calculate, check, 
and approve of the various aspects of the document. Workflow manage-
ment systems often feature modeling functionality, where the workflow 
is designed; simulation functionality, where the design is tested; and exe-
cution functionality, ensuring that the workflow is followed.

Service management systems are reminiscent of workflow management 
systems. An example of a service order in the power industry is the 
order to repair a power meter reader in a customers house. Such orders 
may be initiated by the customer call center, approved by the power 
distribution center, accepted and performed by the fieldwork 
subcontractor, and reported back to the distribution center and the 
customer call center. Service management systems support the flow of 
these activities. Related to workflow and service management systems 
are workforce management systems. These typically manage scheduling 
of the work force, time and attendance. They may also encompass 
functionality that is further described as human resource systems. 
Another type of workflow management systems used for planning and 
follow-up of work are project management systems. These typically 
provide functionality for scheduling projects, allocating resources, and 
follow-up of the planned projects.

Customer management systems, or customer relationship management 
systems, are designed to support sales, service and marketing in their 
contacts with the customer. The first function of these systems is the order 

management of customer information, so that for instance the service 
department is notified of what the sales department has sold to the 
customer. Customer relationship management systems also provide support 
for the management of potential customers, management of contracts with 
the customers, and analysis and forecasting of customer behavior. These 
systems are often integrated with workflow management systems.

An important part of the relationship to the customer is the billing. Bill-
ing systems provide support for creating and distributing invoices for 
performed services at suitable dates. For service-providing companies, 
billing systems can be very important to the business because it en-
ables the company to differentiate the price of its services according to 
various circumstances. Telecom operators, for instance, typically 
charge their customers very differently for the same service depending 
on when and how much they use it.

Companies also need to manage the input side of the business, i.e. 
relations to suppliers. For these purposes, there are procurement 
management systems. There are also brokering systems to be used by 
both customers and suppliers. Prime examples of such systems are 
trading systems, providing a market place for the exchange of goods 
and services.

Management information systems are computer systems that present 
high-level summary information that assists management decision-
making. One part of the management information system is typically 
the business intelligence system, which is a system employed to gather 
and aggregate information relevant for corporate management. An-
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other part of management information systems is the decision support 
system, which may analyze the gathered information to aid the process 
of decision-making. The information gathered and analyzed typically 
concerns customers, competitors, business partners, the economic envi-
ronment, or internal operations.

Financial systems are used for accounting and reporting. Business 
transactions are recorded and fixed assets and inventory are financially 
managed. Bank relations are supported, as well as tax accounting. 
Functionality for the reporting of financial statements is also provided.

1.2.2 Basic technical architecture

In the previous subsection, we presented different kinds of services provided 
by the most common information systems in modern enterprises. In this sub-
section, we briefly consider how these systems relate to each other.

Not so long ago, the various systems presented in the previous subsection 
were produced by different companies, procured independently of each 
other, and installed in different departments as what is often labeled as 
islands of automation, cf. Figure 1. Each system had its own hardware, 
gathered its own information from the environment and its users and 
performed its functions without regarding other systems in the vicinity. In 
those (normally rare) cases where one system required information 
available in another, information transfer was performed manually.

As the information systems grew in scope and number, the information 
they stored and the information they would benefit from having access 

to also increased. This situation led to demands for automated exchange 
of information between the systems. Technological development 
responded rapidly to these demands by devising engineering methods 
for connecting two systems to each other. Billing systems were thus 
connected to the financial systems in order transfer accounting 
information. Product management systems were connected to industrial 
control systems to allow the exchange of production-related information. 
Human resource systems were connected to work management systems 
in order to transfer information for schedules and salaries. And so on. 
Soon, however, the number of connections between systems became 
overwhelming. The common way of presenting this problem is by 
considering the introduction of a new system in an existing enterprise 
information system environment. Assuming that the new system needs 
to be connect to all other systems, this will be manageable when there 
are three, four and five systems, but when the number of systems 
reaches twenty, then there is also a need for twenty new separate 

Figure 1: Islands of automation
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connections between the new system and the 
existing ones. If all systems connect to each 
other, the number of connections grows 
quadratically with the number of systems. 
The resulting mass of unmanaged 
connections is sometimes called "spaghetti 
architecture", cf. Figure 2.

In order to mitigate the problems of the spa-
ghetti architecture, some information system 
vendors began offering more comprehensive 
solutions, providing many of the required 
functions. The attractive proposition with 
these systems is that the customer company 
only needs to buy one or a few systems, not 

hundreds. With such "suite architecture" the 
integration problems are thereby reduced 
dramatically, cf. Figure 3. These multi-
functional systems generally have their ori-
gins in the administrative systems, such as 
the financial and human resource manage-
ment systems, and they are commonly called 
enterprise resource planning systems. Today, 
these systems offer functionality covering 
virtually all application services described in 
the previous subsection. However, the 
enterprise resource planning systems' legacy 
from the administrative domain is still visi-
ble; many users complain that these systems 
cannot provide sufficiently high-qualitative 
functionality in other application domains, 
notably the technical domain of e.g. produc-
tion management and industrial control 
systems. Furthermore, many customers are 
reluctant to make themselves too dependent 
on a single vendor, worried that this will re-
duce their bargaining position. Finally, many 
organizations have encountered difficulties 
when attempting to modify enterprise re-
source planning systems to their business op-
erations; it is sometimes claimed that it is eas-

ier to make the organization fit the system 
than vice versa.

In an attempt to avoid the pitfalls of both spa-
ghetti architecture and suite architecture, many 
companies have turned to a middleware-based 
architecture, or broker architecture (cf. Figure 4). 
Broker architectures try to avoid the negatives 
of the suite solution by returning to the multi-
vendor scenario. This is sometimes called the 
best-of-breed approach. In order to not re-
experience the problems of the spaghetti 
architecture, the point-to-point connections be-
tween systems are substituted by a centrally lo-

Figure 2: Spaghetti architecture

Figure 3: Suite architecture
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cated hub, broker, or integration platform. In-
stead of connecting each system directly to all 
others, it is thus only connected to one other sys-
tem, namely the broker. The broker provides ba-
sic message-passing services, but it is also spe-
cialized at translating data between various for-
mats. Furthermore, the broker may implement 
intelligent routing, passing messages between 
various systems depending on various parame-
ters, such as the contents of the message, the 
time of day, etc. There are many alternative 
broker-based solutions. The most influential 
trend in this domain is service-oriented 
architecture (SOA).

In reality, most organizations maintain a mix of 
the four approaches described above, cf. Figure 
5. There are some old systems that are very 
sparsely interconnected to other systems. There 

are some systems that have direct connections 
between them. Certain, but not all, functional 
modules from an enterprise resource planning 
systems are typically implemented. Sometimes, 
there are two or more enterprise resource plan-
ning systems from different vendors. Finally, 
there is typically at least one, sometimes many, 
integration platforms, or brokers, to which 
some systems are connected.

1.3 A brief history of enterprise 
architecture

In the previous section, we considered the 
history and current state of information 
systems in general. Now, we focus on the con-
cept of Enterprise Architecture (EA). 
Enterprise architecture, as we view it in this 
book, is an approach for managing the organi-
zation's information system portfolio and its 
relation and support to the business. At the 
base of the approach lies an architectural 
model incorporating concepts such as software 
components, connectors, functions, 
information, business processes, organiza-
tional units and actors. This section outlines 
the history of enterprise architecture by consid-
ering some of the most popular architecture 
frameworks in chronological order. 

The Zachman framework

The history of enterprise architecture is 
generally considered to begin in 1987 with 
John Zachman's article A Framework for 
Information Systems Architecture [5]. Drawing 
analogies to the fields of classical architecture 
as well as to systems engineering, Zachman 
proposed a set of models for specifying 
information systems and their context. 

Figure 4: Broker architecture

Figure 5: Mixed architecture
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Zachman thus claims that in order to manage 
a company's information systems, they need 
to be specified in the same way that e.g. an 
airplane or a building is. The current version 

(version 3.0) of The Zachman Framework for 
Enterprise Architecture (1) was released in 
2011, cf. Figure 6.

The set of models proposed by Zachman 
are ordered on two axes. On the horizontal 
axis are sets of six aspects: inventory, proc-
ess, distribution, responsibility, timing and 
motivation. These description types answer 
six fundamental questions: what, how, 
where, who, when and why. On the vertical 
axis are sets of perspectives, relating to the 
stakeholder posing the question. The first 
five rows include the executive, the busi-
ness manager, the architect, the engineer, 
and the technician. The sixth row covers the 
final product of the enterprise system and 
is labeled the Enterprise. Altogether, the 
framework thus provides thirty-six cells 
from which an enterprise could be under-
stood and described. The detailed syntax 
and semantics of the different models popu-
lating the cells are not given by Zachman, 
but are instead passed on to the user.

The Zachman framework does not provide 
concrete guidance for the process of 
enterprise architecting and it is not directed 
at any special kind of organization. The 
framework is still one of the most commonly 
referred to approaches to enterprise Figure 6: The Zachman Framework 3.0
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architecture. The Zachman Institute is today active providing both 
courses and consulting services.

DoDAF

Within the United States Department of Defense, there is a fairly long tra-
dition of enterprise architecture. The first version of an architectural 
framework was the Technical Architecture Framework for Information 
Management [6], published in the early 1990's. This initiative was fol-
lowed by various successors, including the Command, Control, Commu-
nications, Computers, Intelligence, Surveillance, and Reconnaissance 
(C4ISR) Architecture Framework [7], finally leading up to the currently 
supported version, namely the Department of Defense Architecture 
Framework (DoDAF) 2.0 [8].

The DoDAF describes fifty-two architecture products. Of these, two are 
of a summarizing nature. The remaining fifty products are divided into 
seven categories, or viewpoints: the capability viewpoint, the data and 
information viewpoint, the operational viewpoint, the project viewpoint, 
the service viewpoint, the standard viewpoint, and the system view-
point. The DoDAF is arguably one of the most explicit frameworks with 
regards to different viewpoints and architecture products.

The main part of the DoDAF is focused on describing the architecture 
products. However, the DoDAF also contains some information regard-
ing the use of these products by providing a fairly brief so called generic 
architecture description process consisting of six steps: 1) determine the 
intended use of the architecture; 2) determine the scope of the 

architecture; 3) determine the data required to support the architecture 
development; 4) collect, organize, correlate, and store the architecture 
data; 5) conduct analyses in support of the architecture objectives; and 
finally 6) present results in accordance with the decision-maker needs.

Because it is mandated by the Department of Defense, it is obvious that 
the US armed forces are the most diligent users of the DoDAF. However, 
the framework has been widely influential in the work of many other 
military forces, such as the NATO Architecture Framework [9] and Great 
Britains Ministry of Defense Architecture Framework [10].

TOGAF 

The first version of The Open Group Architecture Framework (TOGAF) 
was presented in 1995. This framework was based on the TAFIM (also 
the origin of DoDAF, above), which was donated by the US 
government to The Open Group. The Open Group has since then 
published a number of improvements to the original framework; the 
current version is TOGAF 9.1 [11].

According to the TOGAF, enterprise architecture can be divided into four 
architecture domains or subsets, namely business architecture, data 
architecture, application architecture and technology architecture. TOGAF 
is designed to support all these subsets.

The core of TOGAF is the Architecture Development Method (ADM), 
cf. Figure 7. As the figure indicates, the process is constituted of nine 
steps. In the first step, organizational, administrative and scoping is-
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sues are set up. In the second step, the purpose, or vision, of the archi-
tectural activities is articulated. In the third, fourth and fifth steps, the 
current and target business architecture, information systems 
architecture and technology architecture are modeled respectively. In 
the sixth and seventh step, a plan for migrating to the target 
architecture is created, and in the eighth step, the execution of this plan 
is supervised. In the final step, a process for managing changes to the 
architecture is set in place.

New in TOGAF 9 is the explicit presentation of a metamodel. This meta-
model contains entities such as organization unit, actor, function, role, 
process, business service, data entity, application component, technology 
component and platform service.

Although the TOGAF has its origins in the Department of Defense, The 
Open Group has effectively eliminated all military specificities and when 
reading the documentation today the heritage is difficult to detect. The 
TOGAF is thus considered a general-domain framework, and is applied 
in all types of industries. The Open Group is a vendor- and technology-
neutral consortium that continuously develops the framework.

1.4 Enterprise architecture as decision making support

Because enterprise architecture has a short history, there are many 
different views on what enterprise architecture really means, what it 
should mean, what problems it should address, and how. In this section, 
we argue for some propositions that this book is based upon.

14
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1.4.1 Enterprise architecture analysis

In this book, enterprise architecture is mainly 
considered as a tool for making good decisions 
regarding the enterprise information systems. 
Decision-making can be viewed as a process of 
scenario selection. From the current state of the 
enterprise information system (to the left in 
Figure 8), various change decisions will result 
in new enterprise information systems. We call 
these potential new systems scenarios. Gener-
ally, IT decision makers have some ideas about 
how these scenarios could manifest them-
selves in the short and in the long term (to the 
right in Figure 8).

Enterprise architecture models can represent 
each future scenario, as well as the current 
state. Models over for instance applications, 
business processes, information, and techni-
cal infrastructure may all be employed for 
specifying these scenarios. The main problem 
in decision-making is to choose which one of 
the future scenarios to pursue; which one is 
the better one for a given purpose. This 
choice is aided by enterprise architecture 
analysis as illustrated in Figure 9.

In the ideal case, we would like to have a 
machine that takes the various potential 
scenarios as input and produces an output 
specifying which of the scenarios is best. We 
would of course select the best scenario, 
implementing the decision set required to 
reach that scenario. This machine is what we 

call enterprise architecture analysis. In 
enterprise architecture analysis research, the 
rules determining why one scenario is better 
than another are developed. An informal 
example of such a rule could be A system that 
is loosely coupled is better than one that is 
tightly coupled.

Movie 4: On the Benefits of Enterprise Architecture
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Model-based enterprise information systems management

The main difference between enterprise architecture and alternative 
approaches to enterprise information systems management is perhaps the 
focus on models of the systems and the context within which they reside. 
There are other approaches to enterprise information systems management 
that share many of the views of the enterprise architecture community, but 
no other approach places quite as large emphasis on modeling.

So, what is a model? Common models familiar to most people include 
geographical maps, architectural drawings, miniature buildings, 
airplanes, trains and cars. But there are also more abstract models, such 
as the Bohr model of the atom, where electrons orbit around the 
nucleus in the same way planets orbit the sun. Furthermore, there are 

mental models, representing our cognitive appreciation of worldly 
phenomena. As indicated by the term enterprise architecture, we are 
mainly concerned with graphical models, i.e. drawings over how 
various things and phenomena are related. The analogy between 
enterprise architecture and the traditional architecture of buildings is 
in many ways appropriate.

Models are powerful tools for mainly two reasons: Firstly, they help us 
focus on the important issues when contemplating a certain problem. A 
common map depicting the different nation states of the world leads us 
to focus on questions like what the capital of this or that country is or 
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which country owns this or that island, while a road map leads us to 
questions about the driving distance between various locations. A 
weather map, of course, leads us to other questions. Secondly, models 
provide different people with a common view of an issue. Models both 
provide a common language that helps us communicate with each other 
and also guide us to focus on the same set of issues. Models are thus ef-
fective tools for planning, communicating, and of course, also for docu-
menting (remembering). It is thus an important mission of enterprise 
architecture to provide useful models for the various decision-making 
activities of enterprise information systems planning.

The role of the CIO

There is a special relationship between the role of the Chief Information 
Officer (CIO) and the discipline of Enterprise Architecture. An individual 
or a small group of people close to the senior management of the company 
typically holds the CIO role. The CIO role definition differs with the com-
pany, but generally it is a position with an overarching responsibility for 
all of the enterprise's IT. Sometimes the CIO is the head of the IT depart-
ment. Typically, the primary focus of the CIO is strategic information 
systems planning. Common work products consequently include vision 
documents for information systems, IT strategies, and IT plans. In brief, 
the CIO is typically responsible for overarching enterprise information 
systems management.

Because enterprise architecture is a tool for enterprise information systems 
management and the CIO is the role with the main responsibility for this 
activity, it is reasonable to view the CIO as the main stakeholder of 

enterprise architecture. Therefore, in this book, if no other stakeholder is 
indicated, the CIO will be assumed. Naturally, this does not mean that the 
CIO is the only role with an interest in enterprise architecture, on the con-
trary, all roles involved in enterprise information systems management 
should have some involvement in the enterprise architecture. But of these 
various roles, the CIO is in most companies the main stakeholder.

Goal-driven enterprise architecture

Enterprise architecture advocates the explicit modeling of the organi-
zation and its systems. Modeling, however, can be costly. The world 
is full of things that could be represented, and it would not be diffi-
cult to spend completely unreasonable efforts on modeling the details 
of existing and future systems. Such indiscriminate modeling would 
be of little value, not only due to the effort of producing the models, 
but also because the models would soon be as difficult to understand 
as the real world they represent.

In order to avoid indiscriminate modeling, we advocate for a goal-
driven approach. In brief, only those phenomena that directly relate to 
our enterprise architecture goals are to be modeled. In other words, 
only the information required for answering our most pertinent ques-
tions will be gathered in the enterprise architecture models. This seems 
almost self-evident, but it is not easily accomplished. There are two 
main problems. Firstly, many organizations are not clear on what their 
goals are. For instance, is information security more important than us-
ability in this information system? Or is increased business process effi-
ciency the most important metric to strive for in this business domain? 
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Secondly, the relations between the enterprise information system man-
agement goals and the enterprise architecture models are unclear. If it 
is important to manage the availability of the information systems, 
what enterprise architecture models should we maintain? This book ad-
dresses both of these issues.

Decision-making

All attempts at rational decision-making need to contain a few activities 
[12]. Firstly, the decision-maker must settle on a goal, or a success crite-
rion. What would characterize a good decision as opposed to a poor 
one? For instance, when buying a car, one goal might be to buy as safe a 
car as possible. Actually, as a rule there are multiple goals that need to be 
traded against one another.

Secondly, decision alternatives need to be identified. What options are 
available? Let us suppose that our hypothetical car buyer only has a 
choice between a 1963 Corvette Sting Ray and a 2005 Saab 9-5.

Thirdly, the effects of the decisions on the goals must be elicited. For 
instance, selecting a car that features seatbelts, airbags and good 
brakes, is more likely to lead to the goal than selecting one without 
these features. It is also preferable to select a car with good crumple 
zones, i.e. structural features designed to compress during an accident 
in order to absorb the impact energy.

Fourthly, based on the above analysis of the effects of the alternatives on 
the goal, the decision-maker needs to decide on what information to col-

lect with respect to the different decision alternatives. In this case, the 
decision maker might write down a small checklist over questions to ask 
the dealer: Does this model have seat belts? etc.

Fifthly, the information needs to be collected. A problem often encoun-
tered here is that the gathered information is not completely certain. 
Perhaps the car dealer does not know the answer to some questions. It 
is then normally possible to find the answer elsewhere. For many ques-
tions, however, it is very expensive to get certain answers. To be really 
sure that the crumple zones are properly designed, for instance, it may 
be necessary to conduct crash tests. Such information gathering would 
be more expensive than the planned investment.

Sixthly, when the chosen information is gathered, it needs to be consoli-
dated into an aggregated assessment; which decision alternative is to be 
preferred? For instance, the buyer might need to determine whether it is 
safer to drive a car with seat belts and airbags but poor brakes than a car 
with good brakes, seat belt but no airbag. Also, the decision maker needs 
to estimate whether the credibility of the assessment is acceptable. Is it 
okay to make the decision without knowing the answer to the question 
regarding crumple zones, for instance?

Finally, the decision needs to be made and acted upon. The buyer needs 
to go to the car dealer, pay the money and get the car. There might also 
be a need for monitoring that the decision is really implemented as de-
cided. Perhaps the car needs some adjustments before delivery. The 
buyer would then be satisfied with the decision process only when the 
car was delivered.
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The same decision making process is valid and inevitable for sound 
enterprise information systems management.

Setting the goals

In the context of enterprise information systems management, we consider 
information system goals (as opposed to the simple car buyer example above).

Because it often is hard to measure the effects of information system deci-
sions on the enterprises ultimate goals (business goals such as maximizing 
the profit), it may be necessary to use intermediary goals associated with 
the information systems themselves. For instance, it may be sufficient to 
understand the difference between two systems with respect to their avail-
ability, performance and interoperability in order to choose between them. 
In this case, the effects of the systems on the organizations ultimate goals 
are even less understood in detail, but we are convinced that these 
information system properties do have a positive effect on these goals and 
might be content with that. The benefit of this approach is that we believe 
the assessments of availability, performance and interoperability to be 
much more certain than those of business profit. These information system 
goals are the focus of this book.

Specifying the decision alternatives

If one end of decision-making is the goal, then the other is the available 
set of decision alternatives.

Oftentimes, some decision alternatives are clear, while others are fuzz-
ier. For instance, consider the case of the chief architect considering the 

technological direction of the information system architecture. An alter-
native that may be reasonably clear is the migration to a service-
oriented architecture. Another alternative may be to aim for suite solu-
tions, i.e. to try to reduce the number of vendors as much as possible, 
letting one or a few deliver all required systems. In addition to these 
two alternatives, there are surely others, but which are they? In short, it 
is important but oftentimes difficult for the decision maker to under-
stand what the comprehensive set of options is.

Breaking down the goals

One important aspect of the above mentioned decisions is that they 
have causal effects on the goals. The chief architects decision to move 
the system architecture towards a service-oriented platform has for in-
stance effects on the modifiability and performance of systems, which 
in turn affects the flexibility of the business processes supported by the 
systems, and in the end this (hopefully) has an effect on the ultimate 
organizational goals.

A second important aspect is that the causal relations from decision to 
goals are oftentimes complicated. It would have been a simpler world 
if it were possible to directly change the goals, so that the chief archi-
tect directly could make the decision to increase the flexibility of the 
business processes, instead of having to go via the information system 
architecture. Unfortunately, in this world, it is rare that the phenomena 
that we can manipulate are identical to the objectives we seek.
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In order to mitigate this problem, decision makers need to try to under-
stand the chains of causality. This is no simple task, and we may safely 
claim that relatively few of the causal relations between IT decisions and 
IT goals are certain in any scientific sense of that word. However, incom-
plete knowledge is generally better than no knowledge. Figure 10 presents 
one hypothetic causal theory relating the decision between two infrastruc-
ture alternatives to the goal of information system security.

In this theory, it is believed that the most important determinants of 
information system security are the organizational behavior on the one 
hand and the technical security on the other. Since the decision only 
concerns technical issues, the theory needs not be explicit with regard 
to the organizational issues. Technical security, however, is believed to 

be dependent on the existence of firewalls, the existence of intrusion 
prevention systems and the technical enforcement of complicated user 
passwords. (We grant that this is a simplistic theory over security.) If 
the infrastructure alternatives under consideration differ with respect 
to these features, the decision maker may use the theory to predict the 
causal impact of the decision on the goal.

Eliciting information requirements

If the decision maker has settled on goals, is aware of at least a couple of 
decision alternatives, and has some understanding of the causal effects 
of the decision on the goals, it is time to start examining the alternatives 
in greater detail. Do all infrastructure alternatives include firewalls, or 
only some of them?

It is oftentimes convenient if the information required for the decision is 
collected and presented in a consistent manner to the decision maker. 
Since information gathering can be very time consuming, it would also 
be good if other people than the decision makers themselves could per-
form this activity. In order to allow such third-party data collection, one 
needs to clarify exactly what information is desired.

The importance of this activity is oftentimes overlooked. IT decision mak-
ers often commission various investigations aimed at providing 
decision-supporting information. Unfortunately, the information pre-
sented in the resulting reports is oftentimes not at all compatible with 
the goal breakdown of the decision-maker. The decisions taken are then 
based on unnecessarily incomplete information.
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Collecting evidence

When it has been decided on what information to gather, the complicated 
task of data collection needs to be embarked upon. This task is very much 
like a scientific or a criminal investigation. The major problem is to collect 
evidence that is sufficiently credible for the given purposes. Many ques-
tions in enterprise information systems management are very difficult to 
find trustworthy answers to.

For instance, assume that we are interested in assessing the availability 
of some part of the enterprise information system in a large enterprise. 
One might then be interested in finding out whether two existing 
systems are exchanging information or not. For the investigator in this 
hypothetical example, the first step might be to refer to a previous sur-
vey over the company's information systems and their relations. Perhaps 
that study indeed does contain the required information, but it is five 
years old. It is then uncertain if this information is still correct. In order 
to improve the credibility of the information, the investigator might 
make a phone call to the person listed as system owner. Perhaps this per-
son responds that yes, she believes that the systems are exchanging 
information, because the system administrator said so a while back. The 
investigator may then call the system administrator, but of course, that 
person may also be in error. In order to really get to the bottom of the 
question, our investigator then decides to read the system documenta-
tion. However, such information is often outdated. How then, should the 
investigator proceed to really ensure that the collected information is cor-
rect? Perhaps it would be possible to install an application to the local 

area network that attempts to identify communication between the two 
systems by checking the origin and target addresses of IP-packets on the 
network. This might fail if the communication frequency between the 
systems is lower than the test period. Another alternative would be to 
read through the source code of the systems to find any code that trans-
mits messages between them. However, the source code might not be 
available. And so on.

The main point here is that data collection is a difficult endeavor, and it 
is rarely the case that the collected information is completely credible. 
On the contrary, it is often the case that the gathered information is as-
sociated with a degree of uncertainty.

Assessing goal fulfillment

When the required pieces of information have been gathered, they need 
to be consolidated into a comprehensive judgment. When we know that 
decision alternative A features solidly configured firewalls and intrusion 
prevention systems while decision alternative B incorporates encrypted 
communication and biometric authentication, we need to determine 
which is the better alternative. Of course, this goes back to the goal break-
down of Subsection 1.4.8. A good goal breakdown includes the relative 
importance of the different causal factors, so that it is possible to deter-
mine which of the alternatives is better. It is important here to note that 
all (non-random) decision makers have such weighted broken-down 
goal structures. It is just that these models are normally not made ex-
plicit. They remain hidden in the heads of the decision makers.
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Furthermore, in the aggregation of the various gathered pieces of 
information into a single judgment, it is important to also attempt to get 
a feeling for the credibility of that judgment. If the information base is 
uncertain, the judgment will often also be dubious. If the decision maker 
feels that this uncertainty is excessive, she may choose to return to the 
information gathering activity, attempting to collect better information.

Decision-making, implementation and monitoring

A decision-maker supported by a credible analysis of the effects of deci-
sions on goals is in a good position for making a decision. The only thing 
to do is to choose the option that has the best effect on the goals.

Of course, decision making in the real world is rarely quite so rational. It is 
oftentimes the case that there is more than one decision maker, so that ac-
tivities such as lobbying and negotiation become a large part of the 
decision making process. However, such lobbying and negotiation may 
concern whether the correct goal has been selected, whether the identified 
decision alternatives are reasonable, whether the causal theory linking the 
decisions to the goals are really correct, and whether the collected 
information is credible or not.

In organizations, decision makers are oftentimes not the executors. There 
are various means by which decisions may be implemented. Policies and 
directives may be changed in order to affect the behavior of relevant or-
ganizational units. Specific projects may be initiated, aiming at coming 
about the required changes.

In whatever manner the decision maker attempts to realize the 
decision, there is the risk that the implementation does not succeed. 
Therefore, monitoring activities, measuring whether goals are really 
reached, are commonly employed instruments. Monitoring is very simi-
lar to the process described in this section. It is necessary to determine 
what (goal) to monitor, to break it down into measurable indicators, to 
collect that information, and to aggregate it in order to assess whether 
the goal was actually met.

1.4.2 EA modeling and analysis, the continuation of this book

This first chapter of the book presented the history of information systems 
and enterprise architecture, the enterprise systems in use today and their 
most common integration architectures, as well as the background of 
enterprise architecture as a decision making approach. The rest of this 
book focuses on presenting enterprise architecture models and tools sup-
porting the decision making process.

22

Chapter 1 Introduction



2 An introduction to 
Enterprise Architecture 
modeling.

Basic enterprise 
architecture 



24

This second chapter of the book focuses on 
presenting what enterprise architecture mod-
eling is and how to do it. First, we introduce 
some basic modeling theory e.g. what is a 
metamodel and a model. Then, we provide a 
simple modeling tutorial.

2.1 Modeling theory

Enterprise architecture is a model-based 
approach to business and IT management. 
Just as any other models, enterprise 

architecture models are abstractions and 
simplifications of the real world. The use of 
models is pervasive; from for instance 
geographical maps and calendars that we 
use in our daily lives to advanced models of 
building constructions and the behavior of 
atoms and molecules that are used under 
very specific circumstances. The essence of 
modeling is to capture interesting 
phenomena in the real world, be it roads or 
electrons, and leave out everything else.

The choice of what to filter out from the real 
world into the model is determined by a 
metamodel, or a modeling language. In other 
words, the metamodel is the language in 
which we describe the phenomena of the real 
world, cf. Figure 11. In the discipline of 
enterprise architecture, we are interested not 
in roads or electrons, but in things like 
business processes, organizational roles, 
information systems, communication 
networks, how they behave, as well as how 
they relate to each other. A simple metamodel 
for enterprise architecture could look like the 
one depicted in Figure 12. The metamodel 
describes what classes should be modeled Figure 11: Conceptual picture of modeling

Figure 12: A simplistic metamodel 
example.
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and what relations between them that are of interest. The relations may 
also provide information about the multiplicity restricting the relation; a 
role may for instance own many applications, but the application may 
only have one owner. Moreover, a class may be described by a number 
of attributes; an application may have a certain cost and a business 
process a level of efficiency. The typical metamodel thus consist of 
classes, class relations and attributes.

There are many different metamodels proposed for enterprise 
architecture, including the already mentioned metamodel proposed by 
The Open Group in TOGAF [11]. Also, most EA tools have a built in 
metamodel. What metamodel to use is up to each company. We suggest 
that the choice of metamodel should be based on the goals the company 
has with its EA initiative.

2.1.1 A modeling example

This subsection contains a small modeling example, with focus on 
describing how a metamodel and a model are related. Thus, the presented 
metamodel and model are only examples. We have also chosen not to 
include any attributes here, only classes and relationships. The relation to 
certain information system goals, such as interoperability and 
modifiability is only touched upon and will be detailed later on.

Considering the IT-centered enterprise architecture models, perhaps the 
most common are the ones aiming at describing application (or system) 
cooperation. In its basic form such a model would describe what 
applications that are connected to each other, typically in terms of some 

form of information exchange through interfaces indicating what kind of 
services are provided by the applications. It could also contain 
information regarding what applications are grouped together in larger 
assemblies. A metamodel defining this is found in Figure 13.

An example of an instantiated application cooperation model is found in 
Figure 14. The model illustrates the relationship between the automatic 
meter reading, billing, and customer support applications.
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Figure 13: Metamodel example focusing on application 
cooperation.

Figure 14: Example application cooperation model.
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Notice the relation between the metamodel (Figure 13) and the model 
(Figure 14). The model only contains instantiated classes and relationships 
that are available in the metamodel. That is, the metamodel sets the 
constraints on what is possible to instantiate in a model. If an architect 
realizes that there is another type of class necessary in the model in order 
for it to provide decision support for the goals under consideration, then 
the metamodel must be modified first. For instance, the CIO might have 
requested that there is a need for information about application 
cooperation and application usage. The architect realizes that in order for 
the model to provide this information it needs to contain what processes 
there are and how they relate to the applications. Thus, the metamodel 
needs to be altered for this change, e.g. by adding a process class and 
process-application relationships.

Even this type of small metamodel can aid in decision-making if used in the 
right way. For instance, in relation to information system interoperability, 
the application cooperation model describes what applications that actually 
are connected, and through what interfaces. Related to information system 
modifiability, the application collaboration model can provide information 
about modifiability-affecting factors such as the external coupling of applica-
tions. Information about the source code, such as its size or complexity, 
could potentially also be included as application attributes in this type of 
model. More on this will be presented in chapter 3.

2.1.2 A commonly used metamodel

As explained earlier there are many initiatives presenting different types 
of metamodels, some more similar to each other than others. Our stand-

point is that the choice of metamodel should be based on the goals one 
has. However, in order to show what a typical metamodel could contain 
when it comes to classes and relationships we here briefly introduce you 
to one of the more common ones.

Dr. Marc Lankhorst and his colleagues have proposed what is one of the 
most well-known and widespread metamodels, called ArchiMate [13]. 
ArchiMate is an open, independent, and general modeling language for 
enterprise architecture. The Open Group accepted the ArchiMate 
metamodel as a technical standard in 2009. The metamodel consists of 
three layers; the Business layer, the Application layer and the Technology 
layer, where the technology supports the applications, which in turn 
support the business. Each layer consists of a number of classes and 
defined class relationships. The classes in each layer are categorized into 
three aspects of enterprise architecture: 1) The passive structure - 
modeling informational objects. 2) The behavioral structure - modeling 
the dynamic events of an enterprise. 3) The active structure – modeling 
the components in the architecture that perform the behavioral aspects. 
Figure 15 presents the ArchiMate metamodel.

Below, the ArchiMate classes and relationships are described in detail in [13].

2.2 Modeling tutorial

This section will guide you through a modeling tutorial using the 
Enterprise Architecture Analysis Tool (EAAT). There are altogether two 
EAAT tools - an EAAT Class Modeler and an EAAT Object Modeler. See 
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chapter 11 for more information on class modeling and chapter 12 for mod-
eling patterns and practices. 

In this tutorial, we will introduce the classes and relationships of a meta-
model capable of analyzing several different quality attributes, including 
service availability, modifiability, and cost. In this first subsection, the at-
tributes are not explained, these will be presented later in the book (cf. 
chapter 3). The metamodel used here is partially based on ArchiMate and 
contains classes from the business layer, the application layer, and the in-
frastructure layer.

Application layer

An application service is defined as a unit of functionality that a system 
exposes to its environment and that displays automated behavior. An 
application service could be playing a game of chess with a user, or 
printing a shopping list or calculating a ballistic trajectory. The important 
thing is that the service provides something meaningful to the user.

An application service is exposed to the environment, but it is realized 
by an application function. For the chess game, an application function 
could be calculating the next move. To calculate the next move is not in 
itself useful to the chess player, but it is a function that will contribute to 
something useful, that is to an application service.

An application component is a modular, deployable, and replaceable part of a 
software system. It is the entity that performs application functions. It could 
for instance be the Chess software that plays the chess game with the user.
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Figure 15: The ArchiMate metamodel.
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An application collaboration is used in order to model what application 
components that are acting together to perform a collective behavior. It 
could for instance be the collaboration between the chess software and a 
web component, in order to find other players to compete with or to be 
able to post your game results online.

Business layer

Just as the chess player uses the chess application, a designer in the 
automotive industry may use a design application to sketch on a car.

The business process is the Designing of the vehicle, and processes may use 
application services, so here is an important link between the business and 
the IT. Other processes in a car company could be producing the vehicle 
and shipping the vehicle.

Business processes are performed by roles. In this case, the designer is a 
role. Other roles could be Chief Production Officer and Machine Operator.

The customer, however, sees nothing of the design, production and ship-
ping of a car. The customers interact with the company through business 
services. An example of a business service is Car selling.

Infrastructure layer

Moving to the bottom part of the metamodel, the application layer is 
mirrored by an underlying infrastructure layer. In the same manner as 
business processes may use application services, application functions 
may use infrastructure services. Examples of infrastructure services are 
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Figure 16: Tutorial metamodel example.
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Messaging, Data management and Printing. Just as in the case of 
applications, infrastructure services are realized by infrastructure 
functions. These are in turn performed by nodes. A node could be an 
IBM Mainframe running z/OS, or a PC running Microsoft Windows.

In all, the metamodel is composed of ten classes, cf. Figure 16, and this 
metamodel will allow us to analyze system qualities such as service 
availability, modifiability, and cost.

The tutorial is composed of eight steps that will guide you through an 
enterprise architecture modeling and analysis example. The 
background is a case at a fictive energy company called ACME, which 
is about to start a project to improve the business process of analyzing 
automatic meter reading data. The architect at ACME has a proposal 
for the CIO that includes new applications and infrastructure 
supporting the process. The scenario also includes the hiring of a new 
person in charge of the meter data analysis. The CIO has expressed that 
the most important aspects to consider, besides getting the right 
functionality, is to have high availability and that the solution is easy to 
change in the future in case new requirements occur. Also the company 
has a tight budget for these kinds of investments, thus the total cost is 
also a major factor in this case.

Outline

1. Add a first infrastructure layer with three classes and evaluate the 
availability

2. Add a second infrastructure layer with three additional classes 
and evaluate its availability

3. Add an application function, connect it to the two infrastructure 
services, and evaluate its availability

4. Add an application component, connect it to the application function, 
and see how it affects the availability

5. Add an application collaboration with coupling evidence

6. Add an application service and evaluate the modifiability

7.  Add a business layer and evaluate the business process availability

8. Add cost evidence to the model and evaluate the total business 
process cost

The following paragraphs will detail the modeling steps.

Step one: Add a first infrastructure layer

• Add an Infrastructure Function

• Name it Local meter reading

• Press the calculate button

• Consider the Availability results (the availability of the Local meter 
reading function should be a normal distribution centered around 0.95)

• Add a Node
29
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• Name it Local meter readers

• Connect the two classes

• Add 0.992 (99,2 %) as evidence to the attribute Availability of the 
Local meter readers node

• Press the calculate button

• Consider the Availability results (the availability of the Local 
meter reading function should now be 0.992 instead)

• Add an Infrastructure Service and name it Aggregated meter readings

• Connect the Aggregated meter reading service and the Local meter 
reading function. The Aggregated meter readings service is realized 
by the Local meter reading function.

• Press calculate again and see how the availability of the node, that first 
had an effect on the function, now also has an effect on the service.

• Save the model regularly.

Step two: Add a second infrastructure layer

• Add a second Node and name it Database, add a second Infrastructure 
function and name it Data transmission, and add a second 
Infrastructure service and name it Data transfer.

• Connect the Node and the Function.

• Connect the function and the service with a RealizeAND association 
so the Data transfer service is Realized by the Data transmission 
function.

• Add 0.991 (99,1 %) as evidence to the attribute Availability of the 
Database node.

• Press the calculate button and consider the Availability results (the 
availability of the Data transfer service should be 0.991)

• Save the model regularly.

Step three: Calculate the availability of an application function

• Add an Application Function and name it Data collection
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Figure 17: The application function availability viewpoint of the tuto-
rial model example.
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• Connect the Data collection function with the Aggregated meter 
readings and the Data transfer services, since the Data collection function 
uses both services the relationship should be of type AND. The 
relationships should be DataCollection.useAND.LocalMeterReading 
and DataCollection.useAND.DataTransmission.

• Press the calculate button and consider the Availability of the Data 
collection function, which should be 0.983 (98,3 %)

• See the application function availability viewpoint of the model in 
Figure 17.

• Save the model regularly.

Step four: Add an application component

• Add an Application Component and name it AMR master

• Connect the AMR master with the Data collection function

• Press calculate and consider the Availability result of the Data 
collection, the result should now read 94,9 %

• Add 0.995 as evidence to the attribute Availability of the AMR 
master component

• Press calculate and consider the Availability result of the Data collection 
function again, the result should now read 97,8 %

• Save the model regularly.

Step five: Add application collaboration

• Add a second Application component and name it Business intelligence.

• Add an Application collaboration class and name it Data exchange.

• Connect the two Application components through the Application 
collaboration class.

• Add a second Application function and name it Data compiler.

• Connect the AMR master and the Business intelligence components 
with the Data compiler function.

• Add Size 430000 and Gearing factor 53 to the AMR master, as well as 
Size 75000 and Gearing factor 55 to the Business intelligence component.

• Press calculate and consider the the External couplings attributes of 
the two components, all four should now be 1 (since we have one 
collaboration of unknown kind).

• Add 1 Content coupling, 2 Common couplings, and 11 Data couplings to 
the Data exchange collaboration between the two components.

• Press calculate again and consider the External coupling attributes 
of the two components, all four should new be 5,9 instead.

• Save the model regularly.

31

Chapter 2 Basic enterprise architecture



Step six: Calculate application modifiability

• Add an Application service and name it Compiled meter data.

• Connect the Compiled meter data service with the two Application 
functions, since the service is Realized by both functions the relationship 
should be of type AND.

• Add a baseline Gearing factor of 53 to the Compiled meter data service.

• Press calculate and consider the Modifiability of the service, which 
should be 3. This is a rather low value indicating that the service 
will be difficult/costly to change in the future, mainly due to large 
source code and the tight coupling between the components 
realizing the service.

• See the application service modi_ability viewpoint of the model in 
Figure 18.

• Save the model regularly.

Step seven: Add a business layer

• Add a Business process and name it Analyze meter data.

• The Analyze meter data process Uses the Compiled meter data service. 
Add this relationship (since there is only one user, either userAND or 
UserOR) can be selected.

• Add a Role and name it Meter data analyzer.

• Connect the Meter data analyzer role with the Analyze meter data 
process.

• Add 99 % Availability as evidence for the Role and 99,7 % Availability 
for the Business intelligence component.

• Press calculate and consider the Availability for the Business process 
Analyze meter data, which should be 97 %. This is a rather low value 
for a business process and it is mainly due to the high dependence of 
the manual work of the Meter data analyzer role.

• Save the model regularly.
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Figure 18: The application service modifiability viewpoint of the 
tutorial model example.
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Step eight: Calculate the business process cost

• Add the Initial and Yearly costs of the Nodes, Components, and Role 
as described in Table 1.

• Press calculate and consider the cost of the business process Ana-
lyze meter data, which should be 3.480.000 SEK. This cost is based 
on the assumption that the role, components, and nodes are new. 
Once these have been in place for some time the initial costs will 
be written-off and the total cost of the service will only be based 
on the yearly costs (this has not been implemented in the meta-
model yet). Also, in this small example architecture the business 
process does not share any components, nodes, or the role with 
others. If this would have been the case the costs would also have 

been shared, thus a smaller economic burden would have fallen 
on this particular service.

• Save the model regularly.

• The complete model can now be seen in Figure 19.
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Table 1: Initial and yearly cost data for modeling tutorial.

Class Type Initial Cost Yearly Cost

Local meter 
readers

Node 1000000 100000

Database Node 50000 10000

AMR master App.Comp. 300000 45000

Business 
intelligence

App.Comp. 450000 25000

Meter data 
analyzer

Role 500000 1000000

Figure 19: Complete tutorial model example after the nine steps.
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The CIO is satisfied with the functionality of the solution and the cost, but 
there is a wish to find a scenario with higher modifiability and at least 
better availability in the infrastructure and application layers. Therefore, 
the architect needs to find a second scenario that the CIO can compare this 
solution with before a decision can be made.

This chapter of the book has focused on explaining what a metamodel is 
and how to model architectures. The next chapter will present a 
metamodel for enterprise architecture analysis of multiple attributes 
including modifiability, availability, cost, interoperability, application 
usage, and data accuracy.
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3 A brief description of the 
MAP class model.

The chapter briefly 
introduces the MAP class 
model. Subsequently, 
chapters 4 through 10 
describe the individual 
components (viewpoints), 
which the MAP class model 
contains.

The Multi-Attribute Prediction 
(MAP) class diagram
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This chapter presents a multi-attribute analysis 
metamodel for application modifiability, data 
accuracy, application usage, service availability, 
interoperability, cost and utility. Previous work 
on combining different quality attributes in one 
metamodel has been presented in [14-16]. Each 
of the six attributes are then detailed as separate 
viewpoints in the coming chapters.

For the interested reader this chapter is based 
on two fundaments, namely the Enterprise 
Architecture Analysis Tool3 (EA2T) [17-20] 
and the Predictive, Probabilistic Architecture 
Modeling Framework (P2AMF) [21], also 
referred to as Probabilistic Imperative Object 
Constraint Language (Pi-OCL) [22] or 
Probabilistic Object Constraint Language (P-
OCL) [23, 24].

3.1 Metamodel elements

This section presents the metamodel, cf. Figure 
20. The main classes in the metamodel are based 
on ArchiMate, thus the three layers; technology, 
application, and business are all used. The three 
categories; passive, behavior, and active structure 
are also employed in the metamodel. The 

metamodel has five viewpoints tailored for 
specific purposes, these are presented in the 
coming sections.

In the metamodel there are six classes (in 
grey) which are not used by the modeler 
namely; BehaviorStructure, Service, Behav-

iorElement, PassiveComponentSet, ActiveS-
tructureElement and Requirement. These six 
classes all have two or more subclasses inher-
iting their properties. This means that the at-
tributes, relationships, constraints, and behav-
ior of the parent class is also existent in the 
child class, i.e. inheritance from its parent. 
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Figure 20: The metamodel.



Each child class can also have its own properties. A parent class is some-
times referred to as superclass and the child subclass.

The rest of the subsection will present the definitions of all the meta-
model classes and class relationships. The attributes will be presented in 
the coming viewpoint sections.

3.1.1 Inheritance elements

Behavior element

BehaviorStructure is the central class in the metamodel. It is not used 
when modeling, but plays an important role since both Services and Be-
haviorElements are inheriting from this class. Furthermore the Busi-
nessService, ApplicationService, and InfrastructureServ-
ice all inherits from the Service class, while the BusinessProcess, 
ApplicationFunction, and InfrastructureFunction inherits 
from the BehaviorElement class. There are seven class relationships in 
the behavior element class.

Relationship: realize. In ArchiMate the realization relationship links a logical 
entity with a more concrete entity that realizes it. The realize relation 
Service.realizer.BehaviorElement or the other way around, 
BehaviorElement.realizee.Service is used when an behavior element 
is realizing a service. Meaning that the functionality of the service is pro-
vided by the behavior element.

Relationship: used by. In ArchiMate the used by relationship models the 
use of services by processes, functions, or interactions and the access to 

interfaces by roles, components, or collaborations. The 
BehaviorElement.uses.Service or the other way around 
Service.usedBy.BehaviorElement is used when a behavior element 
is using a service to perform its behavior.

The two relations, realize and usedBy, are available as both an AND and 
an OR option. The correct usage of these are of great importance when 
evaluating service availability (cf. section 7). In Figure 21 the Service is 
realized by four BehaviorElements, A, B, C, and D. Where, A and B 
realize the Service through the realizeAND relationship. While, C and 
D realize the Service through the realizeOR relationship. When evaluat-
ing for instance availability this example would mean that A, B, and one 
of C or D have to be available, A ! B ! (C " D).

Relationship: speaks language. The speaks language relation, 
BehaviorStructure.language.Language or the other way around, 
Language.speaker.BehaviorStructure is used in order to model what 
languages a behavior element can understand or vice versa what behavior 
elements that are capable of understanding a certain language.
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R e l a t i o n s h i p : r e a d . T h e r e a d r e l a t i o n , 
BehaviorStructure.read.PassiveComponentSet or the other 
way around PassiveComponentSet.reader.BehaviorStructure is 
used in order to model that a behavior element is reading a certain 
passive component set.

R e l a t i o n s h i p : w r i t e . T h e w r i t e re l a t i o n s 
BehaviorStructure.written.PassiveComponentSet or the other 
way around PassiveComponentSet.writer.BehaviorStructure is 
used in order to model that a behavior element can write to a certain pas-
sive component set.

Behavior element 

BehaviorElement is a class not used when modeling, it is a subclass of 
BehaviorStructure and a superclass to BusinessProcess, Applica-
tionFunction, and InfrastructureFunction. BehaviorElement 
has one class relation added on top of the inherited relations from the Be-
haviorStructure.

Relation: assignment. In ArchiMate the assignment relationship links 
active elements (e.g., business roles or application components) with 
units of behavior that are performed by them, or business actors with 
business roles that are fulfilled by them. In the metamodel, 
BehaviorElement.assignee.ActiveStructureElement or the 
o t h e r w a y a r o u n d 
ActiveStructureElement.assignor.BehaviorElement is used in 
the same way.

Service

The service class is not used for modeling, it is a subclass of Behavior-
Structure and superclass of the three classes; BusinessService, 
ApplicationService, and InfrastructureService.

Active structure element

ActiveStructureElement is a class not used for modeling, it is a super-
class to some of the classes in the metamodel which performs a behavior 
aspect. The ActiveStructureElement is a superclass to Node, Role 
and ApplicationComponent. The .ActiveStructureElement has 
one relationship.

Relation: Assignment. In ArchiMate the assignment relationship links 
active elements (e.g., business roles or application components) with 
units of behavior that are performed by them, or business actors with 
business roles that are fulfilled by them. In the metamodel, 
BehaviorElement.assignee.ActiveStructureElement or the 
o t h e r w a y a r o u n d 
ActiveStructureElement.assignor.BehaviorElement is used in 
the same way.

Passive component set

PassiveComponentSet is a class not actively used for modeling, it is a 
superclass to two informational classes RepresentationSet and 
DataSet. The passive component set has four relationships.
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Relation: Precedence. The precedence relationship is a self reference, it 
links the preceding passive component sets with the subsequent passive 
component set. The relationship is used to model which previous data 
that is composed to the new passive component set.

R e l a t i o n s h i p : r e a d . T h e r e a d r e l a t i o n , 
BehaviorStructure.read.PassiveComponentSet or the other 
way around PassiveComponentSet.reader.BehaviorStructure is 
used in order to model that a behavior element is reading a certain 
passive component set.

R e l a t i o n s h i p : w r i t e . T h e w r i t e r e l a t i o n s h i p s 
BehaviorStructure.written.PassiveComponentSet or the other 
way around PassiveComponentSet.writer.BehaviorStructure is 
used in order to model that a behavior element can write to a certain pas-
sive component set.

R e l a t i o n s h i p : l a n g u a g e . T h e l a n g u a g e r e l a t i o n s h i p , 
PassiveComponentSet.language.Language is used to model which 
language the PassiveComponentSet is stored in.

Requirement

Requirement is a class not actively used for modeling, it is a superclass 
to the three requirement classes: ServiceRequirement, 
InterfaceRequirement and ApplicationServiceRequirement. 
In ArchiMate a requirement is defined as a statement of need that must be 
realized by a system. The Requirement has one relationship.

R e l a t i o n s h i p : c o n c e r n . T h e c o n c e r n re l a t i o n s h i p 
Requirement.concern.Stakeholder or the other way around 
Stakeholder.concern.Requirement is used to model which stakeholder 
that has a certain requirement.

3.1.2 Modeling elements

Business service

In ArchiMate a business service is defined as a service that fulfills a business 
need for a customer (internal or external to the organization). The 
BusinessService is a subclass of the Service. It is realized by business 
processes and can also be used by a business process. The business services 
is typically the core of an enterprise apart from physical products 
manufactured. Examples of a business service are accounting, marketing, 
selling, and intelligence gathering & analysis services.

Application service

In ArchiMate an application service is defined as a service that exposes 
automated behavior. The ApplicationService is a subclass of Service. 
It has one extra relationship, application use. The application service is 
realized by application functions, it can be used by both application 
functions and business processes. Examples of application services are sales 
order compiling, automated information tracing and intelligence collecting, 
and transaction processing.

R e l a t i o n s h i p : a p p l i c a t i o n u s e . T h e r e l a t i o n s h i p , 
ApplicationService.appUse.ProcessServiceInterface, is used 
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to bind an application service the process service interface class when 
performing application usage evaluation (cf. section 6).

Infrastructure service

In ArchiMate an infrastructure service is defined as an externally visible unit 
of functionality, provided by one or more nodes, exposed through well-
defined interfaces, and meaningful to the environment. The 
InfrastructureService is a subclass of Service. It is realized by 
infrastructure functions and can be used by application functions and 
infrastructure functions. A infrastructure function could for example be data 
storage, file naming and version control, or information passing.

Business process

In ArchiMate a business process is defined as a behavior element that 
groups behavior based on an ordering of activities. It is intended to 
produce a defined set of products or business services. In our 
metamodel the BusinessProcess is a subclass of the 
BehaviorElement. It also has its own reference, process use. The 
business process can realize BusinessServices through the realize 
relationship. It can use ApplicationFunctions modeled with the 
usedBy relationship and it can have Roles assigned to it with the 
assignment relationship. Examples of business processes are 
management processes such as governance and strategic 
management, operational processes such as manufacturing and 
development, or supporting processes such as recruitment and 
technical support.

Re la t i onsh ip : p roc e s s us e . The process use , 
BusinessProcess.procUse.ProcessServiceInterface, is used 
when evaluating application usage (cf. section 6).

Application function

In ArchiMate an application function is defined as a behavior element 
that groups automated behavior that can be performed by an applica-
tion component. The ApplicationFunction realize Application-
Services modeled with the realize relationship, it can make use of In-
frastructureServices modeled with a use relationship, it can also 
read and write PassiveComponentsSets modeled with the read and 
write relationships. The application function defines the behavior of an 
application component, the application component of which the appli-
cation function is performing its functionality is modeled with the as-
signment relationship. Essentially the application function describes 
the important behavior of an application component and how it acts 
with the environment. Examples of application functions are billing 
and work order administration.

Infrastructure function

In ArchiMate an infrastructure function is defined as a behavior element 
that groups infrastructural behavior that can be performed by a node. The 
InfrastructureFunction can realize InfrastructureServices 
through the realize relationship, it can also be assigned Nodes with the 
assignment relationship. Example of infrastructure functions are access 
control and data management and distribution.

40

Chapter 3 The MAP class diagram



Application component

In ArchiMate an application component is defined as a modular, 
deployable, and replaceable part of a software system that encapsulates its 
behavior and data, and exposes these through a set of interfaces. The 
ApplicationComponent is a subclass of ActiveStructureElement 
and has one of its own relationships. The behavior of the application 
component is modeled through the use of ApplicationFunctions 
related to the ApplicationComponent with the assignment relationship. 
Examples of applications functions are units of software such as web 
containers and data managers or a billing component.

Relat ion: co l laborat ion. The col laborat ion relat ionship, 
ApplicationComponent.collaboration.ApplicationCollaboration 
is used to model what application components that are acting together to 
perform a collective behavior.

Node

In ArchiMate a node is defined as a computational resource upon which 
artifacts may be stored or deployed for execution. The Node is a subclass 
of the ActiveStructureElement. Examples of nodes are client work-
stations, web and database servers, and programmable logic controllers.

Role

In ArchiMate a business role is defined as the responsibility for performing 
specific behavior, to which an actor can be assigned. The Role is a subclass 
of the ActiveStructureElement.

Representation set

The RepresentationSet is a subclass of PassiveStructureElement. 
The representation set is used to model unstructured data stored either 
electronically or on paper. The representation set could for instance be used 
to model a collection of meeting protocols stored as PDF-files in a folder.

Data set

The DataSet class is a subclass of PassiveStructureElement. The 
Data set is used to model structured data, typically stored in databases. 
A data set is an aggregation of multiple data objects. As an example a 
data set could be a collection of customers in a customer database.

Application collaboration

In ArchiMate an application collaboration is defined as an aggregate of 
two or more application components that work together to perform 
collective behavior. Between every pair of ApplicationComponents 
that are collaborating there should be an ApplicationCollaboration 
connected to the two ApplicationComponents with the collaboration 
relation. An example of an application collaboration is when a product 
order component is collaborating with a billing component to create a bill 
in order to charge a customer.

Relat ion: co l laborat ion . The col laborat ion relat ionship, 
ApplicationComponent.collaboration.ApplicationCollaboration 
is used to model what application components that are acting together to 
perform a collective behavior.
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Process service interface

The ProcessServiceInterface is an intermediate class used for 
application usage evaluation (cf. section 6). It links a BusinessProcess 
with ApplicationServices and ApplicationComponents in order 
to do the evaluation. The class has three relationships.

Re la t i onsh ip : app l i c a t i on usage . The re la t ionship , 
ApplicationService.appUse.ProcessServiceInterface, is used in 
order to bind an application service to the usage evaluation.

R e l a t i o n s h i p : p r o c e s s u s a g e . T h e r e l a t i o n s h i p , 
BusinessProcess.procUse.ProcessServiceInterface, is used in 
order to bind a business process to the usage evaluation.

Relationship: is af fected usage. The relationship, 
ProcessServiceInterface.isAffectedUsage.UsageRelation, is used in 
order to bind an application component to the usage evaluation through the 
intermediate class UsageRelation.

Usage relation

The UsageRelation class is an intermediate class used for application 
usage evaluation (cf. section 6). The class has two relationships.

Relationship: is af fected usage. The relationship, 
ProcessServiceInterface.isAffectedUsage.UsageRelation connects 
the two intermediate classes ProcessServiceInterface and UsageRelation for 
application usage evaluation.

Relat ionship : i s a f f ected . The relat ionship, 
UsageRelation.isAffected.ApplicationComponent, connects the 
application component to the usage relation class for application usage 
evaluation.

Language

The Language class is used to model a language. It can be a natural 
language such as English as well as a technical language such as the 
programming language Java or a protocol following IEC 61850.

Relationship: speaks language. The speaks language relationship, 
BehaviorStructure.language.Language or the other way around, 
Language.speaker.BehaviorStructure is used in order to model what 
languages a behavior element can understand or vice versa what behavior 
elements that are capable of understanding a certain language.

R e l a t i o n s h i p : l a n g u a g e . T h e l a n g u a g e re l a t i o n s h i p , 
PassiveComponentSet.language.Language is used to model which lan-
guage the PassiveComponentSet is stored in.

Service requirement

The ServiceRequirement class is a subclass of Requirement it is also 
the superclass of the ApplicationServiceRequirement class. The 
service requirement is used to model the requirements a stakeholder has 
on a certain service. The service requirement class has one relationship.
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Relationship: requirement on. The requirement on relationship, 
ServiceRequirement.requirementOn.Service or the other way around, 
Service.hasRequirement.ServiceRequirement is used to model the 
requirements which a service should fulfill.

Application service requirement

The ApplicationServiceRequirement class is a subclass of 
ServiceRequirement. The application service requirement has extra 
properties specific to the application service domain.

Interface requirement

The InterfaceRequirement class is a subclass of Requirement. The 
interface requirement has extra properties specific to the application 
usage domain.

Relationship: requirement on. The requirement on relationship, 
InterfaceRequirement.requirementOn.ProcessServiceInterface 
or the other way around,

ProcessServiceInterface.hasRequirement.InterfaceRequirement 
is used to model the requirements which a process service interface should 
fulfill.
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4 A description of MAP’s  
application modifiability 
viewpoint.

Application 
modifiability



45

Business environments today progress and 
change rapidly to keep up with evolving 
markets. Most business processes are supported 
by information systems and as the business 
processes change, the systems need to be 
modified in order to continue supporting the 
processes. Modifications include extending, 
deleting, adapting, and restructuring the 
enterprise systems [25]. The modification effort 
ranges from adding a functional requirement in 
a single system to implementing a service-
oriented architecture for the whole enterprise.

An essential issue with today's information 
systems is that many of them are 
interconnected, thus a modification to one 
system may cause a ripple effect among 
other systems. Also, numerous systems have 
been developed and modified over many 
years. Making further changes to these 
systems might require a lot of effort from the 
organization, for example due to a large 
number of previous modifications 
implemented ad hoc. Problems like these 
raise questions for IT decision makers such 
as: Is the source code easy to grasp? Which 

systems are interconnected and how? Are 
the systems too complex?

Several studies show that the modification 
work is the phase of a system's lifecycle that 
consumes the greatest portion of resources; 
[26] report that over 70 % of the software 
budget is spent on maintenance, [27] refers to 
studies stating that the maintenance cost, 

relative to the total life cycle cost of a software 
system, has been increasing from 40 % in the 
early 1970s up to 90 % in the early 1990s, and 
[28] states that “the cost of maintenance, rather 
than dropping, is on the increase”.

The activities of modifying enterprise 
information systems are typically executed in 
projects, and information system decision 
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makers often find it difficult to estimate and plan their change projects. 
Thus, a large proportion of the projects aiming to modify a system 
environment fail. That is, the projects tend to take longer time and cost 
more than expected. [29] state that 23 % of the software projects are 
cancelled before completion, whereas of those completed only 28 % were 
delivered on time, and the average software project overran the budget by 
45 %. This can often occur due to lack of information about the systems 
being changed. According to [29], software engineers must be able to 
understand and predict the activities, as well as manage the risks, through 
estimation and measurement. Therefore, it would be useful for the 
decision makers to gather more information in a structured manner and 
use this information to analyze how much effort a certain modification to 
an enterprise information system would require.

This section of the book presents the modifiability viewpoint, which 
intends to provide such decision support. The original work that this 
section is based on can be found in [30-35].

4.1 How to measure application modifiability

The issue of dealing with modifiability is not an enterprise architecture 
specific problem. Managing and assessing information system change 
has been addressed in research for many years. Some of the more well-
known assessment approaches include the COnstructive COst MOdel 
(COCOMO), and the Oman taxonomy.

COCOMO, COnstructive COst MOdel, was in its first version released in 
the early 1980's. It became one of the most frequently used and most 

appreciated IT cost estimation models of that time. Since then, 
development and modifications of COCOMO have been performed 
several times to keep the model up to date with the continuously evolving 
software development trends. Effort estimation with COCOMO is based 
on the size of the software, an approximate productivity constant A, an 
aggregation of five scale factors E (precentedness, development flexibility, 
architecture/risk resolution, team cohesion, and process maturity), and 
effort multipliers to 15 cost driving attributes [36].

The Definition and Taxonomy for Software Maintainability presented by 
Oman et al. in [37] provides a hierarchical definition of software 
maintainability in the form of a taxonomy. Oman et al. found three broad 
categories of factors influencing the maintainability of an information 
system namely; management, operational environment, and the target 
system. Each of these top-level categories is then further broken down 
into measurable attributes. According to Oman et al. the taxonomy can 
be useful for developers by defining characteristics affecting the software 
maintenance cost of the software they are developing.

Hence, the developers can write highly maintainable software from the 
beginning by studying the taxonomy. Maintenance personnel can use the 
taxonomy to evaluate the maintainability of the software they are working 
with in order to pin point risks et cetera. Project managers and architects 
can use the taxonomy in order to prioritize projects and locate areas in 
need of re-design.

COCOMO focuses on the cost of developing or changing information 
systems, where architecture modifiability is one part of it. Oman et al. do 
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not provide any support for analysis in their taxonomy. Thus, neither of 
these fit our purpose perfectly. However, both COCOMO and Oman et 
al. use cost driving/maintenance factors related to software complexity, 
size, and coupling. These three metrics are the most commonly used 
when estimating the modifiability of information systems. The following 
paragraphs of this section will present each one of these in detail.

Complexity

IEEE defines complexity as the degree to which a system or component 
has a design or implementation that is difficult to understand and verify 
[38]. Halstead's complexity metric was introduced in 1977 [39], it is 
based on the number of operators (e.g. and, or, while) and operands (e.g. 
variables and constants) in a software program. A drawback of 
Halstead's complexity metric is that it lacks predicting power for 
development effort since the value can be calculated first after the 
implementation is complete [29]. Information flow complexity, IFC, as 
presented in [40] is based on the idea that a large amount of information 
flows is caused by low cohesion, low cohesion is in turn causing a high 
complexity. One problem with the IFC metric is that it produces a lower 
complexity value for program code using global variables compared to a 
solution which uses function arguments when called, this is 
contradicting to common software design principles [41]. In this book 
McCabe's Cyclomatic Complexity (MCC) metric is employed [42]. [29] 
has identified that MCC is useful to, identify overly complex parts of 
code, identify non-complex part of code, and to estimate maintenance 
effort. MCC is based on the control structure of the software, the control 

structure can be expressed as a control graph. The cyclomatic complexity 
value of a system with the control graph G is calculated with the 
following equation: v(G) = e − n + 2 or equivalently v(G) = DE + 1 
where e =number of edges in the control graph, n=number of nodes in 
the control graph, DE=number of predicates. Considering the example 
code presented in Figure 22 the control graph Gsort can be obtained.
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Figure 22: An example of a control graph Gsort with v(Gsort) = 4

void sort(int *a, int n)

Int i, j, t;

n < 2?

i=0

No

End i<n-1 ?

Yes

No

j < n ?

Yes

i=++

No

a[i]>a[j] ?

Yes

t=a[i]
a[i]=a[j]
a[j]=t j=++

Yes

No

j=i+1

void sort(int *a, int n) {
 int i,j,t;
 if(n<2) return;
 for(i=0;i<n-1;i++) {
  for(j=i+1;j<n;j++) {
   if(a[i]>a[j]) {
    t=a[i];
    a[i]=a[j];
    a[j]=t;
   }
  }
 }
}
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The MCC value of Gsort (cf. Figure 22) is v(Gsort) = 14 − 12 + 2 = 4. McCabe 
has performed a study indicating that the cyclomatic complexity value of 
a component should be kept below 10 [42]. MCC has been used in other 
studies providing additional complexity levels and guidelines on how 
complex a piece of software code is [29]:

• 1-4, a simple procedure.

• 5-10, a well-structured and stable procedure.

• 11-20, a more complex procedure.

• 21-50, a complex procedure, worrisome.

• 50<, an error-prone, extremely troublesome, untestable procedure.

Size 

Lines Of Code (LOC) and Function Points (FP) are two ways to measure 
the size of an information system. FP are based on the inputs, outputs, 
interfaces and databases in a system [29]. FP have the advantage of being 
technology independent, reasonably reliable and accurate, and they are 
effective from an early stage of the system life cycle [29]. The 
disadvantages of the FP size metric is that it requires significant effort to 
derive [29]. The LOC in a system provides the core functionality and can 
therefore be of importance when estimating how easy it would be to 
implement changes to the system. LOC in a system can be measured in 
different ways: Using source lines of code (SLOC) every line of code in the 
software implementation is counted. Non-commented lines of code 

(NLOC) is a subset of the previous option, where the blank lines and 
comments are excluded. Logical lines of code (LLOC) is another approach, 
where only the executable statements of the software are counted. The 
most popular option is NLOC, however the most important thing is to be 
consistent with the way you measure [29]. No matter which LOC measure 
that is used it needs to be well specified to provide a reliable measurement 
[29]. A framework on how to measure lines of code has been created by 
the Software Engineering Institute of Carnegie-Mello University [43], with 
the aid of this framework the LOC measure can be specified to provide a 
coherent way of how to measure LOC.

Aivosto suggests a classification of system size for systems coded with 
Visual Basic 2. The classification is based on long-time experience, but has 
not been validated making it less reliable. However, given the size of the 
systems studied in [44], the classification seems trustworthy. Related to 
system size, operating systems can be much larger with over 40 million 
LOC [45], however an operating system would not be modeled as an 
application that an enterprise wishes to modify. Rumor has it that SAP has 
over 250 million LOC in their product portfolio, but we believe that no 
enterprise would model SAP as one application. Thus, the classification of 
system size by Aivosto still seems appropriate for our purpose.

Since different programming languages are more or less expressive per 
line of code [29], a gearing factor can be used when comparing the lines of 
code of two systems if they are created in different programming 
languages. A high gearing factor value indicates poor expressiveness, 
hence a programming language with a low gearing factor require less lines 
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of code to implement a function; given that the language is appropriate to 
use. [46] has published gearing factors for some programming languages 
of which a subset is presented in Table 3.

Coupling

IEEE has defined coupling as the manner and degree of interdependence 
between software modules. Types include common-environment 
coupling, content coupling, control coupling, data coupling, hybrid 
coupling, and pathological coupling [38]. Fenton and Melton have 
developed a coupling metric based on Myers coupling levels [47], these 
levels are:

• Content coupling relation R5 : (x, y) ∈ R5 if x refers to the internals of 
y , i.e., it branches into, changes data, or alters a statement in y.

• Common coupling relation R4 : (x, y) ∈ R4 if x and y refer to the same 
global variable.

• Control coupling relation R3 : (x, y) ∈ R3 if x passes a parameter to y 
that controls its behavior.

• Stamp coupling relation R2 : (x, y) ∈ R2 if x passes a variable of a record 
type as a parameter to y , and y uses only a subset of that record.

• Data coupling relation R1 : (x, y) ∈ R1 if x and y communicate by 
parameters, each one being either a single data item or a homogeneous set 
of data items that does not incorporate any control element.

• No coupling relation R0 : (x, y) ∈ R0 if x and y have no communication, 
i.e., are totally independent.
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Table 2: System size classification.

Classification LOC

Small 0-9.999

Medium 10.000-49.999

Semi-large 50.000-99-999

Large 100.000-499.999

Very Large 500.000≤

Table 3: Gearing factors for some commonly used programming 
languages.

Language Gearing factor

Assembly-Basic 320

C# 59

C++ 55

Java 53

Visual Basic 52

ASP 50
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The Fenton and Melton coupling measure is pairwise calculated between 
components, where n = number of interconnections between x and y . i = 
level of highest (worst) coupling type found between x and y.

C(x, y) = i +
n

n + 1

Modifiability

To evaluate the modifiability, the complexity levels by [29], the coupling 
levels by [47] and the size levels by Aivosto are used in order to indicate 
how "good" a modeled architecture is. The modifiability level is then 
evaluated as the sum of the three individual metrics. The reason to 
summarize the values is to create a metric that can be used in order to 
indicate whether a system is likely to be easy to modify or not. According 
to the correlations levels in [41] the three metrics used are more or less 
equally important when estimating the level of modifiability in 
application services. The modifiability metric gives a rough estimation, 
which can be of value when making decisions regarding different 
architecture scenarios.

The change cost framework presented by Lagerström et al. [30-35] does 
not only contain the application service modifiability assessment, but it 
also takes change management processes, documents, and roles, as well 
as change project organizational attributes into consideration when 
estimating the cost of software change projects. We have however limit it 
to the architectural viewpoint.

The assessment method for application service modifiability presented 
in this book uses the common software evaluation metrics complexity, 
size, and coupling together with enterprise architecture modeling and 
analysis.

4.2 The application modifiability viewpoint

This section describes the application modifiability viewpoint, cf. Figure 
23. The viewpoint has the following main concepts:

• Service 

• ApplicationService

• BehaviorElement 

• ApplicationFunction

• ActiveStructureElement

• ApplicationComponent

• ApplicationCollaboration

Concerns

Using the modifiability viewpoint makes it possible to estimate the 
modifiability of different application services. This information can be of 
use when; choosing between different architectural solutions, assigning 
development efforts, looking for possible ripple effects before initiating a 
change project, and finding risks that are important to manage in order 
to prevent projects from exceeding the budget.
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Stakeholders

The typical stakeholders for the modifiability viewpoint are; CIOs when 
handling the project portfolio, architects when choosing between different 
architecture solutions, project managers when planning the change 
projects, and developers when modifying applications.

Theory

The modifiability of an application service is in this book assessed based 
on three commonly used metrics namely; complexity, size, and coupling.

The ApplicationService class contains the attributes Modifiability, 
Complexity, Size, Gearing Factor, and Coupling.

ApplicationService.Modifiability. The modifiability metric is 
an aggregation of the attributes: ApplicationService.Complexity 
α , ApplicationService.InternalCouplingMAX β , a n d 
ApplicationService.Size γ.

The complexity levels from [29] are used to give complexity c a numerical 
value a, where 0 ≤ α ≤ 5.

• If ApplicationService.Complexity is c = 0, then α = 5.

• If ApplicationService.Complexity is 1 ≤ c ≤ 4, then α = 4.

• If ApplicationService.Complexity is 5 ≤ c ≤ 10, then α = 3.

• If ApplicationService.Complexity is 11 ≤ c ≤ 20, then α = 2.

• If ApplicationService.Complexity is 21 ≤ c ≤ 50, then α = 1.

• If ApplicationService.Complexity is 50 < c, then α = 0.

The coupling levels from [47] are used to give internal coupling (max) 
icm a numerical value β, where 0 ≤ β ≤ 5.
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• If ApplicationService.InternalCouplingMax is ≤ 1, then 
β = 5.

• If ApplicationService.InternalCouplingMax is 1 ≤ icm < 2, 
then β = 4.

• If ApplicationService.InternalCouplingMax is 2 ≤ icm < 3, 
then β = 3.

• If ApplicationService.InternalCouplingMax is 3 ≤ icm < 4, 
then β = 2.

• If ApplicationService.InternalCouplingMax is 4 ≤ icm < 5, 
then β = 1.

• If ApplicationService.InternalCouplingMax is 5 ≤ icm, 
then β = 0 .

The size levels from Aivosto are used to give size s a numerical value γ, 
where 0 ≤ γ ≤ 5.

• If ApplicationService.Size is s < 10.000, then γ = 4.

• If ApplicationService.Size is 10.000 ≤ s < 50.000, then γ = 3.

• If ApplicationService.Size is 50.000 ≤ s < 100.000, then γ = 2.

• If ApplicationService.Size is 100.000 ≤ s < 500.000, then γ = 1.

• If ApplicationService.Size is s ≤ 500.000, then γ = 0 .

If S is an application service, then the modifiability value = α + β + γ 
with V(S . Modi f iabilit y) = {x ∈ N : 0 ≤ x ≤ 14}. A low modifiability 
value indicates that an application service is difficult to change just as a 
high modifiability value indicates the opposite.

ApplicationService.Complexity. The complexity attribute is 
calculated as the cyclomatic complexity by McCabe [42]. The application 
components are used as nodes and the values in the attributes of the 
application collaboration class are used as edges. This includes relations to 
an application component outside of the owning application service, in the 
case if an application collaboration exists between one application 
component realizing the service is collaboration with a component realizing 
a different application service. If I = {i1, . . . , in} is a list of application 
collaborations, S is an application service, c is a application component 
where c ⊆ S . realize , then and I ⊆ S . realize . collaboration, then

f (S . Complexit y) =
n

∑
i=1

ii . R5_ContentCoupling +
n

∑
i=1

ii . R4_CommonCoupling

+
n

∑
i=1

ii . R3_ControlCoupling +
n

∑
i=1

ii . R2_StampCoupling+

n

∑
i=1

ii . R1_DataCoupling −
n

∑
i=1

ci + 2.

V(S . Complexit y) = N .

ApplicationService.Size Equivalent source lines of code (ENLOC) 
is a size measure which uses a gearing factor to get a size measure which 
allows size comparison between applications written in different 
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programming languages. If F = { f1, . . . , fn} is a list of application 
functions, S is an application service and F ⊆ S . realizedBy , then

f (S . ENLOC ) =
n

∑
i=1

S . GearingFactor
fi . assignee . GearingFactor

* fi . assignee . NLOC .

V(S . ENLOC ) = R .

ApplicationService.GearingFactor. If S is an application service, 
then V(S . GearingFactor) = N . The gearing factor is given as evidence 
in the model.

ApplicationService.InternalCouplingAVG The InternalCou-

plingAVG is the internal average coupling of the application service. It is 
calculated as the arithmetic mean of the Fenton and Melton Software Met-
ric [47] for all pair wise coupling measures within the application service 
divided by the number of pairs. If I = {i1, . . . , in} is a list of application col-
laborations, S is an ApplicationService, C is a ApplicationComponent 
where C ⊆ S . realize and I ⊆ S . realize . collaboration, then

C . CouplingAVG =
1
n

n

∑
j=1

ij . couplingInPair () .

V(C . CouplingAVG) = {x ∈ R : 0 ≤ x < 6} .

ApplicationService.InternalCouplingMAX The InternalCou-
plingMAX is the internal max coupling of the application service is. It 
gives the maximum value of all the connections pair to the application 
component within the application service. If I = {i1, . . . , in} is a list of ap-

plication collaborations, S is an ApplicationService, C is a Application-
Component where C ⊆ S . realize and I ⊆ S . realize . communication , 
then C . couplingMAX = couplingInPair (m) where m ∈ P and 
couplingInPair (ij) ≤ couplingInPair (m) for all elements in P.

V(C . CouplingMAX ) = {x ∈ Q : 0 ≤ x < 6} .

The ApplicationComponent class contains the attributes Coupling, 
Size, and Gearing Factor.

ApplicationComponent.ExternalCouplingAVG is calculated as the 
arithmetic mean of the Fenton and Melton Software Metric [47] for all pair 
wise coupling measures divided by the number of pairs. If I = {i1, . . . , in} 
is a list of application collaborations, C is a ApplicationComponent and 
I ⊆ C . collaboration , then

C . CouplingAVG =
1
n

n

∑
j=1

ij . couplingInPair () .

V(C . CouplingAVG) = {x ∈ R : 0 ≤ x < 6} .

ApplicationComponent.ExternalCouplingMAX gives the maximum 
value of all the connections pair to the application component. If I = {i1, . . . , in} 
is a list of application collaborations, C is a ApplicationComponent and 
I ⊆ C . communication, then C . couplingMAX = couplingInPair (m) where 
m ∈ P and couplingInPair (ij) ≤ couplingInPair (m) for all elements in P.

V(C . CouplingMAX ) = {x ∈ Q : 0 ≤ x < 6} .
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ApplicationComponent.Size is measured as the number of non-
commented lines of code (NLOC). If C is an ApplicationComponent, 
then V(C . NLOC ) = N . The number of non-commented lines of code is 
given as evidence in the model.

ApplicationComponent.GearingFactor. If C is an Application-
Component, then

V(C . GearingFactor) = N

The gearing factor is given as evidence in the model.

The ApplicationCollaboration class contains the attribute Coupling 
(five different types).

If I is an application interaction, X and Y are both application components, 
and {X, Y} ⊆ I . communicates , then they have a:

ApplicationCollaboration.R5_ContentCoupling relation if X 
refers to the internals of Y , i.e., it branches into, changes data, or alters a 
statement in y.

V(R5_ContentCoupling) = N .

ApplicationCollaboration.R4_CommonCoupling relation if X and 
Y refer to the same global variable.

V(R4_CommonCoupling) = N .

ApplicationCollaboration.R3_ControlCoupling relation if X 
passes a parameter to Y that controls its behavior.

V(R3_ControlCoupling) = N .

ApplicationCollaboration.R2_StampCoupling relation if X passes 
a variable of a record type as a parameter to Y , and Y uses only a subset of 
that record.

V(R2_StampCoupling) = N .

ApplicationCollaboration.R1_DataCoupling relation if X and Y 
communicate by parameters, each one being either a single data item or 
a homogeneous set of data items that does not incorporate any control 
element.

V(R1_DataCoupling) = N .

The number of content, common, control, stamp, and data couplings are 
given as evidence in the model.

Guidelines for use

To use the modifiability viewpoint follow this process: Firstly, model the 
application components, how these collaborate, and what services they 
provide. Suitable respondents are application or solution architects, 
system owners and developers. Secondly, elicit attribute data for coupling, 
size, and programming languages. This information is usually found by 
interviewing developers and/or by investigating the source code through 
their development tools. Thirdly, run the analysis.
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A modifiability view example

At ACME Energy, fictive company, the application architect is about to 
choose between two application architecture solutions delivering the same 
application service for the company, namely Study Maintenance. The 
company is currently in a state where a lot of changes are being implement, 
thus having a flexible IT environment is important for the CIO. A key aspect 
to consider when choosing between the two architecture solutions is 
therefore the modifiability of the application services. The architect models 
the two scenarios and finds solution A (cf. Figure 24) to have higher 
modifiability than solution B. Regarding architecture flexibility the 
information the architect passes on to the CIO is that solution A is better.

In order to model architecture solution A (cf. Figure 24) of ACME Energy 
follow these steps:

1. Add four ApplicationComponents and name them:

• CMMS (Computerized Maintenance Management System)

• Asset Mgmt (Asset Management)

• SCADA (Supervisory Control And Data Acquisition)

• BI (Business Intelligence)

2. Add the following Size (NLOC) and GearingFactor (Programming 
language) information to the component attributes:

• CMMS = 251.149 & 53 (Java)

• Asset Mgmt. = 63.987 & 50 (ASP)

• SCADA = 784.627 & 55 (C++)

• BI = 52.345 & 53 (Java)

3. Add three ApplicationCollaborations with associated Coupling 
types, as in Table 4.

4. Press calculate and study the calculated coupling values for the four 
components. For the CMMS component the ExternalCouplin-
gAVG should read 5.2 and ExternalCouplingMAX 5.9.
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Figure 24: A modifiability view example.
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5. Add two Application Functions and name them:

• Generate Failure Statistics

• Compile Maintenance KPIs

6. Connect the two Application Functions with the CMMS component.

7. Add an Application Service and name it Study Maintenance. The 
service is Realized by both components, thus the relation should be 
of type RealizeAND. The relation should read Study Maintenance 
realizerAND Generate Failure Statistics.

8. Add Gearing Factor 53 (for programming language Java) as the 
baseline language for the gearing factor based Size calculation 
(ENLOC).

9. Press calculate and study the values for the Study Maintenance 
application service; the Complexity is calculated to be 6, Size 
251.149, and InternalCouplingMAX 5.9. This leads to a 
Modifiability level of 4, which is generally considered to be a 
low score. However, obviously better then the assessed level of 
scenario B.
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Table 4: Application collaboration information for modifiability view 
example.

No. of couplings between CMMS andNo. of couplings between CMMS andNo. of couplings between CMMS and

Coupling type
Asset 
Mgmt.

SCADA BI

Content coupling 5 0 0

Common coupling 1 1 2

Control coupling 1 5 2

Stamp coupling 0 1 0

Data coupling 10 2 2
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5 A description of MAP’s  
data accuracy viewpoint.

Data accuracy
Additional author: Per Närman
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Poor data quality in information systems can 
cause great economical impact resulting in 
costs of billions of dollars [48]. Analyzing the 
quality of data is therefore of great 
importance. Data is by IEEE defined as a 
representation of facts, concepts, or 
instructions in a manner suitable for 
communication, interpretation, or processing 
by humans or by automatic means [38]. The 
most common dimensions of data quality are 
completeness, consistency, currency, 
relevance and accuracy [49]. In this section 
data accuracy has the main focus. Accuracy is 
by IEEE defined as; (1) a qualitative 
assessment of correctness, or freedom from 
error, (2) a quantitative measure of the 
magnitude of error [38]. According to 
Redman [49] and Batini & Scannapieco [50] 
accuracy is defined as the closeness of a value 
V to V′�, where V′� is an actual concept in the 
domain of reference and V is a datum that 
represents it. Depending on the accuracy 
requirements, the frame of reference V′� can 
consist of an interval, e.g. 200 plus or minus 
one, such that a datum V with a value within 
the interval of 199-201 can be considered 

accurate whereas a datum V with the value 
203 would be inaccurate.

Sound decisions are made based on 
accurate data. Unfortunately it does not 
matter if the data is used in a manual 
business process or within an automated 
application service. Neither is executed 

flawless at all time, resulting in steadily 
deteriorating data accuracy. The further 
away from the source the data gets, the 
poorer its accuracy becomes.

The original work that this section is based 
on can be found in [51, 52].

Movie 6: Data Quality
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5.1 How to measure data accuracy

There are several modeling techniques proposed to capture quality 
characteristics of data. The traditional relational model has built in 
functionality to enforce some sort of data quality checks such as data 
integrity functions to minimize duplication of data or field data checks 
to enforce some sort of format on data. Other than these basic func-
tions, data that is stored in systems based on the relational model are 
assumed to be accurate by design.

To remedy this limitation, the Quality Entity Relationship (QER) model 
extends the classical Entity Relationship (ER) model to accommodate 
several data quality dimensions on relations and fields [53]. The attributes in 
relations are associated with quality indicators (e.g. accuracy) and quality 
rankings (e.g. excellent). The QER model lacks the ability to incorporate 
information on the origin of the data. Tracing the origin of data is known as 
data provenance [50] and is important in most systems where data is 
collected from distributed sources with different data quality.

One of the earliest attempts in tracing data provenance is the Polygen 
model [53] which is more geared to analyze data quality in distributed 
heterogeneous data sources. The Polygen model is a relational model 
which defines a set of operators (e.g. union, Cartesian product etc) based 
on relational algebra that can semantically annotate the propagation of 
data. This is done by 'source tagging' data from multiple databases. The 
idea is essentially that the user or consumer of the data could judge the 
credibility of the data based on knowing from where it originated. The 

Polygen model was later extended to accommodate quality attribute 
associated with relations and fields, much like the QER model, but as an 
implementation on the relational algebra. According to [53] this 
extended the user's or consumer's ability to judge the credibility of the 
data by also allowing better interpretation and determination of the 
believability of the data.

While the QER and Polygen models are expressive and applicable to the 
database relational domain, they are less applicable to distributed enterprise 
information systems. In such systems the data does not only originate from 
database sources, but could also be collected in semi-structured format from 
business processes. Furthermore the structure of the data is not necessarily 
defined according to the relational model and could be more the result of an 
aggregation of data from one or several processes.

Information Product Maps (IP Maps) [54] accommodate such process 
based modeling of data. IP Maps are graphical models that treat data 
as a product from processes where the input is raw data, analogous to 
manufacturing processes where raw materials are inserted and a 
product exits the manufacturing line after being manipulated. Such 
manipulations can be represented in the IP Maps model with the use 
of specific constructs to represent the process and actions on the data, 
e.g. processing, quality check, or data receiver. Each construct has 
associated metadata which can be used in a model to specify the 
construct. The strength of the IP Maps is the ability to portray the 
data provenance as well as the elements in the process that 
manipulate the data.

59

Chapter 5 Data accuracy



The IP Maps model has been extended into an IP UML profile [55] to 
make use of UML's richer semantics. In the UML model the data units 
are associated through a quality association with a stereotyped quality 
dimension class e.g. timeliness. By using UML the IP UML provides the 
opportunity to model data units in interaction diagrams and to observe 
the data flow between object calls in activity diagrams. Neither IP Map 
nor IP UML can perform quantitative analysis of data accuracy in a 
process. Instead, their function is mostly to visualize data quality 
problems and aid system design.

A quantitative analysis method was proposed in [56]. The method known 
as the Data Flow/Process Method, is an analytical model which utilizes 
data flow diagrams to illustrate how the data quality of numerical data 
objects is affected by the data processing that takes place in applications. 
With this approach it is possible to trace data quality in applications. The 
limitation of this method is that it only considers numeric data and cannot 
accommodate alphanumeric data.

Another quantitative method from the accounting community was 
proposed by [57]. This method is not exclusively concerned with 
numeric data and can be used to show how by incorporating various 
improvement feedback cycles in processes, the overall quality of data 
could be improved. [57] also suggested an algorithm for assessing the 
general quality of data called 'reliability'. While overcoming the 
shortcoming of only being able to treat numerical data, and introducing 
the ability to reason about improvements of data the method is not 
intended to analyze the data quality across business processes.

The assessment method that is presented in this book is similar to the IP 
Maps and the IP UML model in the sense that it is aimed at the 
management of information systems by visualizing processes and data 
quality. Furthermore, our method uses the general approach of Data 
Flow/Process method to show how data quality, and specifically the 
accuracy dimension, in processes evolves. In following [57], the method 
does not confine itself to treating only numerical data.

5.2 The data accuracy viewpoint

This section describes the data accuracy viewpoint, cf. Figure 25. The view-
point has the following main concepts:
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• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

• BehaviorElement

- BusinessProcess

- ApplicationFunction

- InfrastructureFunction

Concerns

Using the data accuracy viewpoint makes it possible to estimate the accuracy 
of data sets within the organization. It is also possible to determine which 
applications or business processes that introduce errors into the data sets.

Stakeholders

Obvious stakeholders are data custodians, i.e. those in charge of maintaining 
data quality, but also end users wishing to know the quality of the data which 
they use in their daily activities.

Theory

The data accuracy viewpoint employs process modeling in a manner 
similar to that of IP maps and that of [56]. Furthermore, following [57], 
the viewpoint also shows how data can improve when manipulated in 
business processes.

The PassiveComponentSet is used to describe sets of information objects 
whether stored in databases (then specialized into DataSets) or as more 
unstructured information (specialized into RepresentationSet). The 
attribute PassiveComponentSet.Accuracy is defined below.

Firstly, we denote the individual Representations and DataObjects 
PassiveComponentObjects. Next, we introduce the following:

N: Number of PassiveComponentObjects in the PassiveComponent-
Set.

Nacc: Number of accurate PassiveComponentObjects in the Passive-
ComponentSet.

Ninacc: Number of inaccurate PassiveComponentObjects in the Passive-
ComponentSet.

where "accurate" or "inaccurate" for the PassiveComponentObjects is 
defined as their value V being sufficiently close to the true value V′� in line 
with [49, 50]. Since PassiveComponentObjects can be either accurate 
or inaccurate we have:

Nacc + Ninacc = N (1)
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The accuracy of the PassiveComponentSet can then be defined as 

PassiveComponentSet . Accuracy =
Nacc

N
 (2)

The number of accurate PassiveComponentObjects in a 
PassiveComponentSet may change when processed by a Function or a 
Service. These may corrupt a PassiveComponentObject, which was 
accurate at process step T = t into being inaccurate at time step T = t + 1. To 
be able to reason about this we introduce Ndet: the number of accurate 
PassiveComponentObjects at process step T = t , which were made 
inaccurate by a Function or Service at process step T = t + 1 .

The frequency of this happening is 

α =
Ndet

Nacc
t

 (3)

Similarly, a Function or a Service may correct inaccurate Passive-
ComponentObjects. We introduce Ncorr : the number of Passive-
ComponentObjects that were inaccurate at process step T = t, but 
made accurate by a Function or a Service at time step T = t + 1.

β =
Ncorr

Ninacc
t

 (4)

The number of accurate objects at process step T = t + 1 is given by:

Nacc
t+1 = Nacc

t − Ndet + Ncorr (5)

From the above an expression of the accuracy of a PassiveComponent-
Set at T = t + 1 can be derived:

PassiveComponentSet . Accuracyt+1 =
Nacc

t+1

N
=

=
Nacc

t

N
−

Ndet

N
+

Ncorr

N
=

=
Nacc

t

N
−

α * Nacc
t

N
+

β * Ninacc
t

N
=

=
Nacc

t

N
* (1 − α) +

β(N − Nacc
t )

N
=

=
Nacc

t

N
(1 − α) + β(1 −

Nacc
t

N
) =

= PassiveComponentSet . Accuracyt * (1 − α)+

β * (1 − PassiveComponentSet . Accuracyt) (6)

The data accuracy viewpoint can be found in Figure 25. The 
properties α and β are found as attributes Function.Correction, 
F u n c t i o n . D e t e r i o r a t i o n , S e r v i c e . D e t e r i o r a t i o n a n d 
Service.Deterioration. Whenever a PassiveComponentSet is read 
or written by a Service or Function these attributes either improve or 
deteriorate the PassiveComponentSet.Accuracy. The attributes 
deterioration and correction are both given as evidence x in the 
model, where{x ∈ R : 0 ≤ x ≤ 1}
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PassiveComponentSet.InputAccuracy is an attribute used to 
specify the baseline accuracy of the first PassiveComponentSet in the 
process. The input accuracy attribute is given as evidence x in the model, 
where {x ∈ R : 0 ≤ x ≤ 1}.

Guidelines for use

To use the data accuracy viewpoint follow this process: Firstly, model the 
data flow qualitatively. Suitable respondents are those performing the 
process who understands the process side of the flow and/or system 
architects who understand the application architecture. Secondly, elicit 
parameters input accuracy, deterioration, and correction from the same 
respondents. Thirdly, run the analysis.

A data accuracy view example

At ACME Energy, our fictive energy company, the analysts decide to 
investigate whether the reason Computerized Maintenance Management 
System (CMMS) users hold the application to a low esteem is due to 
poor data accuracy in the information provided by the application.

One important piece of information used when compiling the 
maintenance Key Performance Indicators (KPI's) is the “failure 
description" that the maintenance workers use in order to report what 
caused a failure in a piece of equipment. This is reported as a part of 
closing the work order, which was issued when the failure was first 
detected. Eliciting estimates of the correction and deterioration attributes 
of the processes and services involved in creating the maintenance KPIs 
was done through interviews, as well as eliciting the input accuracy of the 

initial work orders. Using these estimates in the modeled accuracy view, 
cf. Figure 26, it was estimated that the accuracy of the output Maintenance 
KPI's (with respect to failure statistics) was 87.8. This is a low number, and 
in order to improve the perceived usefulness of the application increasing 
this number might be a viable option.

In order to model the data accuracy view example (cf. Figure 26) of 
ACME Energy follow these steps:

1. Add a Business Process class and name it Close Workorder. The 
Correction and Deterioration of this process are both 0.1, add this as 
attribute evidence.

2. The Close Workorder process Reads from a Representation Set called 
Raw Failure Descriptions. Add this class and relationship.

3. The Raw Failure Descriptions has an Input Accuracy of 0.98, add this 
as attribute evidence.
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4. The CloseWorkorder processWrites to a Data Set called Processed 
Failure Descriptions. Add this class and relationship.

5. Press calculate, the Accuracy of the Processed Failure Descriptions is 
calculated to be 0.88. This means that the Close Workorder process 
has decreased the data accuracy of the failure descriptions.

6. Add two Application Functions and name them Generate Failure 
Statistics and Compile Maintenance KPIs (if you have modeled the 
modifiability example of the previous chapter re-use the application 
functions instead of creating new ones).

7. Both application functions have a Correction of 0.05 and Deterioration 
of 0.01. Add this as attribute evidence.

8. The Generate Failure Statistics function Reads from the Processed Failure 
Descriptions and Writes to a Data Set called Failure Descriptions with 
Stats. Add these two relationships and this class.

9. The Compile Maintenance KPIs function Reads from the Failure 
Descriptions with Stats and Writes to a Data Set called Maintenance 
KPIs. Add these two relationships and this class.

10. Press calculate and follow the Accuracy. See how it decreases from 
98 % (Input Accuracy), to 88,4 % when processed, to 88,1 % after the 
statistics function, to finally 87,8 % when compiled to KPIs.
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Modern organizations have large application portfolios comprising 
hundreds if not thousands of applications. Despite the very large 
investments these portfolios represent, realizing their full value often 
proves to be elusive [58]. An important problem encountered by most 
organizations is the uncontrolled proliferation of applications leading to a 
heterogeneous application portfolio with redundant functions and data, 
high information system costs and poor business-IT alignment [59]. Thus, 
there is a case for structured application portfolio and landscape 
management [60] to support decision-making concerning changes to the 
application portfolio. Such rational decision-making calls for means to 
assess the value of the individual applications [61].

Delone and McLean introduced a six dimension model of information 
systems value [62, 63]. One of these dimensions is system usage. System 
usage has been found to explain business performance [64]. Similarly, 
[65] introduced system usage as one of five important parameters in 
assessing application portfolio health.

The original work that this section is based on can be found in [66].

6.1 How to measure application usage

For the past couple of decades, two theories have reigned supreme in 
explaining system usage; the Technology Acceptance Model (TAM) [67-75] 
and the Task-Technology Fit model (TTF) [76-83]. TAM is built around the 
two constructs Perceived Usefulness (PU) and Perceived Ease of Use 
(PEoU), and the TTF model on the idea that having a good match of 
functional capabilities and task requirements leads to higher usage.

The Technology Acceptance Model

The technology acceptance model (TAM) is arguably the most influential 
theory in information systems research. Originally proposed by [67] and 
drawing heavily on the psychological research field, the TAM suggests 
that the usage of information systems can be determined by two factors; 
the perceived usefulness and the perceived ease of use of the information 
system, Figure 27.

The antecedents of both these constructs have been further deliberated by 
[73-75] and there are an overwhelming number of studies published where 
the TAM is used in different contexts and with slight variations of variables, 
see e.g. [68-72] and more. These studies have established conclusively that at 
least the perceived usefulness construct is an important variable in 
determining user acceptance and usage of a technology [84] with the 

66

Figure 27: The Technology Acceptance Model.
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perceived ease of use variable having significant relations to the perceived 
usefulness as well as a smaller, yet important impact on system usage [84].

Task-Technology Fit

In this book we focus on the Task-Technology Fit model (TTF) for assessing 
the usage of applications. TTF is built on the idea that if the users perceive a 
technology to have characteristics which fit the user's work tasks, then i) the 
user is more likely to utilize the technology and ii) to perform the work task 
better. Figure 28 shows a basic TTF model.

Several studies have used the TTF model to predict user performance 
and technology utilization see e.g. [77-83].

The original TTF model proposed by Goodhue [76] described the constructs 
task characteristics, tool characteristics and task-technology fit in general 
terms stating that task technology fit can be measured in terms of eight 
factors. The link between TTF and utilization was found to be rather weak 
using this setup.

Dishaw and Strong [79] used the concept of strategic fit as interaction [85] 
(meaning multiplying the values of task requirements with those of IT 
functional fulfillment) to operationalize TTF for a specific domain viz. 
computer software maintenance. Instead of defining a general notion of 
TTF they operationalized task and tool characteristics based on previously 
published reference models of computer maintenance tasks [86] and tool 
functionalities [87].

The assessment method for application usage presented in this book 
uses the Task-Technology Fit model together with enterprise architecture 
modeling and analysis.

6.2 The application usage viewpoint

This section describes the application usage viewpoint, cf. Figure 29. The 
viewpoint has the following main concepts:

• Service

- ApplicationService

• BehaviorElement
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Figure 28: A basic Task-Technology Fit (TTF) model.
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- BusinessProcess

- ApplicationFunction

• ActiveStructureElement

- ApplicationComponent

• UsageRelation

• ProcessServiceInterface

Concerns

Why do users voluntarily embrace certain applications and object to using 
others? Voluntary application usage is a very important indicator of the 
quality of the application portfolio [65].

Stakeholder

The stakeholders are those interested taking a top-down perspective on the 
application portfolio. These may include enterprise architects, application 
architects, and ultimately the organization's CIO.

Theory

Application usage is in this book evaluated as task technology fit. The 
application usage viewpoint needs to be tailored to its application domain. 
The tailoring involves defining and operationalizing the domain's tasks, IT 
functionality, how the IT functions support the tasks (i.e. the TTF variables). 
The viewpoint is presented in Figure 29. The aim of employing the viewpoint 
is to obtain a value for the ApplicationComponent.Usage attribute.

ApplicationService.Functionality The functionality attribute is 
evaluated based on the functionality of the application functions which 
realize the service. If AF = {a f1, . . . , a fn} is a list of application functions, 
S is a Service, and AF ⊆ S . realizedByAND ∪ S . realizedByOR then 

f (S . Functionalit y) =
n

∑
i=1

a fi . Functionalit y .

V(ApplicationSer vice . Functionalit y) = {x ∈ R : 0 ≤ x} .
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ApplicationFunction.Functionality The functionality of the 
application function is set as an evidence in the model. The functionality 
of the application function is quantitatively assessed by using the mean 
of user assessments on a Likert scale.

V(ApplicationFunction . Functionalit y) = {x ∈ R : 0 ≤ x} .

ApplicationComponent.DomainConstant The domain constant of 
the application component is set as evidence in the model. The domain 
constant is derived by creating a linear regression model from the user 
elicited data out of which the adjusted coefficient of determination R̄2 is 
used as the evidence. Even though R̄2 can give a negative result only 
positive numbers are allowed in the model.

V(ApplicationComponent . DomainConstant) = {x ∈ R : 0 ≤ x} .

ApplicationComponent.Usage The usage of an application component 
is evaluated based on the domain constant and the weighted TTF values in 
the usage relationships which affect the application component. If 
U = {u1, . . . , un} is a list of usage relations, C is an application component 
and U ⊆ C . isA f fectedInv then

f (C . Usage) = C . DomainConstant +
n

∑
i=1

ui . WeightedTTF .

V(ApplicationComponent . Usage) = {x ∈ R : 0 ≤ x} .

BusinessProcess.TaskFulfillment The task fulfillment of the 
business process is set as evidence in the model. The task fulfillment value is 

derived by taking the mean value of task fulfillment assessments by 
application users. Task fulfillment can be evaluated using a Likert scale.

V(BusinessProcess . TaskFul f illment) = {x ∈ R : 0 ≤ x} .

ProcessServiceInterface.TTF The task technology fit attribute in the 
process service interface class is evaluated based on the functionality of the 
connected application service and business process. If s is an application 
service where ProcessSer viceInter face . appUseInv = s and u is an usage 
relations where ProcessSer viceInter face . procUseInv = u then

f (ProcessSer viceInter face . TTF ) = s . Functionalit y * u . TaskFulFillment

V(ProcessSer viceInter face . TTF ) = {x ∈ R : 0 ≤ x} .

UsageRelation.RegressionCoefficientTTF The regression 
coefficient TTF attribute in the usage relation class is set as evidence 
in the model. The regression coefficient is set to show the domain 
specific strength of the ProcessServiceInterface.TTF on 
Application.Component.Usage.

V(UsageRelation . RegressionCoef f icientTTF ) = {x ∈ R : 0 ≤ x} .  

UsageRelation.ApplicationWeight The application weight 
attribute in the usage relation is evaluated by dividing the application 
functions functionality with the application service functionality. If U is an 
usage relation, F = { f1, . . . , fn} is a list of application functions where 
F ⊆ U . isA f fected . assignor and s is an application service where 
U . isA f fectedUsageInv . appUseInv = s then
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f (UsageRelation . ApplicationWeight) =
∑n

i=1 fi . Functionalit y

s . Functionalit y
.

V(UsageRelation . ApplicationWeight) = {x ∈ R : 0 ≤ x} .

UsageRelation.WeightedTTF The weighted TTF attribute is evaluated 
by multiplying the application weight with the regression coefficient TTF 
and TTF value from the process service interface. If u is the usage relation p 
is an process service interface where u . isA f fectedUsageInv = p then

f (UsageRelation . WeightedTTF ) = p . TTF *
u . ApplicationWeight * u . RegressionCoef f icientTTF .
V(UsageRelation . WeightedTTF ) = {x ∈ R : 0 ≤ x} .

Guidelines for use

In the case the organization does not have reference models for tasks and 
functionality, these have to be developed in order to employ this view-
point perhaps using the approach of [66]. Once the appropriate models 
are in place, however, the viewpoint may be employed as follows:

Firstly, compile list of all applications and processes relevant to the 
inquiry and generate the architecture view. These lists can be elicited by 
process managers or similar. Secondly, perform a survey with a sufficient 
subset of application users or process performers. For each function of 
the reference model, the respondents are asked to name the application 
that implements the function the most and to what degree. For all tasks 
of the task reference model, the respondents are asked to rate the degree 
to which they perform the activities.

An application usage view example

The ACME Energy CIO has ordered an exploratory study of the quality of 
ACME Energy's application portfolio. The application usage viewpoint 
was employed to determine which applications users liked and would use 
voluntarily. Here we model one of the applications, the Computerized 
Maintenance Management System (CMMS).

In the view of Figure 30 we see the single ApplicationComponent 
CMMS which offers two ApplicationFunctions Generate failure 
statistics and Compile maintenance KPIs which realize an 
ApplicationService Study Maintenance which in turn supports a 
BusinessProcess with the same name. The functionality and task 
fulfillment of the ApplicationFunctions and the BusinessProcess 
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were found by taking the mean of user's assessments. It was discovered that 
the users considered the CMMS to be all right functionality-wise, which 
together with a high degree of BusinessProcess.TaskFulfillment 
yielded a high ProcessService Interface.TTF for the interface 
between the Study ApplicationService and BusinessProcess.

In order to model the application usage view example (cf. Figure 30) of 
ACME Energy follow these steps:

1. Add two Application Functions and name them Generate Failure 
Statistics and Compile Maintenance KPIs. Add one Application Service 
and name it Study Maintenance. Add one Application Component and 
name it CMMS (Computerized Maintenance Management System). All 
four classes have been used in previous view examples (Modifiability 
and/or Data accuracy), re-use these classes if possible.

2. The Study Maintenance service is Realized by both (AND) application 
functions, add these relationships. The two application functions are 
both Assignees of the CMMS component, add these relationships as 
well. These relationships are automatically generated if the classes are 
re-used from previous examples.

3. The CMMS component has a Domain Constant of 0.9, the Generate 
Failure Statistics has a Functionality of 4, and the Generate Failure 
Statistics 2.1. Add this as attribute evidence. 

4. Add a Business Process and name it Study Maintenance.

5. The Study Maintenance process use the CMMS component via a 
Process Service Interface and a Usage Relation. Add these classes 
and relationships.

6. The Study Maintenance service and process are also related via the 
Process Service Interface. Add this relationship.

7. The Usage Relation has a Regression Coefficient TTF of 0.035 and an 
Application Weight of 1. Add this as attribute evidence.

8. Press calculate and study the Application Component Usage, it 
should read 2.18.
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Information systems availability is crucial in 
order to ensure continuous business operations 
[88] and as such rated very highly by IT system 
executives [89]. Not only are the direct costs of 
unavailable IT systems high [90], but IT 
incidents disrupting business operations also 
have an adverse impact on the market value of 
publicly traded companies [91]

The original work that this section is based on 
can be found in [92-94].

7.1 How to measure service availability

System availability analysis is a mature field 
and there is an abundance of availability 
analysis techniques including methods such as 
Reliability Block Diagrams, Fault Tree Analysis, 
Failure mode effects analysis, Markov processes 
and Bayesian analysis [95].

In the category of qualitative methods we find 
for example Failure Mode and Effect Analysis 
(FMEA) [96]. In FMEA, each system 
component's failure mode and its impact on 
the rest of the system is documented. The 
method is particularly useful for systems with 
single component failures. Thus the approach 

is not well suited for systems with a fair 
degree of redundancy [95].

An alternative approach is state-based analysis. 
State-based methods enumerate all possible 
system failure states and are not limited to 
stochastically independent failure of 
components. This expressiveness comes at a 
price: models for state-based analysis using 

Markov chains [97] grow exponentially with the 
number of system components [98, 99]. Hence, 
state-based analysis using Markov models 
contradicts the requirement of keeping the 
framework simple, both in terms of modeling 
size and with respect to the ease-of-use.

One of the most frequently adopted methods is 
Fault Tree Analysis (FTA), which translates the 
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failure behavior of a physical system into a visual diagram and a logical 
model [95]. The modeling structure of FTA allows the modeler to visualize 
the system architecture in terms of primary component's relational 
dependency on subcomponents [100]. Availability analysis using FTA is 
much similar to the approach based on reliability block diagrams (RBDs) 
[95, 101]. The concept behind RBD is to identify undirected relational paths 
between components within the architecture. First two nodes s and t are 
defined. Secondly, relational paths comprising system components between 
the nodes are identified. A system is said to be available if there exists at 
least one path comprising a chain of available components from s to t.

Both FTA and RBD are confined to analysis of static systems and do not 
take dynamic aspects like maintenance and repair into consideration 
[95]. However, both methods comply with the stated requirements 
with one exception; the analysis framework shall be aligned with 
general rules of modeling. RBDs allow multiple instantiations of single 
components to capture k-out-of-n structures, which would call for two 
separate modeling languages - one for architecture modeling and 
another for analysis using RBDs. FTA does not suffer from this problem 
and is the favored candidate method.

The assessment method presented in this book uses Fault Tree Analysis 
(FTA) together with enterprise architecture modeling and analysis.

Assumptions in Fault Tree Analysis

A first assumption in FTA is independence of failures among different 
component - implying that there are no common cause failures - which 

simplifies the modeling task [102]. However, if the same application is 
implemented on multiple nodes we model the application as one 
instance and thus a single failure affects each of them equally. This partly 
classifies as a common cause failure.

When dealing with redundancy of components we have the aspect of 
redundancy types. Depending on the situation and criticality of 
component's redundancy can be implemented with various properties 
such as active redundancy - components operating in parallel and sharing 
the load; and passive redundancy - the main component has all load and 
the reserve component is first activated once the main component fails. 
There are ways to deal with such property for example by using dynamic 
fault tree models [103]. We do, however, restrict the data gathering 
presented in this book to a single type of redundancy and leave that to 
future work.

When we consider components in the analysis another approximation 
made is that a repaired item is in an "as good as new" condition i.e. 
assuming perfect repair. If not, assuming a constant MTTF over infinite 
time will not be valid but instead the component would be in a different 
state after repair with a different probability of failure. In the ISO 9126-2 
standard a similar assumption is stated implicitly [104].

Calculating average system availability using FTA

Availability is often defined as

Availability =
MTTF

MTTF + MTTR
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where MTTF denotes "Mean Time To Failure" and MTTR "Mean Time To 
Repair", respectively. MTTF is the inverse of the failure rate of a component

MTTF =
1
λ

and MTTR is the inverse of the repair rate of a component

MTTR =
1
μ

The average availability Aavg of a component can now be computed:

Aavg =
μ

μ + λ

The quotient is easy to interpret as the time that a system is available as a 
fraction of all time.

Systems rarely consist of a single component. To model availability in 
complex systems, three basic cases are used as building blocks. These are 
used recursively to model more advanced situations. The basic cases are 
illustrated in Figure 31. All calculations assume independent component 
availabilities.

The AND case models systems where the failure of a single component is 
enough to bring the system down. The OR case models redundant 
systems where a single working component is enough to keep the system 
up. The k-out-of-n case models systems that are functioning if at least k 
components are functioning.

A simple example of how the building blocks and their mathematical 
equivalents are put together recursively is illustrated in Figure 32.
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Figure 31: The basic cases for parallel, serial and k-out-of-n 
systems, respectively. Figure 32: A simple example of system availability calculations.
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7.2 The service availability viewpoint

This section describes the service availability viewpoint, cf. Figure 33. 
The viewpoint has the following main concepts:

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• BehaviorElement

- BusinessProcess

- ApplicationFunction

- InfrastructureFunction

• ActiveStructureElement

- ApplicationComponent

- Node

Concerns

The service availability viewpoint addresses the concern of determining 
the availability of services in the present (as-is) and future (to-be) 
enterprise architecture.

Stakeholder

The stakeholders for the service availability viewpoint are service 
managers and end-users.

Theory

The service availability viewpoint utilizes Fault Tree Analysis (FTA) 
[100] for the availability analysis.

A first assumption in FTA is independence of failures among different 
components - implying that there are no common cause failures - which 
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simplifies the modeling task [102]. However, if the same application is 
implemented on multiple nodes we model the application as one 
instance and thus a single failure affects each of them equally. This partly 
classifies as a common cause failure. We make the assumption of passive 
redundancy, with perfect switching and no repairs, [95]. When we 
consider components in the analysis another approximation made is that 
a repaired item is in an "as good as new" condition i.e. assuming perfect 
repair. If not, assuming a constant MTTF over infinite time will not be 
valid but instead the component would be in a different state after repair 
with a different probability of failure. In the ISO 9126-2 standard a 
similar assumption is stated implicitly [104].

The service availability viewpoint can be found in Figure 33. The 
viewpoint incorporates FTA in line with the theory presented in the 
previous section. The behavior elements are represented by Services 
and BehaviorElements (or Functions for brief). Both of these have an 
availability which is represented in the Service.Availability and 
Function.Availability attributes respectively. The availability 
attribute gets a value x , where {x ∈ R : 0 ≤ x ≤ 1} . A high value indicates 
that the service/function is more likely to be available.

Services are realized by Functions represented with the realize 
relationship available in both AND and OR options. Conversely, 
Functions use Services through the use relationship, also with both 
AND and OR options. The properties of the AND and OR options 
have been presented in section 3.1.1.

Services are merely externally visible containers of application behaviors 
and their availability is as such only dependent on the realizing BehaviorE-
lements. BehaviorElements.Availability on the other hand de-
pends also on the ActiveResourceElement to which it is assigned. When 
the BehaviorElements uses Services, BehaviorElements.Availability 
i s the product o f the Services.Availability and the 
ActiveResourceElement.Availability, since there is an implicit AND 
relationship between the underlying services and the application realiz-
ing the BehaviorElements. The Availability is calculated as 
shown in Figure 32 for the AND and OR options.

Sometimes, there is a need to set the availability directly on a Function or 
Service, and this can be done using the attribute 
Function.EvidentialAvailability or Service.EvidentialAvailability 
respectively. The attribute is given as evidence x in the model, where 
{x ∈ R : 0 ≤ x ≤ 1}.

Guidelines for use

The following steps should be taken in order to use the service availability 
viewpoint.

Firstly, there is a need to identify and scope the service or services of 
interest, either from a service catalog or through interviews. Defining the 
service properly is essential to defining what the service being 'available' 
means. Secondly, use the viewpoint to qualitatively model the application 
and infrastructure architecture connected to the service. Thirdly, elicit 
quantitative measures of component availabilities. Usually, the easiest way 
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of obtaining the component availability is to ask the respondent (typically 
a system owner or similar) to estimate how often the component breaks 
down and estimate the repair time. Fourthly, run the analysis.

A service availability view example

To probe deeper into the rumors flourishing at ACME Energy regarding 
the incidents affecting the availability of the application service called 
study maintenance, the analysts performed an initial round of 
interviews with system administrators to obtain qualitative data 
concerning the architecture realizing the application service. This was 
modeled according to the service availability viewpoint described above. 
Quantitative data regarding component availabilities were collected 
during a second round of interviews.

In Figure 34 we see the result. The aggregated availability was found to 
be 98%, which is considered acceptable to most users. Thus, the analysts 
decide to scrutinize other aspects of the architecture.

In order to model the service availability view example (cf. Figure 34) of 
ACME Energy follow these steps:

1. Add the classes Study Maintenance (application service), Generate 
Failure Statistics (application function), Compile Maintenance KPIs 
(application function), and CMMS (application component). These 
should/could be re-used form previous modeling examples 
(modifiability, data accuracy, and application usage views).

2. The Study Maintenance service is Realized by both functions (AND), 
and both functions are Assignees of the CMMS component. Add these 
relationships. These relationships are automatically generated if you 
are re-using the classes from the previous examples. 

3. The CMMS components has an Availability of 0.995. Add this as 
attribute evidence.

4. Add three Infrastructure Services and name them Generate GUI, 
Data Retrieval primary site, and Data Retrieval secondary site.
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5. The Generate Failure Statistics function Use the Generate GUI and one 
of the Data Retrieval sites. That is there is an OR-relationship to the 
two Data Retrieval sites and an AND-relationship to the Generate GUI 
service. Add these relationships.

6. The Generate GUI has an Evidential Availability of 0.99, the primary 
site 0.992, and the secondary site 0.991. Add this as attribute evidence.

7. Press calculate, the analysis should declare that the Availability of 
the Study Maintenance application service is 98 %.
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Interoperability is a sought after quality for 
enterprises in today’s competitive 
environment that has been approached from 
many different points of view and 
perspectives [105]. Several definitions of 
interoperability have been proposed, one of 
the most well known and the one employed 
in this book is that of IEEE [38], the ability of 
two or more systems or components to 
exchange information and to use the 
information that has been exchanged. Based 
on this definition interoperability can be seen 
from the perspective of a decision maker as 
the problem of ensuring the satisfaction of a 
set of communication needs throughout the 
organization.

The original work that this section is based on 
can be found in [23, 24, 106].

8.1 How to measure interoperability

Several initiatives on interoperability have 
proposed interoperability frameworks to 
structure issues and concerns in different 
ways. The European Interoperability 
Framework in the eGovernment domain [107] 

defines three aspects of interoperability: 
semantic, technical and organizational. A 
similar approach was also proposed in the e-
Health interoperability framework [108] which 
identified three layers: organizational, 
informational and technical interoperability. 
The ATHENA Interoperability Framework 
(AIF) proposes to structure interoperability 
issues and solutions at the three levels: 

conceptual, technical and applicative [109]. 
The Framework for Enterprise Interoperability 
[110] is another interoperability framework 
that focuses on the problem dimension of 
interoperability. The objective is to tackle 
interoperability problems through the 
identification of barriers which prevent 
interoperability from occurring. This is done 
by defining a problem space as the 
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intersections of the two dimensions concerns and barriers. Together with a 
third dimension, approaches to mitigate the problems, the solution space 
is defined. Using the framework it is possible to classify interoperability 
knowledge. All these interoperability frameworks provide means to 
classify the interoperability problems and solutions. At the same time they 
lack the ability to describe the interoperability situations where the 
problems occur and are solved.

The Ontology of Interoperability (OoI) [111] is one approach towards a 
deeper understanding of interoperability than what is offered by the 
interoperability framework. OoI prescribes a set of metamodels to 
describe interoperability from various viewpoints, once again mainly 
aiming at classifying various problems and decision alternatives. OoI 
does however also provide a communication metamodel aimed at 
describing interoperability situations.

Several methods for assessing interoperability on a general scope have been 
suggested. The Levels of Information Systems Interoperability (LISI) [112], 
developed by MITRE and the C4ISR Integration task force, uses a maturity 
model for assessing interoperability ranging from the isolated level to the 
enterprise level. The assessment in LISI is based on an assessment process 
and utilizes a score card method and interoperability metrics. Employing 
LISI would require more domain knowledge in the field of interoperability 
than the assessment method presented in section 8.2. There are several 
similar approaches to LISI, such as Systems of Systems Interoperability 
(SoSI) [113] and Levels of Conceptual Interoperability Model (LCIM) [114] 
coupled with the same drawbacks as LISI.

The i-Score [115] is a methodology for quantitative interoperability 
assessment. The assessment is based on the concept of operational 
threads, a sequence of activities each supported by exactly one system. 
Such operational threads can be created from for instance an UML 
activity diagram [115]. For each pair of activities and their supporting 
systems in the thread an interoperability spin is calculated and then 
aggregated into an i-Score.

The interoperability analysis framework presented by Ullberg et al. [23, 
24, 106] contains a number of classes and attributes for interoperability 
analysis e.g. Actor, Message-passing System, and Communication 
Need. The main goal is to assess is if the attribute Communication 
Need is satisfied or not (or to what degree).

The assessment method presented for interoperability in this book uses 
a simple check, namely whether a service, function, or data set share a 
common language for communication. This is evaluated in the 
architecture model by analyzing if two classes share a common 
language, we then assume that the communication need can be 
satisfied. Thus, the analysis used here is a simplified version of what 
Ullberg et al. presents.

8.2 The interoperability viewpoint

This section describes the interoperability viewpoint, cf. Figure 35. The 
viewpoint has the following main concepts:
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• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

• BehaviorElement

- BusinessFunction

- ApplicationFunction

- InfrastructureFunction

• Language

Concerns

Using the interoperability viewpoint makes it 
possible to determine whether data can be 
exchanged between services and functions 
without any loss due to deficiency in the 
communication. It also makes it possible to 

tell what services, functions, and data objects 
that speak a certain language.

Stakeholders

The typical stakeholder for the interoperability 
viewpoint is the integration and/or solution 
architect, but it could also come in use for 

developers implementing software that is 
integrated with other software.

Theory

Interoperability is assessed based on two 
assumptions: 1) Two entities are interoperable 
if the communication is successful between 
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these two. 2) The communication between two entities is successful if 
they share a common language.

If L is a Language, BE is an Behavior Element, PCS is a Passive Compo-
nent Set, then

f (BE . CommunicatesSuccessfully) =

 if PCS ⊆ BE . read
true  and L ⊆ BE . language ∪

PCS . writer . language
false  otherwise

Guidelines for use

To use the interoperability viewpoint follow this process: Firstly, model 
the services (business, application, and infrastructure), behavior ele-
ments (business processes, application functions, and infrastructure func-
tions), and passive component sets (representation sets and data sets). 

These are all typical classes used in enterprise architecture thus finding 
this information can either be done by using existing models or by inter-
viewing relevant stakeholders (e.g. enterprise architects, business archi-
tects, information architects, application architects, infrastructure/
technology architects). Secondly, find out what languages that are used 
related to all modeled classes and insert this information into the model. 
Thirdly, run the analysis.

An interoperability view example

The integration architect at ACME Energy is planning some major 
changes in the form of integrating some new functions. A first step for 
our architect is to model the As-Is state of the architecture, so that any 
future To-Be state can be analyzed with this as a baseline. The CIO has 
pointed out that one important part of their business is the compilation 
of maintenance KPIs based on the closed workorders. This includes 
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several processes and functions that read and write to different data sets. 
In the current state everything is interoperable because they speak or are 
written in the same language. The as-is model verifies this, cf. Figure 36.

In order to model the interoperability view example (cf. Figure 36) of 
ACME Energy follow these steps:

1. Add a Close Workorder business process, a Generate Failure 
Statistics application function, and a Compile Maintenance KPIs 
application function. These have all been modeled in previous 
example, please re-use.

2. Add a Representation Set called Raw Failure Descriptions, a Data 
Set called Processed Failure Descriptions, a Data Set called Failure 
Descriptions with Stats, and a Data Set called Maintenance KPIs. 
These have all been modeled in previous examples, please re-use.

3. Have the Close Workorder Read from the Raw Failure Descriptions 
and Write to the Processed Failure Descriptions. Have the Generate 
Failure Statistics Read from the Processed Failure Descriptions and 
Write to the Failure Descriptions with Stats. Have the Compile 
Maintenance KPIs Read from the Failure Descriptions with Stats 
and Write to the Maintenance KPIs. These relationships are 
automatically generated if the classes are re-used.

4. Add a Language class and call it Multi-maintenance Language.

5. The Representation and Data Sets are all of this language type. 
Add three IsOfLanguage relationships.

6. The Business Process and the Application Functions can all speak 
the Multi-maintenance Language. Add three SpeaksLanguage 
relationships.

7. Press calculate and make sure that the communication is 
successful for all processes and functions.
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The use of information systems permeates all 
modern organizations; virtually every existing 
business process is supported by some sort of 
information system solution. As a consequence, 
system related operational and capital 
expenditures consume a substantial part of the 
overall budgets. This was illustrated in a survey 
of the IT spending of 2007 by Gartner where it 
was reported that information system costs 
consumed 4, 4 % of European firms revenue. 
Gartner (An information technology research 
and advisory company) further concluded that 
the information system costs were likely to 
grow, at least in absolute terms. Another study 
performed by the Bureau of Economic Analysis 
in the United stated concluded that the share of 
IT in business equipment investments in USA 
rose to above 50 percent in year 2000 [3]. The 
great importance of information systems for 
running a competitive business together with 
the significant costs associated with system 
investments has made it imperative to increase 
the quality of decisions concerning information 
systems management. Bad decisions not only 
jeopardize the smooth running of the business, 
they also cost a fortune. Information systems 

often stay with their organizations for a very 
long time, systems that were developed in the 
seventies still support core processes in some 
industries. The longevity of information 
systems means that cost assessment must not 
inly include the initial costs, but also the yearly 
costs associated with a system. This could for 
instance be maintenance, support, and license 
costs.

The original work that this section is based on 
can be found in [116].

9.1 How to measure cost

A frequently cited method for estimating IT 
development efforts is Barry Boehm et al.s 
COCOMO (COnstructive COst MOdel) 
method and its successor, aptly named 
COCOMO II, [36,117]. The method offer a 
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framework and an algorithm to predict the number of man-months 
needed to complete software development projects. This effort estimation 
is based on the size of the software, an approximate productivity constant 
A, an aggregation of five scale factors E (precentedness, development 
flexibility, architecture/risk resolution, team cohesion, and process 
maturity), and effort multipliers to 15 cost driving attributes Although 
based on qualitative experiences and a substantial amount of quantitative 
data, the method is limited to software development projects, which 

excludes procurement and implementation of Commercial-Off-The-Shelf 
(COTS) products, and in particular does not address the entire life-cycle 
cost of IT investments. The COCOMO community has acknowledged the 
need to make estimations of COTS{related costs as well, which gave rise to 
COnstructive COTS (COCOTS) [118-120]. COCOTS explores technical 
factors related to integration of COTS products, but instead fails to address 
maintenance related costs or the costs related to the organizational change.
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Figure 37: The cost taxonomy by Närman et al [116].
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A more holistic approach taking softer cost drivers into account is 
presented in a number of IT cost taxonomies proposed by Irani et al. 
[121-123]. These taxonomies emphasize the importance intangible costs 
derived from for instance the introduction of new work practices that are 
associated with introducing new IT technology. Although complementing 
the more technical views expressed in COCOMO and COCOTS, the 
taxonomy says little on how to use cost factors to calculate IT investment 
costs in practice.

The assessment method for cost presented in this book focuses on the 
initial and yearly costs for different elements of EA. What these costs 
actually include depends on what costs a specific company using this 
viewpoint actually do have. The initial cost of an application could for 
instance include procurement, training, and configuration costs. While, 
the yearly cost could include maintenance, support, and license costs. 
The yearly cost for a certain role in an organization could include salary 
and educational costs. Närman et al. presents a cost taxonomy that could 
be used as a point of reference [116], cf. Figure 37.

9.2 The cost viewpoint

This section describes the cost viewpoint, cf. Figure 38. The viewpoint 
has the following main concepts:

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• BehaviorElement

- BusinessFunction

- ApplicationFunction

- InfrastructureFunction

• ActiveStructureElement

- ApplicationComponent

- Role

- Node
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Concerns

The cost viewpoint aims at showing what direct costs that is associated 
with the elements of the enterprise architecture. E.g. it aims at answering 
what a certain service or process costs.

Stakeholders

The typical stakeholder for the cost viewpoint is the CIO or someone in 
similar position with a financial responsibility. Project managers or 
architects with cost requirements could also use this viewpoint when 
managing the budget plans.

Theory

The cost of an entity is assessed based on the initial and yearly costs of 
the related entities. This means, that if for instance two services share a 
function then the cost of this function is divided between the services. 
Or, e.g. if one service is realized by two functions then the cost of the 
service is a sum of the costs of the two functions.

Service.Cost (S.Cost) the cost of the Service is calculated by adding up 
the cost from all behavior elements that realize the Service. The cost from 
the BehaviorElement is equally distributed among the services. If 
BE = {be1, . . . , ben} is a list of BehaviorElements, S is a Service, and 
BE ⊆ S . realizedByAND ∪ S . realizedByOR then

f (S . Cost) =
n

∑
i=1

bei . Cost
|bei . realizesAND ∪ bei . realizesOR |

.

V(S . Cost) = {x ∈ R : 0 ≤ x} .

BehaviorElement.Cost (BE.Cost) the cost of the BehaviorElement 
consists of the costs from all services that the BE is using and the cost of 
the active structure elements that are assigned to the BE. The cost from the 
services and ActiveStructureElements is equally divided amongst 
all BEs to which it is used by/assigned. If A = {a1, . . . , an} is a list of active 
structure elements, BE is a BehaviorElement, S = {s1, . . . , sn} is a list of 
services, A ⊆ BE . assignee and S ⊆ BE . usesAND ∪ BE . usesOR then

f (BE . Cost) =
n

∑
i=1

ai . Init ialCost
|ai . assignor |

+

n

∑
i=1

ai . YearlyCost
|ai . assignor |

+

n

∑
i=1

si . Cost
|si . userAND ∪ si . userOR |

.

V(BE . Cost) = {x ∈ R : 0 ≤ x} .

ActiveStructurElement.InitialCost (ASE.InitialCost) the initial 
cost of an ActiveStructureElement is set as evidence in the model 
with the same currency used throughout the model.

V(ASE . Init ialCost) = {x ∈ R : 0 ≤ x} .

ActiveStructureElement.YearlyCost (ASE.YearlyCost) the yearly 
cost of an ActiveStructureElement is set as evidence in the model 
with the same currency used throughout the model.

V(ASE . YearlyCost) = {x ∈ R : 0 ≤ x} .
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Guidelines for use

To use the cost viewpoint follow this process: Firstly, model the services 
(business, application, and infrastructure), behavior elements (business 
processes, application and infrastructure functions), and active structure 
elements (roles, application components, and nodes). As stated in, for in-
stance, the interoperability viewpoint these classes are typical elements 
of any enterprise architecture model. Thus, existing EA models could be 
re-used or the typical stakeholder of EA could be interviewed for 
information. Secondly, find out what the initial and yearly costs are for 
the active structure elements. Thirdly, run the analysis.

A cost view example

The CIO of ACME Energy has a tight budget for the coming year and 
since new technology have just been procured and some more is on the 
way there is a wish to manage these costs. The CIO asks the architects to 
calculate the expenses for the coming year based on the current 
architecture solution. The new elements of the architecture include a 
maintenance manager, three databases/servers, and the CMMS 
component. It is important for the CIO to divide the expenses between 
the business units of the company based on the amount that they 
actually do use. In this case the maintenance department, which owns 
the study maintenance business process, will be budgeted the expenses 
of the new maintenance manager, the three databases/servers, as well as 
the CMMS component (cf. Figure 39).In order to model the cost view 
example (cf. Figure 39) of ACME Energy follow these steps:

In order to model the cost view example (cf. Figure 39) of ACME Energy 
follow these steps:

1. Add the Study Maintenance business process, the Close Workorder 
business process, the Study Maintenance application service, the 
Generate Failure Statistics application function, the Compile 
Maintenance KPIs application function, the CMMS application 
component, the Generate GUI infrastructure service, the Data 
Retrieval primary site infrastructure service, and the Data Retrieval 
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Figure 39: A cost view example.
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secondary site infrastructure service. These have all been modeled in 
previous example views, re-use existing classes if possible.

2. The Study Maintenance process Uses the Study Maintenance service. 
Which in turn is Realized by both the Generate Failure Statistics and 
Compile Maintenance KPIs functions. Both these functions are 
Assignees of the CMMS component. The Generate Failure Statistics 
function Uses the Generate GUI service (AND) and one of the two Data 
Retrieval services (OR). These relations are all automatically generated 
based on the previously modeled views if the classes are re-used.

3. Add a new Role and name it Maintenance Manager. Assign it to the 
Study Maintenance and the Close Workorder processes.

4. Add three Infrastructure Functions and name them GUI, Failure Data 
primary and Failure Data secondary.

5. The Generate GUI service is Realized by the GUI function, the Data 
Retrieval primary site is Realized by the Failure Data primary 
function, and the Data Retrieval secondary site is Realized by the 
Failure Data secondary function. Add these three relationships.

6. Add three Nodes and name them GUI Application Server, MySQL 
Database, and SQLite Database.

7. The GUI Application Server node is Assigned to the GUI function, 
the MySQL Database is Assigned to the Failure Data primary 
function, and the SQLite Database is Assigned to the Failure Data 
secondary function. Add these three relationships.

8. Add the initial and yearly costs according to Table 5.

9. Press calculate and evaluate the cost of the Study Maintenance and 
Close Workorder business processes. These should read 1.795.000 
and 550.000 SEK respectively.
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Table 5: Initial and yearly cost data for cost view example.

Class Initial Cost Yearly Cost

Maintenance manager 100.000 1.000.000

CMMS 1.000.000 100.000

GUI Application Server 30.000 10.000

MySQL Database 45.000 10.000

SQLite Database 40.000 10.000

Chapter 9 Cost



10 A description of MAP’s  
utility viewpoint.

Utility



“Nature has placed mankind under the governance of two sovereign masters, 
pain and pleasure. It is for them alone to point out what we ought to do, as well 
as to determine what we shall do. On the one hand the standard of right and 
wrong, on the other the chain of causes and effects, are fastened to their throne. 
They govern us in all we do, in all we say, in all we think: every effort we can 
make to throw off our subjection, will serve but to demonstrate and confirm it. 
In other words a man may pretend to adjure their empire: but in reality he will 
remain subject to it all the while. The principle of utility recognises this 
subjection, and assumes it for the foundation of that system, the object of which 
is to rear the fabric of felicity by the hands of reason and of law.” – Jeremy 
Bentham [126].

As far back as 1780 Jeremy Bentham presented utility in the following 
way: “By utility is meant that property in any object, whereby it tends to 
produce benefit, advantage, pleasure, good, or happiness…” [126]. The 
idea was that utility over an act can be measured. This was followed by 
the felicific calculus which describes how such measurement can be con-
structed [127]; with the two units hedons, a unit of pleasure, and its anto-
nym dolors, the unit of pain. When assessing the utility the following cir-
cumstances have to be considered: its intensity, its duration, its propin-
quity, its fecundity, its purity and its extent. Over the years, utility theory 
has evolved. In 1947 John von Neumann and Oskar Morgenstern pre-
sented the four axioms of rationality and a real-value utility function. 
This was later extended by, amongst others, Peter C. Fishburn, Ralph L. 
Keeney and Howard Raiffa, providing solid foundations to preference 
structures, independences and utility functions. This has been applied in 
game theory, healthcare and economics, where the satisfaction gained 

from goods and services can be measured in utility.  The utility theory 
has been used to construct models for better decision making [128] and 
trade-off analysis to obtain the best outcome.

Utility is a representation of preferences that one has over something. 
Utility might be a bit abstract, but let’s illustrate it in terms of money. A 
person would most probably prefer to have $100 on her bank account 
rather than zero; the same person would probably prefer to have even 
more. However, there comes a point where more money ceases to be as 
useful for this person as they were in the beginning. The effort in obtain-
ing more, or trade-off to other things, might be too high. When having 10 
or 10.1 billion dollars on her bank account the excess of $100 million 
might not bring that much extra utility to this person, her financial situa-
tion will be sound any way. The general idea is that when needs and re-
quirements are not fulfilled the person is unhappy; utility is zero or very 
low. As the needs and requirements are meet the utility increases and 
when even wishes and desires are satisfied the person is completely 
happy and utility reaches its max.

In this book, utility is defined as the quality or condition of being useful. 
The method is based on individual preference structures (including inde-
pendence assumptions) to perform the utility calculations [128]. This al-
lows the decision to be presented in a quantifiable and comparable form. 
A significant change in utility between two alternatives implies that it 
would be a good idea to go for the higher scoring alternative. For exam-
ple for an ordinary person, the increase in utility could be greater when 
wealth changes from $0 to $100 and worth working for. When wealth 
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changes from $10.000 to $10.100 the utility might not increase that much, 
the person might find it less rewarding to do the extra work to go from 
$10.000 to $10.100. #

Utility theory has the potential to aid decision makers to evaluate 
enterprise architecture as-is and to-be scenarios and comparing them 
against each other. A business service which does not meet the require-
ments of the company is of no or little utility to the enterprise. At the 
same time a business service exceeding the requirements and wishes by 
far might not bring that much extra utility compared to if the service 
meet the requirements and just passes the extra wishes. The utility the-
ory can aid the decision maker in making the trade-offs and decisions on 
what is important and which solution to implement.

An enterprise architecture can incorporate many quality attributes. The 
decision maker usually has to balance these attributes against each other 
to obtain the best possible architecture. This chapter presents a system-
atic and formal way of assessing the quality of an enterprise architecture 
based on a decision maker's preferences. The method presented aims to 
provide support to the task of making trade-off decisions and balancing 
the enterprise architecture.

10.1 How to measure utility

Utility is a subjective matter. It therefore needs to be evaluated based on 
a set of individual preferences. An absolute number specifying the utility 
of a certain state can be difficult to assess, but when given a choice of 

two or more it is somewhat easier to tell which is better or when the 
stakeholder is indifferent to them. 

The following notation will be used throughout the utility chapter. 
X = {X1, X2, . . , XN} is a set of N attributes or properties, X1, which are in-
cluded in the domain under which the decision maker will make her 
decision. An example of attributes in the EA domain is the non-
functional attributes: availability, A, security, S, interoperability, I , and 
modifiability, M. Where X = {A, S, I, M}. The complement of an attribute, 
X1, is denoted X̄1 = {X1, . . , XI−1, XI+1, . . , XN}. In the previous EA example 
the complement of the security attribute is S̄ = {A, I, M}. Each attribute, 
X1, can be assigned a state or value, x, which is within a state/value 
range containing two or more values, x = {x1, x2, . . , xn}, it can be both dis-
crete or continuous. The non-functional attribute interoperability could 
for instance have the two states true or false. Meaning that it is either in-
teroperable or not, interoperabilit y = {true, false}. The availability can 
be expressed in a percentage value range going from completely unavail-
able, 0%, to always available, 100%, availabilit y = {0 % , . . ,100%}. The 
decision maker has to be able to tell if one value is preferred over an-
other, xi ≻ xj, or if she is indifferent of the two. The preference relations 

are:

# •# Strict preference ≻ , is a transitive relation. If xi ≻ xj and  

xj ≻ xk then xi ≻ xk.

# •# Indifference ∼, is a transitive, reflective relation, xi ∼ xi for all 
x, and symmetric, xi ∼ xj → xj ∼ xi.
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# •# For each pair of , xi and xj, only 

one of xi ≻ xj, xj ≻ xi or xi ∼ xican hold.

# •# Weak preference ⪰ , is transitive 
and complete, for all pair of,  xi and xj, either 

xi ⪰ xj or xj ⪰ xi.

Preference relations are discussed in greater 
detail in [129, 132].

The utility of all attributes is denoted 
U(X ) = U(X1, X2, . . , XN), and has a range 
0 ≤ U(X ) ≤ 1. The utility for a specific 
attribute X1 with the value  xi is denoted ui(xi). 
The conditional utility function, which is the 
utility function over one attribute, has a range 
of 0 ≤ ui(xi) ≤ 1, where the least preferred 
outcome of the attribute u0

i (xi) = 0 and the 
most preferred outcome u*i (xi) = 1. If xi ≻ xj 

then ui(xi) > uj(xj) (Note: preference relation, 

≻. Inequality relation, >). If xi ∼ xj then 

ui(xi) = uj(xj). Returning to the availability 

attribute, let’s say that the stakeholder’s least 
preferred outcome of availability on a system 
is 90%, u0

a(90%) = 0. The most preferred 
outcome is 100%, u*a (100%) = 1. The 
stakeholder would typically prefer the higher 

availability and the conditional utility 
function would approach and reach 1 as the 
availability increases from 90% to 100%, 
given any two values in-between and the 
stakeholder can tell which one is the most 
preferred.

Scaling constants are important in addition to 
the conditional utility functions, ui(xi), when 
assessing the total utility, U(X ). The scaling 
constants are used to scale the utility 
functions. This is done in order to keep them 
within the proper value range but also to 
reflect the decision maker’s preferences on 
how important each attribute is. The scaling 
constants can be seen as a weight to each 
conditional utility function. The scaling 
constants to each conditional utility function, 
ki, have a range of 0 < ki < 1. In some cases an 
additional scaling constant k is used. k is a 
non-zero scaling constant, k > − 1. More 
about scaling constants and how to assign 
them is presented under each type of utility 
function.

Lotteries are an important concept to utility 
theory. The lotteries are used to elicit the 

stakeholder’s preferences and to validate 
independence assumptions. [130] has 
provided a definition of a lottery. Given a set 
of prizes, $, “A lottery on $ is a device for 
deciding which prize in $ you will receive, 
on the basis of a single observation that 
records which one of a set of mutually 
exclusive and exhaustive uncertain events 
took place. It is possible that with each of 
these uncertain events there is associated a 
known chance; for example, this would be so 
if we were observing a single spin of a well-
made roulette wheel.”

Let’s consider the lottery of flipping a 
perfectly balanced coin. $ = {heads, tails}, 
where there is the known chance of 50% for 
either of the two. This lottery is graphically 
presented in Figure 40. 
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Independence

To simplify the tailoring of the utility function to the stakeholder there 
are three different kinds of independence assumptions which can be 
made, and validated with the stakeholder’s preferences. The purpose is 
to reduce the workload when determining how the utility function 
behaves. The different kinds of independencies are explained below. 
Each kind of independence is accompanied by an example using the 
attributes availability A, interoperability I and cost C where X = {A, I, C} 
is the set of all three attributes. For the sake of the example uA(80%) = 0, 
uA(100%) = 1, u1( false) = 0, u1(true) = 1, uC($5000) = 0 and uC($0) = 1.

Preferential independence

The preferential independence is important to determine to ensure if the 
stakeholder’s preferences over one attribute remains the same regardless 
of the other attributes.

If attribute XI ∈ X, then XI is said to be preferentially independent of its 
complement  X̄I if the preference order, xi ⪰ xj, for the outcome (xi, x̄i), 

where the values are fixed, does not depend on the fixed amount  [128, 
131].

# •# If xi, xj ∈ XI, xi ⪰ xj and xi ∈ X̄I, XI is preference independent of 

X̄I if ∀x̄i((xi, x̄i) ⪰ (xj, x̄i)).

In other words, preferential independence means that a decision maker’s 
preference over an attribute, XI, is not dependent on any other attribute.  
[128, 131]. 

The two attributes XI and XJ are mutually preference independent if XI is 
preference independent of XJ and XJ is preference independent of XI. On 
a similar note the attributes X1, X2, . . , XN−1 and XN are mutually 
preference independent if, for every subset  I ⊆ {1,..,N} the set XI of these 
attributes is preference independent of X̄I.  [132].

Example of preferential independence  

Let’s take the two attributes availability A, and cost C. If the stakeholder 
always prefers a low cost compared to a high, no matter in which state 
the availability is, then C is preference independent of A. So if C is 
preference independent of A, the stakeholder would e.g. prefer ($0; 85%) 
over ($5000; 85%) and ($450; 85%) over ($451; 85%). If there exists an 
availability state where the stakeholder would prefer a more expensive 
service compared to a cheaper service, then  C is not preference 
independent of A. In the case of availability and cost, it might be obvious 
that one prefers to pay less regardless of the value of the availability 
attribute. Let us leave the systems and services to illustrate an example 
when you would not be preference independent. Given the domain of 
the human body we can look at the two attributes blood glucose 
concentration BGC, and insulin I. When there is an excess of glucose in 
the blood, insulin is produced in order to decrease the blood glucose 
concentration. If the blood glucose concentration is normal and insulin is 
produced it would cause a glucose deficiency. The body strives to keep a 
balanced blood glucose concentration. The two attributes are not 
p r e f e r e n t i a l l y i n d e p e n d e n t o f e a c h o t h e r s i n c e 
(I − not produced; BGC − normal) i s p r e f e r r e d o v e r 
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(I − produced; BGC − normal), but if we 
change the fixed amount in blood glucose 
c o n c e n t r a t i o n t o b e h i g h 
(I − produced; BGC − high) is preferred over 
(I − not produced; BGC − high) .

Utility independence

If attribute XI ∈ X, then XI is said to be utility 
independent of its complement X̄I if the 
preference order over lotteries on Xi,  (xi, x̄i), 
with  X̄Ifixed, does not depend on the fixed 
amount of x̄i. [128, 131]. The attributes in  X 
are mutually utility independent if every 
subset of {X1, X2, . . , XN} is utility independent 
of its complement [128].

Example of utility independence  

If the complement values to attribute  are 
held fixed at the least desirable level , what is 
the decision maker’s certainty equivalent for 
a 50/50 gamble yielding values 80% and 
100% on the availability attribute? The 
certainty equivalent is the guaranteed 
amount from an outcome which to the 
decision maker is equally desirable as a 
gamble with known chance. Now let’s say 
that the decision maker would be indifferent 

between the gamble and the certain outcome 
if the availability of the certain option is 90%. 
This scenario is illustrated in Figure 41.

If the complement values were held fixed at 
some other level, let’s say the most desired 
outcome, ā*, would the decision maker’s 
certainty equivalent, 90%, be? If the decision 
maker sticks to the same certainty equivalent, 
the attribute is utility independent of its 
complement.

Utility independence can also be elicited 
using combinations of multiple lotteries. The 
decision maker is given a choice between the 
two lotteries like the one shown in Figure 42. 

The decision maker may prefer lottery 1 over 
lottery 2 because there is less risk associated 

with regards to cost and availability in 
System 1. No matter which lottery the 
decision maker prefers, if the choice over the 
two lotteries remains the same when the 
interoperability is changed to , then cost and 
availability are utility independent of 
interoperability.

Additive independence

Two attributes, XI and XJ are additive 
independent if the paired preference 
comparison of any two lotteries (like the two 
lotteries previously shown in Figure 42), 
defined by two joint probability distribution 
on Xi × XJ, depends only on their marginal 
probability distribution (the probability of 
one variable taking a specific value 
irrespective of the values of the other) [128]. If 
the two lotteries in Figure 43 are equally 
desirable then XI and XJ are additive 
independent.

Example of additive independence  

Let’s have a look at the two attributes 
availability and interoperability. If the 
decision maker thinks that the two lotteries 
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Figure 41: Certainty equivalent as-
signed to 90% for a 50/50 gamble.



shown in Figure 44. Additive independence example are equally 
preferable, then the two attributes  and  are additive independent of one 
another.

In both lotteries there is a 50% chance of getting the most and the least 
preferred outcome on each attribute. 

Utility functions

The general utility function over the outcome of the attributes in X is 
u(x1, x2, . . , xn) = f ( f1(x1), f2(x2), . . , fn(xn)), the downside with this utility 
function is that it can be resource consuming to define the behavior of 
function f. The conditional utility functions fi always have to be 
determined and there is some assistance to get when defining the utility 
function f. This section presents three common utility functions. The key 
idea is to investigate the previous mentioned independence assumptions 
with the stakeholder to see if any of them apply. When the independence 
assumptions have been validated, the right utility function can be 
chosen to fit the stakeholder preferences. If none of the independence 
assumptions applies the reader is advised to read [128].

There are five stages to go through when determining the utility function 
for a decision maker [128]:

# • Introducing the terminology and ideas.

# • Identifying relevant independence assumptions.

# • Assessing conditional utility functions.

# • Assessing the scaling constants.

# • Checking for consistency and reiterating.
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Figure 42: Paired preference comparison to elicit if interoperability 
is utility independent of cost and availability.

Figure 43: Paired preference comparison lottery to elicit additive in-
dependence.

Figure 44: Additive independence example.
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Additive utility

If the attributes are all additive independent 
of each other the utility is calculated using the 
additive utility function, Equation 1. The 
additive utility function simply sums up the 
utility of each conditional utility function 
with a weight on how important each 
attribute is to the stakeholder. These weights 
are subsequently called scaling constants.

U(X ) =
n

∑
i=1

kiui(xi)

Equation 1.

All the scaling constants ki, should be 

normalized so that 
n

∑
i=1

ki = 1.

Assessing the scaling constants  

When assessing the scaling constants, the 
stakeholder needs to rate the importance of 
each attribute. This can be done in a 
numerous of ways. In the end, the assessed 
weight for each attribute has to be 
normalized. One way of assessing the 
weights is to have the stakeholder assigning 
utility of u(x*i ; x0

i ) = pi. The weight can also be 

evaluated by proposing a bet, letting the 
stakeholder assign the probability pi, 
illustrated in Figure 45.

The scaling constants are then normalized: 
# # # ki =

pi

∑n
i=1 pi

 .

Multiplicative utility

If each attribute in  is utility independent of 
its respective complement then the 
multiplicative utility function holds. The 
multiplicative utility function multiplies the 
conditional utility functions with each other 
using both individual scaling constants ki and 
a final scaling constant k to ensure that 
0 ≤ U(X ) ≤ 1.

1 + kU(X ) =
n

∏
i=1

(1 + kkiui(xi))

Equation 2.

To calculate the scaling constant k, all 
attribute utility functions are set to 1,  
ui(xi) = 1 and so U(X ) = 1. This gives:

1 + kU(X ) =
n

∏
i=1

(1 + kkiui(xi))

Equation 3.

Out of which k can be calculated. Keep in 
mind that k ≠ 0 and k > − 1. If  k = 1 the 
multiplicative utility function is reduced to 
the additive form.

Assessing the scaling constants  

The same approach as presented in additive 
case can be used to assess the ki values in the 
multiplicative utility function. The 
stakeholder assigns the utility of u(xi; x̄0

i ) = pi. 
The weight can also be evaluated by 
proposing a bet, letting the stakeholder assign 
the probability pi, illustrated in Figure 45, 
ki = pi.

Figure 45: Assessing the weight
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Example of the multiplicative utility function 

The example scenario is based on the four attributes in 
X = {X1, X2, X3, X4}. Lets assume that the weights have been set by a 
stakeholder:  k1 = 0.95, k2 = 0.07, k3 = 0.4 and k4 = 0.67. k can then be 
calculated by using Equation 3.

# # 1 + k = (1 + 0.95k)(1 + 0.07k)(1 + 0.4k)(1 + 0.67k)

# # # # 0 = k3 + 19.33k2 + 80k + 61.16

# # # 0 = (k + 13.886)(k + 4.455)(k + 0.988)

Equation 4.

Since k > − 1 it follows that k = − 0.98. Let’s assume that in this example 
scenario the conditional utility functions have evaluated to u1(x1) = 0.9, 
u2(x2) = 0.6, u3(x3) = 1 and u4(x4) = 0.1. Now Equation 2. can be used to 
calculate the utility of the service.

# # # # 1 − 0.988U(X ) = 0.083

# # # # # U(X ) = 0.926

Multi linear utility

If the attributes in X are mutually utility independent, the multi linear 
utility function should be used.

The multi linear utility function is a generalization of the additive and 
multiplicative utility functions. To setup the multi linear utility function 
2n − 2 scaling constants have to be assessed by the stakeholder. When 
there are four or more attributes, the overhead of assessing the 14 or 
more scaling constants can be too time and effort consuming and the 
result can often be approximated using the additive or multiplicative 
utility functions dependent on the independence characteristics of the 
attributes [133]. 

" U(X ) =
n

∑
i=1

(kiui(xi)) +
n

∑
i=1

∑
j>i

(kijui(xi)uj(xj))+

 " " +
n

∑
i=1

∑
j>i

∑
l>j

(kijlui(xi)uj(xj)ul(xl)) + … + k123..nui(xi)uj(xj)…un(xn)

Figure 46: The k polynomial
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A two attribute example

This subsection presents a small example containing two attributes, 
availability and modifiability. Availability is measured in percentage 
ranging from 0 to 100. Modifiability is measured on a scale from 1 to 14. 
After introducing the utility concept to the decision maker the individual 
attribute utility functions are assessed.

Identifying relevant independence assumptions 

First, the decision maker is questioned about potential preferential 
independence over a set of outcomes like the one in Table 6. Preferential 
independence question example where the decision maker’s preferred 
outcome is marked with bold text.

Where:

*1: (x+
α , xβ

m) or (x−
α , xβ

m)

*2: (x+
m, xβ

α ) or (x−
m, xβ

α )

The table shows that the two attributes are mutually preference 
independent, since the higher availability is always preferred over the 
lover when the modifiability is fixed. The same thing goes with the 
modifiability where the decision maker always prefers the higher 
modifiability independent of which fixed stat the availability is.

Thereafter, the decision maker is faced with setting the certainty 
equivalent for the 50/50 gamble vs. certain outcome for the two 
attributes. The purpose with this task is to validate the utility 

independence assumption. Let’s say that the decision maker’s certainty 
equivalent for the proposed 50/50 gamble yielding values 80 and 100 on 
the availability is 84 if the modifiability is 10. The same certainty 
equivalent was also given for another modifiability value of 13, 
illustrated in Figure 47.

The procedure is repeated with different attribute values and for both 
attributes. The decision maker remains consistent when setting the 
certainty equivalents and the utility independence assumption is valid.
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Table 6: Preferential independence question example.

A preference independent of 
M

M preference independent of 
A

(100%;1) or (0%;1) (14;50%) or (1;50%)

(53%;10) or (49%;10) (7;50%) or (8;50%)

(90%;14) or (75%;14) (9;23%) or (5;23%)

(98%;11) or (99%;11) (14;100%) or (13;100%)

*1 *2
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The additive dependence is then explored as explained earlier. The 
decision maker is faced with the task of comparing the two lotteries in 
Figure 48. The attribute values are changed over and over to see if the 

decision maker’s replies are consistent. In the example scenario the 
decision maker doesn’t find the two lotteries to be equally desirable. The 
two attributes are therefore not additive independent.

Assessing the conditional utility functions

Starting with availability, the decision maker is asked to determine the 
endpoints of the conditional utility functions. The least desirable 
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Figure 47: Utility independence example

Figure 48: Paired lotteries for the additive independence example

Figure 49: Availability and modifiability utility functions.
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availability in the example is 80% and 100% is considered the most 
attractive, ua(80) = 0 and ua(100) = 1. Thereafter, the respondent is asked 
to assess a few points in between the threshold values. When those have 
been assessed, the attribute utility function can be determined by 
interpolation. The same procedure is carried out for the modifiability 
attribute. An example of this is shown in Figure 49. where the squares 
indicate the stakeholder’s assessments.

Assessing the scaling constants

Starting with the availability attribute the stakeholder is requested to 
assess  u(100 % ; 9) = pi or equally:

Let’s say that the stakeholder sets pi = 0.95. The same procedure is done 
for the modifiability attribute where the stakeholder assigns 
u(14; 80%) = 0.3. The next step is to evaluate k.

The utility function

When the independence assumptions, conditional utility functions and 
scaling constants have been assessed, the multi attribute utility function 
can be derived.

1 − 0.87U(A, M ) = (1 − 0.87 * 0.95 * ua(xa)) * (1 − 0.87 * 0.3 * um(xm))

The utility function is visualized in Figure 51. The availability in this 
example scenario turned out to be 92% and the modifiability scored 12; 
ua(92%) = 0.9, um(12) = 0.6 . The final utility score can then be calculated 
by inserting these values in the function:

1 − 0.87U(92 % ,12) = (1 − 0.87 * 0.95 * 0.9) * (1 − 0.87 * 0.3 * 0.6)

U(92 % ,12) = 0.9
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Figure 50

Figure 51: A multiplicative utility function over the two attributes 
availability and modifiability
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10.2 The utility viewpoint

This section describes the utility viewpoint, cf. Figure 52. The viewpoint 
has the following main concepts:

• Stakeholder

• ProcessServiceInterface

• Requirement

- ServiceRequirement

- ApplicationServiceRequirement

- InterfaceRequirement

- InformationRequirement

• Service

- BusinessService

- ApplicationService

- InfrastructureService

• PassiveComponentSet

- DataSet

- RepresentationSet

Concerns

Using the utility viewpoint makes it possible to estimate the utility of the 
system in modeled architectures. The use of the utility viewpoint provides 
a high abstraction level measurement that can be suitable for easy 
comparison between competing scenarios.
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Figure 52: The utility viewpoint.
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Stakeholders

The stakeholder for the utility viewpoint is the actor who has requirements 
on a service. The stakeholder is modeled in the viewpoint.

Theory

The utility in this book is evaluated as follows. In ArchiMate a stakeholder is 
de_ned as the role of an individual, team, or organization (or classes thereof) 
that represents their interests in, or concerns relative to, the outcome of the 
architecture. In the utility viewpoint the Stakeholder is defined in the same 
way. The Stakeholder contains one attribute Utility.

Stakeholder.Utility The utility in the Stakeholder class is based on 
the utility of each requirement the stakeholder has. The utility of each 
requirement evaluated based on the importance of the requirement and 
the overall utility score is a sum of this. If R = {r1, . . . , rn} is a list of 
Requirements and R ∪ Stakeholder . concern then

f (Stakeholder . Utilit y) =
n

∑
i=1

ri . Utilit y * ri . Impor tanceOf Requirement

V(Stakeholder . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

In ArchiMate a requirement is de_ned as a statement of need that must be 
realized by a system. In this viewpoint the statement of need is specified in 
terms of utility. If the requirement is not fulfilled there is no utility. On the 
other end, if the aspect on which the requirement is stated is above a certain 
value the utility is 1. The Requirement class has two attributes, Utility 
and ImportanceOfRequirement. The Requirement class is not intended 

for modeling but acts as a superclass to ServiceRequirement, 
ApplicationRequirement , InterfaceRequirement a n d 
InformationRequirement.

Requirement.Utility The utility of the requirement is evaluated as a 
product of all utility from each aspect the requirement is measuring. A 
ServiceRequirement for instance has four aspects, availability, 
functionality, interoperability and cost. If sr is a ServiceRequirement then

f (sr . Utilit y) = sr . Utilit yOfAvailabilit y *
sr . Utilit yOf Functionalit y * sr . Utilit yOf Interoperabilit y * sr . Utilit yOfCost 

V(Requirement . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

For each aspect the requirement is measuring, a threshold maximum, and 
threshold minimum value, is defined by the stakeholder, and added as 
evidence in the two attributes associated with the aspect. If we follow the 
example of a ServiceRequirement one of the measured aspects is 
availability. The ServiceRequirement has the two attributes (amongst 
other) AvailabilityThresholdMax and AvailabilityThresholdMin. 
The threshold min value is added as evidence with the lowest availability 
the stakeholder accepts from the service. The availability threshold max 
value is added as evidence where the service is not considered to provide 
more utility if it is more available. For illustrative purposes let’s say a 
stakeholder has the requirement on a service where the service is of no use 
if the availability is less than 80% and an availability higher than 98% is 
too resource consuming for the organization. The stakeholder sets the 
threshold minimum to be 80% and the maximum to 98%, the utility curve 
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of this is shown in Figure 53. If sr is a ServiceRequirement the utility 
of availability would then be

f (sr . Utilt yOfAvailabilit y) =
1

sr . Availabilit yThresholdMa x − sr . Availabilit yThresholdMin
*

sr . requirementOn . Availabilit y
V(Requirement . Utilit y) = {x ∈ R : 0 ≤ x ≤ 1} .

When dealing with cost, a low cost gives a high utility. For illustrative 
purposes a stakeholder thinks a service is really good if the cost is less 
than 8000. If the service cost more than 25000 the stakeholder thinks that 
it is too expensive and therefore of no utility. A cost utility curve example 
of this scenario is shown in Figure 54.

The threshold values do not necessarily need to reach zero. An illustration 
of this is when evaluating the utility of modifiability in an application 
service. Even though the modifiability is zero the stakeholder might still 
be provided with some utility from the service. For illustrative purposes, 
the stakeholder thinks that the utility of a certain application service is 0.4 
when the modifiability is 0 and it is sufficient if the modifiability is 11. A 
utility curve example of this scenario is shown in Figure 55.

For attributes such as interoperability which has binary states (true/false) 
the threshold minimum value is the utility of the interoperability when it 
is evaluated to false. The threshold maximum value is the utility of the 
interoperability when it is evaluated to true. Let's assume a stakeholder 
considers the service to have a interoperability utility of 0.2 when the 
interoperability is evaluated to false and 1 if the service has full 

Figure 53: An example of service availability utility.

Figure 54: An example of service cost utility.
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interoperability (evaluated to true), the utility of this example is shown in 
Figure 56.

Guidelines for use

To use the utility viewpoint follow this process: Firstly, select the 
intended stakeholder and add the stakeholder in the model. Add the 
services, interfaces and passive component sets on which the 
stakeholder has requirements. For each of these add a requirement of 
right type in between the stakeholder and the services, interfaces and 
passive component sets. Secondly, have the stakeholder set the 
importance of the requirements and the threshold values and add these 
as evidences to the model. Thirdly, run the analysis.

A utility view example

At ACME Energy the CIO is concerned with the maintenance management 
process. An analysis to see if the application service for maintenance 
management fulfills the organizations requirements is conducted.

In order to model the utility view example (cf. Figure 57) of ACME 
Energy follow these steps:

• Add the Study Maintenance and the ProcessServiceInteface, they 
have been modeled in previous example views, re{use existing 
classes if possible.

• Add a new Stakeholder and name it CIO.

• Add a new ApplicationServiceRequirement and name it Study 
Maintenance Requirement.

Figure 55: An example of service modifiability utility.

Figure 56: An example of service interoperability utility.
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• Add a new InterfaceRequirement and name it Maintenance Interface 
Requirement.

• Connect the two requirements to the stakeholder. Connect the 
Study Maintenance Requirement with Study Maintenance. Connect 
Maintenance Interface Requirement to ProcessServiceInteface.

• By now you are familiar with both ACME and the process of adding 
evidences. You may now act as the CIO and set your requirements.

• Press calculate. Does the application fulfill you requirements?

Figure 57: A utility view example.
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11 A guide through the 
process of creating class 
models.

This chapter introduces to 
creating class models 
using the EAAT Class 
Modeler.

Creating 
metamodels Author: 

Margus Välja



The EAAT tool and numerous metamodel viewpoints were introduced 
in earlier chapters. Now we come to the next question. What if we want 
to analyze attributes that are not supported by the metamodel that was 
described. The solution here is to create the metamodel by oneself with 
EAAT Class Modeler, which is another part of the EAAT family of model-
ing tools [134]. This chapter explains the relationship between the EAAT 
Class Modeler and the EAAT Object Modeler and contains a short meta-
modeling tutorial.

The EAAT family of modeling tools consists of two different applica-
tions. The first one you are already familiar with from previous chapters 
– the EAAT Object Modeler. The purpose of the EAAT Object Modeler is 
to allow modeling real life situations with the help of metamodels. In 
this book the MAP metamodel was introduced, which is divided into 
viewpoints for enterprise architecture analysis. These viewpoints are ap-
plication modifiability, data accuracy, application usage, service availabil-
ity, interoperability, cost, and utility. In each of the chapters that intro-
duced those viewpoints, an example was included about how to model 
the viewpoint with the EAAT Object Modeler. We call this type of model 
object model. The second application of the EAAT family is the EAAT 
Class Modeler, and its purpose is to create metamodels like MAP, which 
can be later used with the EAAT Object Modeler. For the purpose of sim-
plicity we will call the metamodels that can be created in the EAAT Class 
Modeler from now on class models. Anyone can create a class model, but 
for the class model and corresponding object model to be useful, they 
have to rely on scientific theories and common sense. Like the theories 

already covered in earlier chapters for MAP viewpoints. Therefore the 
tools are meant for different audiences. 

11.1 Concerns

The EAAT Class Modeler is designed for creating class models for the 
EAAT Object Modeler. A class model is an implementation of an analysis 
theory in UML, OCL and P2AMF that is used for calculation purposes. 
The calculations based on class models can later be done in the EAAT Ob-
ject Modeler tool using an object model structure, evidence, and chosen 
calculation method. While the class model contains theory, the object 
model reflects some real life situation. The calculation results show val-
ues about one or more enterprise attributes in a specific situation that the 
object model depicts. A summary of the tools and their purpose is pre-
sented in Table 7.

Note that while the design purpose of the EAAT software is to analyze 
enterprise architecture, it is in no way restricted to doing that.

11.2 Stakeholders

The audience for the EAAT Object Modeler tool is enterprise architects, 
or similar decision makers. The architect that wants an answer to a spe-
cific enterprise related question does not need to worry about the under-
lying theories. He or she can choose a class model or viewpoint and 
based on that start modeling with the EAAT Object Modeler. After the 
structure of the model is ready, evidence has been included, the results 
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can be calculated. These results tell what the underlying theory of class 
model shows about the enterprise’s situation that was modeled. 

The EAAT Class Modeler, however, is directed towards more scientific 
audience. This tool is for those who want to research and create class 
models of certain enterprise properties that are later used by a wider 
audience. These can be for example students or researchers. It is easy to 
create a class model in the EAAT Class Modeler tool, but the worth of 
the class model depends on the underlying theory.

11.3 The Theory behind the two tools

UML and OCL

The EAAT tools use UML notation for visual representation. The UML 
entities present are:

• classes that can be instantiated as objects in the EAAT Object Modeler, 

• associations and inheritance that are two ways of connecting the 
classes. 

Classes can contain invariants, attributes, operations, and operations can 
have parameters. Attributes can either be derived or non-derived. The 
way classes interact with each other and how calculations are done, is 
defined using Object Constraint Language (OCL). OCL is a declarative 
language for describing Meta-Object Facility (MOF) based models, and 
is maintained by Object Management Group (OMG) [135]. OCL is able to 
be used to describe restrictions for classes and provide object query ex-
pressions. In the EAAT Class Modeler, OCL can be used for defining in-
variants, operations, derived attributes and derived relationships.

P2AMF

Both tools of the EAAT family support uncertainty modeling with the 
Predictive, Probabilistic Architecture Modeling Framework (P2AMF). By 
using P2AMF syntax, the uncertainties of objects, relations and attributes 
can be expressed. 
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Table 7: EAAT modeling.

Step Step description EAAT tool used

1 Define the problem N/A

2
Choose or create a conceptual 

model
N/A

3
Turn the conceptual model into a 

UML, OCL and P2AMF based EAAT 
class model (metamodel)

Class Modeler

4
Create an executable model that 

addresses the problem
Object Modeler

5
Calculate results with the 

executable model
Object Modeler
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The probabilistic assessments based on P2AMF are possible in the EAAT 
Object Modeler. The P2AMF syntax is used for generating samples in a 
chosen calculation process in Monte-Carlo fashion. The calculations are 
done in the EAAT Object Modeler and the amount of samples generated 
can be defined in that tool together with the calculation method and nu-
merous other properties.

An example of the P2AMF syntax is the expression of a normal distribu-
tion that can be used as evidence or part of operations. 

# mySer ver . availabilit y = normal(1,0.1)

Here the object’s attribute named availability is assigned a value from 
normal distribution, where the mean value is 1 and deviation is 0.1. 

An example of the existence property is shown below. It depicts the case 
of object existence uncertainty and is mandatory for all classes.

# P(mySer ver . E ) = 0.8

Here the syntax tells us that there is an 80% probability that the object 
myServer exists. This affects the calculation process in a way that there 
are certain samples that show results without that object.

The syntax and available calculation methods are explained in detail in 
the EAAT manual.

Analysis in the EAAT Object Modeler

The calculations are possible only in the EAAT Object Modeler tool. 
There are three sampling algorithms that are supported to infer the val-
ues of the attributes that are part of the created model. The ones imple-
mented are: forward sampling, rejection sampling and Metropolis-
Hastings sampling, each having advantages and disadvantages. For-
ward sampling is available also in an extended version, allowing evi-
dence injection.

For all sampling algorithms, the first step is to generate random samples 
from the existence attributes’ probability distribution P(X ) : x1, …, xM. For 
each sample, xi, and based on the P2AMF object model, a reduced object 
model, Ni ∈ N, containing only those objects and links whose existence 
attributes, Xj, were assigned the value true, is created. Some object mod-

els generated in this manner will not conform to the constraints of UML.

The details of the calculation methods are explained further in the latest 
version of the EAAT manual.

11.4 Guidelines for the EAAT Class Modeler

The graphical user interface (GUI)

The Class Modeler tool consists of the modeling canvas in the center and 
various other windows that allow to specify details of the model and to 
see messages generated by the tool. Figure 58 shows the graphical user 
interface of the tool.
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The two important windows besides the main canvas are Palette and 
Class Explorer. Palette is located on the right side of canvas and by default 
is hidden. It can be invoked by clicking on the arrow in the right upper 
corner. Palette window lists all the objects and sub-objects that can be 
used for creating a class model. These are classes, invariants, attributes, 
operations and parameters for operations. The lower part of the palette 
shows the ways of connecting the elements – associations and inheri-
tance relationship.  Class Explorer lists the classes that have been created 

in the model and allows easy access to them. This is the place to access 
also created templates. Templates are a way of grouping classes together 
for easier modeling and comprehensibility in the EAAT Object Modeler 
tool. The templates can be created only in the EAAT Class Modeler tool.

The details of the class can be defined in the windows directly under the 
main canvas. After an attribute or an operation of a class has been se-
lected, OCL and P2AMF syntax can be inputted to the Derivation win-
dow. This code can be validated in the EAAT Class Modeler tool, and the 
validation results are displayed in the Model Validation window. All the 
elements that can be used for modeling have properties and those can be 
changed from the Properties window, also available below the main can-
vas. The errors that are not related to model validation are displayed in 
the Error Log.

Complex class models can be divided into viewpoints, while retaining 
the functionality of the model. A viewpoint should represent an analyti-
cal capability of the class model, but doesn’t have to. In the previous 
chapters the viewpoints of one class model that we called MAP, were ex-
plained. 

Note that invariants and other elements can be hidden in a view. If you 
don’t see an element you think you should, check the view properties by 
clicking in a random place in the main canvas, so that all elements 
would be deselected, and by opening the Properties window from down 
below. For example Invariants should be set to true for them to be visible 
in the main canvas. 
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Figure 58: EAAT Class Modeler GUI with a new class and a new 
attribute.
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The modeling process

A recommended process for creating a class model (metamodel) with the 
EAAT Class Modeler consists of 8 steps. 

1. Model classes. Classes can be instantiated as objects later in the 
EAAT Object Modeler.

2. Create relationships between the classes. A relationship shows 
that the connected objects can navigate to other connected ob-
jects. How this navigation is possible, is defined with the type of 
connecting element and multiplicity. 

3. Define relevant attributes. There are two kinds of attributes, de-
rived and non-derived ones. Non-derived attributes are the data 
that the creator of the object model needs to input as evidence 
before calculation. Also, we need to differentiate between value 
types available like real, integers, and boolean.

4. Define attribute derivation. Derived attributes contribute to, or 
show, our analysis results. This is were the most critical part of 
the logic of the model together with operations is defined.

5. Define operations. Operations are used to derive values and aid 
with the calculation process. They can have arguments. There’s 
an example with a recursive operation in the next chapter, which 
demonstrates the use of parameters. 

6. Define invariants. Invariants are for enforcing business rules. 
They can also be used to exclude samples that don’t correspond 
to some criteria to fine tune calculations.

7. Create templates. Templates can group various classes of same 
type or purpose together. They are needed to make the visual 
models more comprehensible and the creation and handling of 
models easier.

8. Create viewpoints. Viewpoint functionality is especially useful 
if a metamodel is large. Then it can be used to create smaller 
sub-metamodels by hiding certain model elements. Hiding ele-
ments does not change the analytical capabilities of the meta-
model, but helps with visual comprehension.

The first 4 steps of the process are the most important ones, while the 
rest depend on the specifics of the theory chosen for the model, and the 
preferences of the modeler. An actual modeling process might happen in 
iterative manner, where all 8 steps are repeated in some point of time.

The next section follows the described modeling process. It is a walk-
through tutorial showing how to create a class model.

An example class model

The scenario that we choose to model is the following. 

In our scenario we have a medium sized company that offers financial 
services. The company has several web applications that are accessible 
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only to company’s employees. The applications cater to different needs, 
mostly offering real time reports or data processing services. We have us-
ers with various data reading and writing needs that have been divided 
into role based groups and given access to the applications accordingly. 
The IT department is now planning to set up a new data warehouse to 
consolidate data from different applications and needs to know how 
much space is needed for the new data warehouse. They also want check 
whether the disk space currently available for different applications is 
enough according to the number of servers already running. The IT de-
partment doesn’t know the exact number of employees, nor are certain if 
applications are used the way they are said to be used. So to incorporate 
uncertainty and stochastic values, the head of the department has de-
cided to use EAAT for modeling purposes. He now turns to you as an 
employee of the department and asks first to create a framework of con-
cepts and business logic. You rely on common sense to create the frame-
work.

To create the class model we follow the steps shown earlier.

1. Model classes. First we identify what type of objects we need to 
create in the object model (with the EAAT Object Modeler). In our 
example, these are a user group, a web application, a data ware-
house and a server.

Create a class for each object in the EAAT Class modeler by drag-
ging Class element from Palette to the main canvas and renaming 
them with type names. The suggested names are UserGroup, We-

bApplication, DataWarehouse and Server. If other names are cho-
sen, then these names must be used throughout this tutorial.

2. Create relationships between classes. As a next step we need to 
define basic relationships between the created classes. In the EAAT 
Class modeler we have two types of connections available, and we 
choose association, which is the most basic one. Inheritance is ex-
plained in the next chapter.

Create a connection between UserGroup and WebApplication, 
then WebApplication and DataWarehouse, and finally WebApplica-
tion and Server.

Now set multiplicities. Because a user group has different needs 
for various applications, the multiplicity between the UserGroup 
and the WebApplication is 1 to many (*) , where * is on the user 
group side. We have dedicated servers for web applications, but a 
web application can be virtualized to run on several servers, so de-
fine the relationship between WebApplication and Server as 1 on 
the WebApplication side and * on server side. Now we come to the 
last relationship, and here we have several web applications and 
only one data warehouse. The assumption is that all web applica-
tions will be connected to a single data warehouse. Set the multi-
plicities correspondingly. 

Note that multiplicity determines what type of data will be avail-
able by traversing to the connection. It can be either a single value 
or several values in a set.
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3. Define relevant attributes. We want to analyze space require-
ments, so we need attributes to do that. Here we have to divide the 
attributes into two groups – derived and non-derived ones.  For 
now we just drag the attributes from the Palette. Note that there are 
different type of attributes - real, integer, boolean.

Add the following integer attributes to the classes. To UserGroup 
memberAmount, to DataWarehouse differentDatabases. Add the 
following real attributes to the classes. To UserGroup member-
SpaceNeeded, to WebApplication databaseSize and application-
Size, to Server diskSize, to DataWarehouse sizeRequired.

Note that default values need to be assigned to the non-derived at-
tributes. They must be placed where the statements for the derived 
attributes are normally put, and can use P2AMF syntax, like nor-
mal(10, 0.1), if probabilistic distributions are desired.

4. Define attribute derivation. Attributes have properties that can be 
changed from the Properties window, after selecting the correspond-
ing attribute in the main canvas. This way one can change an attrib-
ute from a non-derived state to derived one. However, an attribute 
will automatically change to derived state if OCL code is detected 
from its Derivation field. We chose the following attributes to be de-
rived: databaseSize, diskSize, sizeRequired, differentDatabases, 
diskSize.

Add the following code to the attributes, where “--” designates a 
comment:

• WebApplication – databaseSize:

# -- We aggregate the output of an operation totalNeed  

 -- for all connected user groups. The operation totalNeed 

 -- shows the data needs for a single user group. 

 self.userGroup.totalNeed()->sum()

• Server – diskSize:

# -- We calculate the amount of disk size needed for 1 server 
 -- as the division results of two operations, 

 -- which get the amount of data needed by a web app and the 

 -- amount of servers running it 

 self.webApplication.totalSize()/self.webApplication.connectedServers()

• DataWarehouse – sizeRequired:

# -- The operation totalSize is invoked and summed for all  

 --connected web applications 

 self.webApplication.totalSize()->sum()

• DataWarehouse – differentDatabases:

# -- The amount of web applications is counted 

 self.webApplication ->size()

Note that although comments are not necessary for a class model 
to function, they are a good way to keep track of functionality and 
to communicate its purpose to others who want to use the model.
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5. Define operations. Operations can be used within derived attrib-
utes. Operations help the programmer to structure the code. In our 
example we use operations to calculate the total data needs for 
user groups and web application and to find the amount of servers 
providing service to a web application. We already put the follow-
ing operation names into our derived attributes, assuming they 
will return certain type of information: totalNeed(), connectedServ-
ers(), totalSize(). Create them now in your class model with the fol-
lowing content:

• UserGroup – totalNeed()

# -- Amount of space is calculated by multiplying a member space 

 -- need with amount of members 

 self.memberSpaceNeed * self.memberAmount

• WebApplication – connectedServers()

# -- Amount of connected servers is calculated. 

 self.server->size()

• WebApplication – totalSize()

# -- Data needs for a web application are calculated by  

 -- summing user needs with application size. 

 self.databaseSize + self.applicationSize

Note that operations have return values. Set the return value of the 
operation connectedServers() to integer, others to real.

6. Define invariants. Invariants are used to exclude unwanted sam-
ples and to make calculations more accurate. In our case, we use an 
invariant to specify that the amount of space needed for users can-
not be negative. We use another one to specify that web applica-
tion size cannot be negative. 

Add an invariant named spaceNeedNonNeg to UserGroup, and 
appSizeBiggerZero to WebApplication.

Add the following content to the spaceNeedNonNeg:

# self.memberSpaceNeed >= 0

Add the following content to the appSizeBiggerZero:

# self.applicationSize >= 0

More information about template creation can be found from the 
next chapter. Viewpoints are covered in the latest version of the 
EAAT manual. The final class model is shown in Figure 59.
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Don’t forget to validate code using the Validate Model functionality. If 
errors are shown, fix them before using the class model.

Congratulations, you have now created a framework for modeling a 
data warehouse space needs! The model can be used in an object 
model to obtain the following values:

• Database size needs for a web application

• Disk size requirement for servers, assuming that the space is di-
vided equally between the connected servers.

• Total space required for the data warehouse and the amount of dif-
ferent databases that need to be merged.

Now it’s time to try to use this model in the EAAT Object Modeler to 
model a real life situation. An example object model based on the cre-
ated class model is shown in figure 60.
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Creating a class model (an abstract model, a meta-model) of a piece of 
reality, which defines an automated evaluation and at the same time 
shall be general enough to allow for accurate modeling of a reasonable 
range of phenomena of interest within its target domain through object 
models, is not trivial. Having attempted to model a piece of reality this 
way, as the authors of the previous chapters have done, the reader surely 
recalls and understands the difficulty of the task. Moreover, that is just a 
part of the challenge picture. Another challenge turns up when creating 
models that are to be maintained over longer time. In other words, creat-
ing models and writing their code so that the code remains understand-
able and readable, requires some discipline and extra work, without 
which the value of the models is prone to deteriorate heavily in the long 
run.

This chapter presents a collection of reusable solutions to modeling chal-
lenges, also called modeling patterns here. Their purpose is to prepare 
the modeler for easily coping with a range modeling challenges – chal-
lenges that are likely to occur when trying to tailor a class model to cap-
ture some view of reality. This chapter also presents a collection of prac-
tices, which aim at helping the reader create class models that are easier 
to read, comprehend, and maintain.

This chapter focuses on tools that have served as the basis for creating 
the models presented earlier in this book. They are the Enterprise 
Architecture Analysis Tool (EAAT) [17-20], which implements the Predic-
tive, Probabilistic Architecture Modeling Framework (P2AMF) [21]. For help 

on how to use EAAT, please refer to chapter 11 or consult the EAAT user 
manuals [139].

P2AMF is based on two well-known concepts - Unified Modeling Lan-
guage (UML) [136] and Object Constraint Language (OCL) [137], which 
is a part of the UML standard. P2AMF [23, 24] makes use of UML and ex-
tends OCL by a few elements, among other the possibility to specify 
probability distributions such as the normal distribution, or the binomial 
distribution, including their respective parameters. On top of UML and 
OCL, P2AMF is a probabilistic framework for quantitative prediction 
and employs Monte Carlo simulation methods. EAAT is a graphical soft-
ware tool, which implements P2AMF, and allows a computer user to cre-
ate class models, object models, and run evaluations on the latter.

At a first glance, even creating class models in P2AMF (i.e., not only mod-
eling concrete architectures according to some existing class model, but 
actually modifying or creating class models) may seem as a simple and 
straightforward task. There are, however, a few moments one is better 
off prepared for. Perhaps the major hill to overcome is to get accustomed 
with the way programming in OCL is done. OCL is a declarative pro-
gramming language, and as such it is considerably different from impera-
tive programming languages such as Java, C# or C/C++. Without previ-
ous experience with declarative programming, it might take a few tries 
to gain fluency in OCL. In such case, consulting an OCL guide (e.g., 
[138]) might be a good start. The OCL specification [137] could also help, 
and serve well as a reference. When modeling your own concepts, less or 

121

Chapter 12 Modeling patterns and practices  



more advanced, it is likely for you as a modeler to also face other types 
of challenges, however.

The rest of the chapter is structured into two major parts. The first part 
presents a collection of modeling patterns (i.e., reusable solutions to mod-
eling challenges). The second part describes a collection of coding prac-
tices that relate to writing effective and clean OCL code.

Modeling patterns

In the context of this chapter, we define a modeling pattern as a reusable 
solution to a problem related to modeling or evaluation of object models 
through means defined in a class model.

We have identified the following candidates for modeling patterns:

• Stochastic values (value uncertainty)

• Stochastic existence of objects and relations (structural uncertainty)

• Class inheritance (child classes)

• Polymorphism

• Aggregation gates

• Self-associations

• Templates

• Derived connections

Following, we present the above mentioned patterns in more detail and 
with examples.

Stochastic values (value uncertainty)

Challenge/need. Often, our knowledge of a domain is not sufficient for 
us to create accurate deterministic models. On the other hand, we could 
have observed that a parameter of our interest varies in a specific range 
of values in a specific way, for example, reflecting a known probability 
distribution (e.g. a normal distribution with a known mean and vari-
ance).

Solution and benefit. Instead of having to generalize our parameter us-
ing its mean value according to our observation, we can specify it in a 
richer way through the probability distribution it seems to reflect. Let us 
consider trying to create a class model for traffic safety. Given certain spe-
cific circumstances, an accident tends to occur each two months. Given 
data from our hypothetical observations, there is a rather large variance, 
since there are periods of several months without an accident, as well as 
single months, in which several accidents occurred. Instead of trying to 
assign a static yearly frequency of accidents to six, which yields the same 
result each time (for each sample), we can specify that the yearly fre-
quency of accidents corresponds to a normal distribution with a mean of 
six and a variance of nine and a half accident, according to our hypotheti-
cal observations. Although stochastic (non-deterministic), our new value 
definition is richer, because it reflects the observed reality in a more 
authentic way.
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Example implementation. In P2AMF, such an 
expression reads e.g., “Normal(6, 9.5)”, in-
stead of simply “6”. P2AMF uses Monte Carlo 
simulation and evaluates models through 
sampling. For each sample in the evaluation 
of an object model, the expression will obtain 
a numeric value that corresponds to the prob-
ability distribution. The larger amount of 
such samples, the more the mean of the sam-
pled values closes in to the six, although the 
specific values are different from sample to 
sample.

Stochastic existence of objects and rela-
tions (structural uncertainty)

Challenge/need. Imagine that a set of objects 
are normally connected to another object 
(such as e.g., a set of transport means to a trav-
eler), but it is uncertain whether they are 
available or reachable for the object. As a con-
crete example, imagine an employee of a com-
pany who wants to travel to work in the 
morning. The person has several alternatives 
to choose between, namely to travel by bicy-
cle, car, public transportation and to walk. 
Each of the options have implications on the 

total time duration through the waiting time, 
travel time, and the time spent by moving be-
tween the endpoints of the travel by the trans-
portation means. Also, the means might not 
always be available - they might be broken 
down, or not in service for some other reason. 
Given a set of probabilities for the different 
time durations and availabilities, let us formu-
late a question: How long time is it probable for 
the person to spend traveling to work? Let us not 
only obtain an average value, but an actual 
distribution of the probability over the differ-
ent time durations.

Solution and benefit. One way of approach-
ing the problem of uncertainty of object avail-
ability is algorithmically in the OCL code. An-
other and simpler way is through defining sto-
chastic existence of objects on the object mod-
eling level, by setting the object attribute 
called Existence to a real number between 
zero and one. This number serves as an input 
to a Bernoulli distribution, which for each 
sample simply yields whether the object ex-
ists (is available), or not. The same (stochastic 
existence) is applicable to relations, also 

through their Existence attribute, just as with 
objects.

Example implementation. For the example 
mentioned above, we employ both stochastic 
values and stochastic existence of objects, al-
though we mainly focus on the latter. Let us 
consider a class model that defines a traveler 

Figure 12.1. An example class model for 
demonstration of structural uncertainty.
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and a transportation means, each of them having their attributes de-
fined. The class model is shown in figure 12.1.

The attributes waitingTime, travelTime and movingTime represent the time 
durations spent on waiting for the transport means to come and start 
traveling (e.g., a bus), the actual traveling time, and the time needed to 
move to or from them in order to start or finish the travel, respectively. 
The total time simply sums up the three previously mentioned attrib-

utes. The last attribute in the TransportMeans class is preferencePriority. It 
determines how much preferred is the transport means for the traveler. 
Finally, the traveler chooses the most preferred means out of the ones 
available in each sample in the calculation. The Traveler class has only 
one attribute, duration, which calculates the time spent traveling for each 
sample. It is defined by the following OCL code:

 let highestPriority : Real = self.transportMeans.preferencePriority->max() in 

 let chosenMeans : TransportMeans = self.transportMeans->  
  select( t : TransportMeans | t.preferencePriority = 

highestPriority )-> 
  asSequence()->first() in  
 
 chosenMeans.totalTime

An object model corresponding to the class 
model and the example described above is 
shown in figure 12.2. The time durations 
are defined stochastically, since they in real-
ity change from case to case, and it is argua-
bly reasonable to assume that they follow a 
normal distribution. The availability of dif-
ferent transport means can depend on 
many factors. For example, employees of 
transport operators may occasionally strike, 
or something extraordinary may be happen-
ing, such as a heavy snowfall, which pre-
vents the public transportation from operat-
ing. At the same time, a car may break 
down, but the traveler’s wife or husband 
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Figure 12.2. An object model for demonstration of structural uncertainty, with attribute values (evi-
dences) added.
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may also be using it that day, which makes it unavailable to our traveler. 
Finally, the traveler may not consider bicycling as an alternative during a 
rainy day at all. These arbitrary assumptions were used to estimate the 
attribute values in the object model. The specific values seen in figure 
12.2 (i.e., preference priorities and time distributions) were made up 
freely, not based on empirical data such as measurements or a specific 
person’s answers. 

Finally, the answer to our question, the probability distribution of time 
durations, is shown in figure 12.3.

As shown in the result, the travel would most often take around 16 min-
utes, sometimes up to around 30 (when taking bicycle). Although quite 
unlikely to happen, the least preferred case, walking, can also become 

the only available alternative, taking between roughly 90 to 130 minutes. 
According to our model and the chosen preference priorities, the traveler 
would only walk when all of the three more preferred transportation 
means were unavailable. To sum up, we used stochastic existence of ob-
jects to emulate the uncertain availability of the different transportation 
means.

Class inheritance (child classes)

Challenge/need. Let us suppose that we are creating a model about soft-
ware deployment. The class model has already become quite large in 
size, and a few of the classes we use show notable likeness - software in-
stallation, operating system, software service and application client. Moreover, 
there are operations defined for each of the classes, which enable evalua-
tion of software-architectural properties. The most straightforward way 
of implementing the class model is to implement the operations for each 
of these classes, although the operations are the same from one class to 
another. That solution, however, would not be very elegant, nor optimal 
- both with regards to the workload needed, and with regards to the de-
creased maintainability of the class model: Consider for instance that one 
finds a bug in one of the operations - one then needs to rewrite them all 
across the different entities.

Solution and benefit. A more elegant solution to the above mentioned 
challenge is to use class inheritance (i.e. is-a relationships between 
classes), so that we can set up inheritance relations between one class 
(called a base class, or a parent class) and others (the parent’s child 
classes), and implement the otherwise redundantly defined operations 
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Figure 12.3. The resulting probability distribution of travel durations 
from the example.
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and attributes within the base class. Consequently, both the operations 
and the attributes defined in the base class will be defined and accessible 
for the child classes, too. Thus, we minimize the amount of work to per-
form when modeling, and eliminate the unnecessary redundancy in the 
model, which keeps it more tidy and clean.

Example implementation. The implementation of inheritance can be 
shown using the example classes mentioned earlier. Let there be a base 
class (e.g., software installation) that defines and implements the opera-
tions common for all software installations. Let then the other classes (op-
erating system, software service and application client) inherit from the soft-

ware installation class. These child classes can define further operations 
upon need, while on any of them; any of the base classes’ operations can 
be defined. The same applies to attributes, as well. This is depicted in fig-
ure 12.4. The inheritance relation is denoted by a non-filled arrow point-
ing at the parent class (following the UML notation [136]).

Polymorphism

Challenge/need. Let us suppose that we have a collection of classes that 
inherit from a single base class. Let us further suppose that the base class 
defines an operation, which is therefore also defined for all of its child 
classes, but the operation at child classes calculates the result slightly dif-
ferently from one another, dependent on the specifics of the actual sub-
class. As a more concrete example, consider a base class called Car (an 
arbitrary car), which defines an operation CalculateFuelConsumption re-
turning the fuel consumption in liters per hundred kilometers. The opera-
tion takes in three parameters as inputs - rpm (rounds per minute of the 
engine), appliedTorque (what torque the engine currently applies to the 
shaft) and velocity (how fast the car moves). There are a set of different 
cars with different engines our model needs to consider, but the Calculate-
FuelConsumption operation is equally needed for them, requires the same 
input parameters and produces the same type of output. On the other 
hand - in different cars the consumption is calculated using different con-
stants and in some cases perhaps even different formulas. Now, we want 
to call the operation (CalculateFuelConsumption) for an arbitrary set of sub-
classes (specific cars) to the base class (Car). It is clear that the logic for 
the operation that calculates the consumption cannot be elegantly writ-

126

Figure 12.4. Example of class inheritance (the lower part of the fig-
ure),
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ten in the body of the base class, because each time a new car is added, 
removed or modified in the model, the base class itself would have to be 
modified, as well as the code of the operation implementation would be 
confusingly long, unnecessarily complicated and thus little comprehensi-
ble. Such implementation tends to be error-prone and difficult to main-
tain.

Solution and benefit. A solution to the above mentioned problem is to 
use polymorphism: We only access the objects as instances of the base 
class, and so access the value of the attribute for each object. This way is 
opposed to accessing the objects as instances of the multiple different 
subclasses, which requires more work, more code, and is more error-
prone. Put even simpler, we can temporarily ignore the fact that the ob-
jects are instances of the different subclasses as long as the subclasses in-
herit from a common base class and we do not need the specifics defined 
by the subclasses. In our case, we only want to access an attribute that all 
of the classes inherit from the base class. Hence, we heavily simplify the 
way to access and read the values we need.

Let us come back to our concrete example from the world of cars. Our 
logic to calculate the fuel consumption for all the cars supported by our 
model can be implemented in the body of each of the classes correspond-
ing to a specific car model, all of which inherit from our Car base class. 
The specific class’ implementation of the operation simply overrides the 
implementation of the equally named base class operation (for all objects 
of the specific class, including other objects that eventually further in-
herit from the specific class). Hence, when we call the operation to obtain 

its result, we do not need to distinguish what specific car model (specific 
class) the object we are just dealing with corresponds to. We know that it 
inherits from the Car class, and therefore has the CalculateFuelConsump-
tion method implemented - we access it only as an object of the Car base 
class. The OCL interpreter (or the EAAT tool, taken more generally) im-
plicitly invokes the appropriate calculation with regards to the specific 
object being accessed (the calculation defined in its corresponding spe-
cific class). Hence, if we simply access a Car object that happens to be is a 
Volkswagen Golf GTI with 2.0 TSI engine and a manual transmission, we 
will get the consumption for this car model instead of some other model 
(say, Toyota Aygo+ 1.0), or a dummy calculation defined by the base 
class, on the level of which all details required to calculate an accurate 
consumption estimate are not known.

Example implementation. To implement a model for the above de-
scribed sample scenario, we first create a Car class (in the class modeler). 
Within the Car class, we create an operation called CalculateFuelConsump-
tion, which outputs a real number and takes three real inputs (rpm, ap-
pliedTorque and velocity)... or some other set of inputs as appropriate for 
the specific modeling purpose. Subsequently, we write some default 
(dummy) value this operation returns (e.g., zero), since at this point, a 
valid estimate of [an unknown car’s] consumption cannot be made. 
Now, we can start to implement specific car models. For each such, we 
create a class, name it, and relate it with our Car class using an inheri-
tance relation (i.e., our specific car inherits from the Car class). In our spe-
cific car class, we need to define an equally named operation CalculateFu-
elConsumption, which takes in the same set of inputs and produces the 
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same type of output as the Car class’ operation. This operation, however, 
is implemented validly (fully), and actually calculates the estimate ac-
cording to some formula and surely a set of constants, too (defined 
within the calculation). For the polymorphism itself to work in an object 
model created on this class model, this would suffice. In order to show 
(visualize) the results in a simple way however, we define a few attrib-
utes on the Car class, which simply call a current object of the Car class’ 
C a l c u l a t e F u e l C o n s u m p t i o n o p e r a t i o n ( e . g . , 
self.CalculateFuelConsumption(1800, 30, 50)), each time with different 

input parameters - just to see that our calculations actually work. The 
class model should then look similar to the one depicted in figure 12.5.

In order to see some calculations and how the polymorphism works, we 
need to run object modeler, load the class model, simply instantiate three 
specific cars and calculate. The model should look similar to the one de-
picted in figure 12.6.

Given that different non-equivalent formulas were used for the consump-
tion estimation in the operation and that the attributes on the Car class 
(e.g., case1Consumption, …) call the operation with different parameters 
that should yield non-equal results, each attribute will have different cal-
culation result for different cars, and even the different attributes calcu-
lated for the same car will differ. To recapitulate slightly, polymorphism 
is now being used in the definition of the attributes of the Car class. The 
attributes call the CalculateFuelConsumption operation of a car object, the 
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Figure 12.5. Example implementation of polymorphism (in class 
modeler).

Figure 12.6: Example instance model of fuel consumption of cars 
(in object modeler). Each attribute has different calculation results 
for each car, because the implementation is different for each spe-
cific car, although invoked by the same code and in the same way. 
The consumption values are purely hypothetical, not based on evi-

dence.
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specific class of which is unknown in that context. Even though, the OCL 
runtime engine in EAAT chooses the appropriate calculation implicitly, 
returning the appropriate result.

On a final note, polymorphism works this seamlessly in EAAT only 
when overriding operations, not derived attributes. In case one would 
like to override the derivation of attributes, explicit code would be re-
quired at the base class, which would distinguish the specific type of the 
subclass, and call the operation from the object type-casted to the specific 
class. This would, again, not be particularly elegant. Overriding attrib-
utes in that way can be avoided through a design that overrides opera-
tions instead (and achieves the same computational result).

Aggregation gates

Challenge/need. Imagine that we want to write a class model for evalua-
tion of reliability using a simplified variant of a fault tree analysis (FTA). 
Put simply, a node can connect to other nodes, on which it depends. The 
dependence can be of different kinds, such as when the upper-level node 
depends on all of the other nodes, or the function of one of the other 
nodes is enough to satisfy the function of the upper-node. The former is 
commonly denoted by an AND-dependence relationship and the latter 
by an OR-dependence one. Suppose that you want to model a depend-
ency structure consisting of multiple such levels, each having an upper 
node and one or more lower nodes, on which the upper node depends. 
Imagine for instance a simple model of an airplane. For the airplane to 
be safely operable, a number of conditions have to be satisfied. The air-
frame needs to be firm enough to hold the tensions it is exposed to dur-

ing a flight. At least one of two engines needs to be operational in order 
for the plane to stay airborne. At least one of three brakes needs to be op-
erational in order for the plane to safely land and stop. On a level below 
this, air supply system has to be operational as well as there has to be 
some fuel in the plane for an engine to work. And so on.

Solution and benefit. A solution is to use AND- and OR-gates, which 
help us model the aggregations, so as to reflect and evaluate the simpli-
fied FTA dependency structure. Since the nodes can also model other 
than AND and OR relations, such as XOR, priority AND et cetera, let us 
simply call the gates aggregation gates. The benefit is that we can aggre-
gate dependencies between objects in a tidy and hierarchical way.

Example implementation. An example implementation of the above 
mentioned solution is depicted in figure 12.7. There are three classes. 
First, a node represents a system, a function, a service, or simply some-
thing that can work, or can be broken. Second, an AND gate requires all 
nodes connected to it as lowerNodes (that “feed in” to the gate) to work, 
in order for the gate to work (i.e., be satisfied). Third, an OR gate requires 
at least one of the nodes connected to it as lowerNodes to work. Each gate 
needs to have at least one lower node, and exactly one upper node. An 
example of an object model (instance model) is shown in figure 12.8. For 
completeness, the attribute Node.works is derived using the following 
OCL code:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

  -- it is a leaf node and should not be derived; either it works or it does not 
  let thisWorks : Boolean = bernoulli(0.5)  
  if thisWorks = true then 1 else 0 endif 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 else 
  if (self.lowerAndGate->size() > 0) then  
   -- there is an AND gate attached... is it satisfied?  
   if (self.lowerAndGate.works > 0) then 1 else 0 endif 
  else 
   -- an OR gate is attached... is it satisfied? 
   if (self.lowerOrGate.works > 0) then 1 else 0 endif 
  endif 
 endif

Similarly, AND_gate.works is derived as self.lowerNode.works->min() 
and OR_gate.works as self.lowerNode.works->max().

In a concluding note, it is clear from figure 12.7 that a node is technically 
allowed to have a lower AND gate and a lower OR gate at the same 
time. Such state is, however, erroneous with regards to the FTA logic. Al- though this case is not safeguarded in the example provided above, a 
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Figure 12.7. Example implementation of AND- and OR-gates (in 
class modeler).

Figure 12.8. Example object model of nodes and gates (in object 
modeler).
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possible solution is to introduce a base class called Gate, from which both 
AND_gate and OR_gate would inherit. Then a relationship between an 
upper node and a gate could be set to (1)..(0..1), as well as the relation-
ships between an upper node and a lower [AND/OR] gate removed. 
This would also be an example of using polymorphism as a necessity for 
such a solution. Yet another solution to the model in figure 12.7, perhaps 
even more elegant, could be to simply add an OCL constraint within the 
context of the Node class, stating that at most one gate can be connected 
as a lower gate at a time.

Self-associations

Challenge/need. Let us suppose that we need to create arbitrary hierar-
chies between objects of the same class. For a more concrete example, let 
us consider modeling the encapsulation of protocol data units (PDUs) in 
data communication in a computer network. A PDU typically contains of 
a header part (meta-information typically providing addressing 
information, data length, etc.) and a data part (the actual payload that is 
being transmitted by the PDU). Following the Open Systems Interconnec-
tion reference model1 (RM OSI), different protocols which provide net-
work communication functions on different abstraction levels, encapsu-
late the PDUs of each other. More precisely, lower-level protocols encap-
sulate the PDUs of higher-level protocols. Such encapsulation means 
that the whole higher-level PDU (both its header and its payload) be-
comes just the payload for the lower-level PDU, while a header for the 
lower-level pdu is created and added before the new payload. For in-
stance, when an HTTP request (data) is produced by a web browser, it is 

first encapsulated into a TCP segment. The TCP segment is then encapsu-
lated into an IP packet. Further, the IP packet is encapsulated into an Eth-
ernet frame, which is then transmitted through cables in a binary fashion 
using physical signals. Each PDU except the HTTP one, which is at the 
top of the stack in this example, encapsulates one higher-level PDU in 
itself, only treating it as its data (payload). The question is how to model 
such PDUs and their encapsulation that both need to be defined at the 
level of instance modeling. Abstractly speaking, the problem is that we 
can’t pre-create a definite structure in the class model, because it could, 
and in fact certainly would, be too inflexible to satisfy our object model-
ing needs. Thus, on the level of class modeling we only need to create a 
frame to enable structuring further at the level of object modeling.

Solution and benefit. There is a simple solution - associations of a class 
with the class itself. The benefit is that arbitrary hierarchies that are just 
“frame-wise” defined in the class model, can be defined in the object 
model. In other words, multiple objects of the same class can be hierarchi-
cally ordered or otherwise structured in the object model. As a concrete 
example, different PDUs (all objects of the PDU class) can be modeled as 
encapsulating each other so that the Ethernet frame encapsulates the IP 
packet, which encapsulates the TCP segment, which finally encapsulates 
the HTTP request.

Example implementation. Let us try to model the above mentioned 
PDU encapsulation. We create a Protocol class, which represents the pro-
tocol used (e.g., HTTP, TCP or IP). We also create a LogicalNode class, 
which represents an application or a device that is able to operate with 
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PDUs. Finally, we create a PDU class, which represents an instance of a 
PDU. A logical node has to support a protocol in order to process PDUs 
corresponding to the protocol. Hence, we add such association between 
LogicalNode and Protocol. As we know, each PDU corresponds to a spe-
cific protocol, so we add a association between them, too. Since a PDU is 
created and sent, as well as intended to be received by some addressee, 
we create two associations between PDU and LogicalNode. The first asso-
ciation represents the source node for a PDU (the originator), and the 
other a set of targets (intended recipients). Finally, we add a self-
association of PDU with itself, in order to be able to model that some con-
crete PDU object encapsulates other PDU objects (later in our object mod-

els). Having performed these steps, the class model should look similar 
to the one depicted in figure 12.9. 

An object model corresponding to the described encapsulation case 
could look similar to the one depicted in figure 12.10 (simplified view) 
and 12.11 (more comprehensive view). The choice and interconnection of 
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Figure 12.9. Example implementation of a class model using a self-
association (on the PDU class).

Figure 12.10. A simplified object model describing structures be-
tween objects of the same class (PDU) defined on the level of ob-

ject modeling. The diagram only contains objects of the PDU class, 
not their connections to objects of other associated classes.
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objects reflects the description of how a HTTP re-
quest gets encapsulated down to an Ethernet 
frame (RM OSI layer 1 and 2). As a peculiarity, 
there are two ethernet frames encapsulating the 
same IP packet. This is the case because we con-
sider that a single layer 3 switch is placed be-
tween the client computer on which the web 
browser runs and the computer on which the 
queried web server runs. Since each of the nodes 
(computers or the switch) have their own Ether-
net addresses and the network is connected 
through the switch using a star topology (i.e., 
there is no direct Ethernet connection from the 
client computer directly to the server computer), 
first a separate Ethernet frame flows from the cli-
ent computer to the switch, and then the switch 
forwards the IP packet under the frame further 
to the server computer, by creating a new Ether-
net frame with the same data, but an Ethernet 
header that differs from the previous one in that 
the frame targets the server computer).

Templates

Challenge/need. Imagine a need to model a com-
plex architecture with many repeating elements. 
Doing it in the same fashion as was used in exam-

Figure 12.11. A more comprehensive version of the same object model as in figure 10. Somewhat 
exotic style of the association lines in the diagram was chosen due to a minor technical issue that 

is not detailed here.
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ples described above, the modeling could easily become tremendously 
time-consuming, boring and error-prone. Moreover, it could make the 
model very difficult to modify. Put simply, it would be a poor and im-
practical approach to such modeling problems. Let us illustrate the idea 
on the following example. Consider modeling a company IT environ-
ment with the aim to evaluate its cyber-security disposition. Since the do-
main of cyber-security is very broad, a truly comprehensive model 
would be very extensive and detailed, even for small IT environments. 
For simplicity in this illustrative case, let us therefore limit ourselves to a 
few aspects only. Let us only consider applications, services, operating 
systems and network interconnections in a company. The company has a 
few services being run on servers located within the company, as well as 
a few offices, where each employee has a workstation or a laptop, a mo-
bile phone and eventually also a tablet. All of these inter-networked IT 
devices run an operating system, have a variety of applications and serv-
ices installed, and some of these have access to data or services that are 
considered sensitive for the company (e.g., e-mails or a central file shar-
ing repository). If we are going to model each such device including 
some specifics of their operating systems, applications and services, 
there is going to be a great deal of repetition. For example, a typical work-
station running Microsoft Windows 7, Apple Mac OS or some Linux dis-
tribution comes with a number of broadly used applications, as well as a 
number of services pre-installed and activated by default. Similarly, this 
applies to server systems. In any such case, we are talking about tens of 
elements per such system that do not change much from one worksta-
tion or server to another. Now consider having to model all these repeti-

tively, say fifty times. That would be clearly annoying and wasteful, to 
say the least. We need some automation here. We need a feature that 
would compress the amount of this trivial work, or else we need to liter-
ally waste our time. The larger our models and the more repetition in 
them, the more trivial, boring and error-prone work we need to do, 
which in addition leads to heavily decreased maintainability of the mod-
els.

Solution and benefit. A solution is to define and use templates on the 
level of the class model, which are able to “box in” a set of entities and 
their associations, which the modeler can use as a single box instead of 
explicitly modeling instances of everything what is inside the box (the 
template). If the template changes, one only needs to apply the change to 
the template, not necessarily to its multiple instances in the object model. 
This is a huge benefit both as to simplicity and efficiency of modeling, as 
well as maintainability of such models over time.

Example implementation. An example of a simplified class model that 
would help us to model an IT environment can be constructed as fol-
lows. There is an entity NetworkDevice (any device capable of network-
ing), which can have many NetworkConnections (connections between net-
work devices) and vice versa. This allows modeling one network device 
as connected with other network devices through network connections. 
NetworkDevice can be further specialized as Computer (an advanced, typi-
cally multi-purpose, computational device) or NetworkConcentrator (e.g., 
a network switch). A computer has an operating system, which can host 
three different types of software - applications, services and libraries. In 
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our model, these can mutually use each other, too. The class model de-
scribed above is depicted in figure 12.12.

As mentioned before, modeling applications, libraries and services of 
each operating system that is run by each computer we wish to model, 
would make up to an unnecessarily extensive model. What we can do 
instead, is to define templates in the class model, according to the prob-
ability (our certainty) that the templates will save a lot of unnecessary 

work, provide for more elegance and maintainability. Two example tem-
plates are depicted in figures 12.13 and 12.14. The former, called Windows-
Workstation, simply wraps a computer and its respective operating sys-
tem (itself a template). The latter, called BasicWindowsWorkstationOS de-
fines the applications, services, libraries, and their mutual usage, so that 
all that can be used as a single box anywhere we wish to use it - in the 
object model, or in other templates we choose to define. As is readily ap-
parent, templates can use other templates that are defined. Cyclic use of 
templates, however, cannot work. Having a case in which template 1 
uses template 2, an attempt to use template 1 from template 2 (creating a 
dependency cycle), would be erroneous.
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Figure 12.12. An example class model for modeling an IT environ-
ment (computers, operating systems, software and network intercon-

nections).

Figure 12.13. Definition of a template called WindowsWorkstation, 
in class modeler. Note the gray rectangle with text, to which an ar-

rowed dashed line points. It is a so called port; an external interface 
of the template that makes it connectable to in an object model.

Chapter 12 Modeling patterns and practices  



136

Let us now model a simple IT environment 
consisting of three networks - one office LAN 
(local area network), one server network, and 
one DMZ (demilitarized zone). In the office 
LAN, there are a few workstations, some of 

them connected by network cables, the rest 
using a wireless connection. In the server net-
work, there is a domain server and an inter-
nal file server. Finally, the DMZ hosts systems 
with increased exposure to the Internet, such 

as web server and e-mail server. This 
architecture modeled using a few templates, 
is shown in figure 12.15. Omitting templates 
and modeling all basic entities in every single 
instance of a server or workstation, the object 
model would consist of around sixty boxes 
instead of just nineteen2. That makes a differ-
ence. The difference becomes even clearer 
when modeling larger IT environments.

Derived connections

Challenge/need. Imagine that there are two 
classes, which are associated. Imagine further 
that you wish to associate objects of the one 
class with objects of the other class based on a 
condition, which depends on values of the 
concrete objects. It is clearly desirable to have 
some automation in the process of connecting 
the objects, so as to avoid tedious manual 
work. Although a collection of objects satisfy-
ing such a condition can be made accessible 
purely algorithmically through OCL, this 
comes at the expense of somewhat higher 
code complexity and lower comprehensibil-
ity. That might render the model slightly 

Figure 12.14. Definition of a template called BasicWindowsWorkstationOS, in class modeler.
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more difficult and thus more error prone to 
develop and maintain.

Solution and benefit. Derived connections 
provide an elegant solution to such problems, 
which would otherwise have to be solved 

through some filtering or search implemented 
in an OCL operation. A derived connection is 
generated on the level of calculation (evalua-

Figure 12.15. An example object model using templates (at all leaves in the “graph” of entities above).
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tion) of an object model. On the level of class modeling, it has the form 
of an association with a derivation expression in OCL. Defining derived 
connections has some peculiarities, however. Such an association (that 
defines derived connections) is unidirectional. Hence, one has to choose 
one end of the association as a starting point for the derivation (or keep a 
default one), and write the OCL expression for the derivation accord-
ingly. An OCL expression for the derivation having its starting point at 
one class, is supposed to return a set of objects of the other class. A con-
crete case is described below.

Example implementation. Consider a very simple scenario. Let us have 
a set of products and a set of buyers. Each product has a price and each 
buyer has a budget for shopping. Now, we wish to define an association 
between classes, which would act as a derived connection between ob-
jects, so that each buyer would only connect to the product he or she has 
the budget to buy. In a similar fashion, each product would connect to 
the buyers that have a real potential of buying the product, given their 

budget and the price of the product. The class model can look as follows 
in figure 12.16.

The derived connection is created as an association, the derivation of 
which is defined by an OCL-expression. In this example, it is enough to 
define one association to model both the product affordability and the 
buying potential. The OCL expression for the association (the derived 
connection) can be defined in two directions - as a collection of objects 
from the one class (Product), or from the other (Buyer). In this example 
the former is true, and the expression reads as follows:

 -- from all products, reject those more expensive than the buyer's budget allows to buy 
 Product.allInstances()->reject( p : Product | p.price > self.budget )->asSet()

If it was defined in the other direction (from Buyer), it would read as fol-
lows:

" -- from all buyers, reject those that have smaller budget than the product's price 
 Buyer.allInstances()->reject( b : Buyer | b.budget < self.price )->asSet()

In this case, both of the above mentioned alternative definitions yield 
equal sets of connections between objects of the classes.

Each of the two classes has two attributes. One is defined on the level of 
object modeling, and the other simply obtains the number of potential 
buyers for a product, or the number of affordable products for a buyer, 
respectively. The other attribute can be derived as follows (for buyer):

 self.affordableProduct->size()
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Figure 12.16. A class model defining derived connections (in fact in 
form of associations between classes).
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An object model corresponding to the above 
described class model is shown in figure 
12.17.

OCL coding practices

In the context of this chapter, we define a cod-
ing practice as a specific way of writing pro-
gram code (i.e., OCL code for P2AMF class 
models).

One may ask why or how something like a 
coding practice matters to those who model 
and those who have responsibility for the 
models. Although there could be a broad dis-
cussion on this topic, large body of experi-
ence from the practice of software engineer-
ing may shed sufficient light on it. Perhaps 
even your own personal experience. In any 
case, the authors see two major challenges 
that often make the use of coding practices 

reasonable. The first challenge comes in form 
of entropy (disorder) that keeps deteriorating 
the orderliness of our models over time as we 
keep changing them (e.g., due to mainte-
nance), but also our knowledge about them 
(i.e., we are forgetting over time). It ulti-
mately leads to that the models become too 
messy and difficult to maintain, or otherwise 
unusable, so that we throw them away and 
start from scratch, or try to address the needs 
they fulfilled in some other way. The second 
challenge is that we tend to come about great 
ideas rather seldom out of the blue. Our readi-
ness to write a proper piece of software (or a 
model) at a reasonable cost (e.g., time) largely 
depends on how many relevant concepts we 
know, are able to choose from and use. Such 
concepts can be of the nature of modeling pat-
terns discussed previously, or coding prac-
tices. Given conditions, using such concepts 
renders the implementation more effective 
than others. That said, one needs to know in 
what conditions it is useful to use a concept 
and when different ones fit better. The ambi-
tion of this text is to describe a set of coding 

Figure 12.17. An object model showing derived connections and the values of the visible ob-
jects’ attributes.
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practices. Thorough discussion about the suitability and alternatives in 
different conditions is out of scope, however.

We have identified a collection of coding practices worth considering 
when developing P2AMF class models. These are grouped into two 
groups, according to their purpose. The first group aims primarily at im-
proving the cleanness of the OCL code, and thus the maintainability of 
the class model, especially when considering its lifetime in the long run. 
The second group aims primarily at achieving more evaluative power/
effectiveness. The coding practices are as follows (in their purpose 
groups):

Purpose: Achieving cleanness of code, thus maintainability of the class model

• Code comments

• Indentation

• Naming conventions

• Subdivision of code into multiple operations

• Structuring expressions into paragraphs

Purpose: Achieving more evaluative power/effectiveness

• Defining local variables through let expressions

• Recursive calls in operations

• Translating mathematical formulas  

Cleanness and maintainability

Challenge/need. Knowing the structure of your code and where to find 
what you look for, is vital for being able to maintain the code, not to men-
tion the importance of enjoying one’s work. You might have experienced 
revisiting a code that you yourself wrote years ago, perhaps just months 
ago; or code you “inherited” from your colleague or a friend. In compa-
nies, turnover is a reality - new people are being employed while other 
retire, change position, responsibilities, team role, or workplace as such. 
At the same time, software that is being used, as well as models that are 
being used, must be maintained continuously. This means that new peo-
ple often become responsible for maintaining code that they themselves 
haven’t written. Often, it is not little code. Organizations therefore need 
to keep themselves ready for such events through having their work-
force maintain their code clean, understandable and well maintainable 
for themselves as well as their colleagues and new unknown people that 
are once likely going to take over responsibilities for the piece of code 
one is writing right now. Although there are a number of well-
established and validated techniques and principles available to achieve 
these goals and keep them achieved over time (e.g., refactoring, pair pro-
gramming, pair review etc.), this text only provides a handful of simple 
ones. The reason is that the authors do not currently perceive demand-
ing practices (those that demand considerable time, resources and sys-
tematic devotion) nearly as justified in the practice of class modeling 
(meta-modeling) as they are in the practice of complex software develop-
ment. Moreover, the selection of the practices described below is based 
on a limited body of experience, and locally experienced benefits and 
needs we met when modeling.
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Code comments

Proposed practice and expected benefit. In OCL, comments start with 
two dashes (“--”) and end with the end of the line. The content put be-
tween these delimiters does not have any effects on the interpreted OCL 
code. Dependent on the complexity of the OCL code one is dealing with, 
code comments might have the potential to achieve greater comprehensi-
bility. Again, one should always consider one’s eventual successors in 
maintaining or otherwise having to deal with the code. One should, how-
ever avoid writing comments just to have comments written. Each and 
every comment should serve a rather clear purpose. OCL can be a 
counter-intuitive language to read and think in, especially when code 
statements get long and complicated. Comments can aid the modeler try-
ing to read the code through describing the semantics of it in natural lan-
guage, or so provide any other information that may be helpful for un-
derstanding the code. However, comments should not state what is 
plainly obvious from reading the OCL statements, such as the following:

 self.someOperation() -- call someOperation on self .

Writing comments that state the obvious is just introducing unnecessary 
content and therefore making it all more messy. One needs to learn to see 
in what contexts a comment is appropriate and helpful, and when it is 
safe or even better to omit. This can require practice and experience.

Example. If we take the following example, we can see that parts of the 
code are just not readily obvious:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

  let thisWorks : Boolean = bernoulli(0.5)  
  if thisWorks = true then 1 else 0 endif 
 else  
  if (self.lowerAndGate->size() > 0) then  
    if (self.lowerAndGate.works > 0) then 1 else 0 endif 
  else  
   if (self.lowerOrGate.works > 0) then 1 else 0 endif 
  endif 
 endif

It might be obvious to the modeler right after having designed a solution 
and being mentally fully tuned to the context of it. However, the same 
person might have a difficult time recalling the context just a few months 
later, not to mention other people. Such an unnecessary difficulty can be 
remediated by appropriate commenting:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

  -- it is a leaf node and should not be derived; either it works or it does not 
  let thisWorks : Boolean = bernoulli(0.5)  
  if thisWorks = true then 1 else 0 endif 
 else  
  if (self.lowerAndGate->size() > 0) then  
   -- there is an AND gate attached... is it satisfied? 
    if (self.lowerAndGate.works > 0) then 1 else 0 endif 
  else  
   -- an OR gate is attached... is it satisfied? 
   if (self.lowerOrGate.works > 0) then 1 else 0 endif 
  endif 
 endif

It might be beneficial to also comment at the beginning of operations, de-
rived attributes and derived connections – simply any elements that em-
ploy some OCL code. Such comments should briefly and conceptually 
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explain what the operation/attribute/connection does, but without go-
ing into implementation specifics. An example follows:

 -- This attribute derivation evaluates the functional availability of a node. 
 [OCL code⋯]

Indentation

Proposed practice and expected benefit. Indentation refers to placing 
the text further to the right to separate it from the rest of the text. In the 
context of OCL coding and programming in general, there can be arbi-
trarily many levels of indentation the modeler/programer uses. Using 
them we strive to separate different blocks of code, in order to achieve 
greater comprehensibility.

Example. Imagine the following code, which is not indented:

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

 let thisWorks : Boolean = bernoulli(0.5)  
 if thisWorks = true then 1 else 0 endif 
 else if (self.lowerAndGate->size() > 0) then 
 if (self.lowerAndGate.works > 0) then 1 else 0 endif 
 else if (self.lowerOrGate.works > 0) then 1 else 0 endif 
 endif 
 endif

Although the code at least spans over several lines (is not written in one 
continuous line), the comprehensibility is rather limited compared to the 
following (indented code):

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 
  let thisWorks : Boolean = bernoulli(0.5)  
  if thisWorks = true then 1 else 0 endif 
 else 

  if (self.lowerAndGate->size() > 0) then  
    if (self.lowerAndGate.works > 0) then 1 else 0 endif 
  else  
   if (self.lowerOrGate.works > 0) then 1 else 0 endif 
  endif 
 endif

Indenting code reduces the unnecessary workload required for one to 
identify its structure, so as to comprehend the content piece by piece in a 
divide-and-conquer manner.

Naming conventions

Proposed practice and expected benefit. Naming conventions have to 
do with how we name classes and objects, attributes, operations, local 
variables (defined by let-expressions), etc. Names affect the comprehensi-
bility of our code to a large extent. They can make the code read more 
like a prose, a normal human-readable text. Of course, here one needs to 
balance how much information to put in names, too. If the names are too 
short and uninformative, although equally machine-friendly, they make 
little sense to humans, which need to orient themselves well in the code. 
If the names are too long, on the other hand, they are make writing code 
cumbersome. The art here is to choose shortest possible names that medi-
ate information needed for the developer to comprehend what the code 
does. Things should not be underdone, nor overdone, but finding the 
right balance given conditions is not always easy, unfortunately. As other 
practices, becoming tuned to choosing effective names might require 
some time and experience.
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Example. Consider our example again, with almost random-like, unin-
formative names:

 if (self.g1->size() = 0 and self.g2->size() = 0) then 

  let b : Boolean = bernoulli(0.5)  
  if b = true then 1 else 0 endif 
 else 
  if (self.g1->size() > 0) then 
   if (self.g1.v > 0) then 1 else 0 endif 
  else 
   if (self.g2.v > 0) then 1 else 0 endif 
  endif 
 endif

Here comes the original one (with comments left out):

 if (self.lowerAndGate->size() = 0 and self.lowerOrGate->size() = 0) then 

  let thisWorks : Boolean = bernoulli(0.5)  
  if thisWorks = true then 1 else 0 endif 
 else 
  if (self.lowerAndGate->size() > 0) then  
   if (self.lowerAndGate.works > 0) then 1 else 0 endif 
  else 
   if (self.lowerOrGate.works > 0) then 1 else 0 endif 
  endif 
 endif

Subdivision of code into multiple operations

Proposed practice and expected benefit. When creating a model, per-
haps a simple, non-ambitious one, one might tend to put a lot of code 
into an attribute derivation, or an operation. The problem is that such 
code quickly becomes messy. A rule of thumb is that one operation 
should do one thing (i.e., fulfill one coherent function) - or at least as lit-

tle more as possible. Every programmer probably knows the term called 
“God methods” - methods (operations) that are several screens long. Often 
even a few dozens of lines qualifies an operation as too long. Such long 
operations are no fun to read, because they are usually difficult to com-
prehend as to the functional whole they represent. Moreover, such pro-
gramming typically reflects the lack of reuse in code at a micro level. To 
remediate such problems, one can subdivide the large operation by defin-
ing and calling within several more operations according to their logical 
purposes, which are then called from the original operation. Such prac-
tice both increases comprehensibility and maintainability, since the meth-
ods can be called from different places in the model, and if they become 
updated, the update applies to the whole model, not just a single in-
stance in which the code is used.

Example is omitted for brevity.

Structuring expressions into paragraphs

Proposed practice and expected benefit. Dependent on what one mod-
els, it might be necessary to have attribute derivations or operations that 
span across several lines. In case the code consists of logically separable 
blocks, where one part of the code does something specific, some other 
does something else, it is a good idea to separate these parts by an empty 
line. Such separation increases comprehensibility of the code, similarly 
as indentation (described further above) does. It helps the one who reads 
the code to separate logical parts, which eliminates the need to addition-
ally identify code structure needed to do such separation in the reader’s 
mind anyway.
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Example. Let us consider the following code:

" let param1 : Real = 1.8375 in 

 let param2 : Real = 2.4398 in 

 let param3 : Int = 7 in 

 let param4 : Boolean = false in 

 
 [the calculation code here as an OCL expression]

Putting the space between the block of let expressions and the calcula-
tion expression is an example. Similarly, one can separate pieces of code 
into blocks within the expression that contains the calculation code.

Evaluative power/effectiveness

Challenge/need. While the coding practices that target cleanness and 
maintainability of code, discussed above, are rather supportive and de-
fensive in the sense that they remedy sneaky and conditional problems 
that start to hurt with some delay (from days to years), practices that tar-
get increased evaluative power or effectiveness often have a more “offen-
sive” character. They primarily aim to solve problems that are readily ap-
parent and perceivable, sometimes even before one starts to write code; 
although they can also be used to increase clearness and maintainability, 
just as the previous ones.

Usually, there is more than one single way to implement a solution to a 
specific problem. Such implementation alternatives, however have differ-
ent dispositions in different regards, e.g., as to how much code and/or 
complexity is needed for a functional implementation. In some cases it 
might be so that different alternative implementations have different lim-

its in achieving results. The limits can be computational demands 
(throughput performance), precision, accuracy, or even correctness as 
such, etc. It is advisable to consider several alternative solutions (if sev-
eral can be identified), and reason on which ones are going to satisfy rele-
vant needs the best, or at least well enough. To find what are the relevant 
needs, however, is itself non-trivial. In real-world situations, one seldom 
obtains a complete and consistent set of requirements, so that one can 
jump straight into engineering a solution. One often needs to first ascer-
tain that the right questions are being asked and that the solutions are 
going to be measured and matched against the right criteria. Thus, the 
question is broad and open; universal and unconditional answers should 
not be expected. After one makes the set of criteria for a solution explicit 
and accepts them, one can reasonably analyze, compare and discrimi-
nate between different implementation approaches. The coding practices 
mentioned below attempt to provide a few tips, which you can consider 
using when facing a specific modeling task or problem.

Defining local variables through let expressions

Proposed practice and expected benefit. In OCL, let expressions allow 
defining locally scoped variables within the code. Although there are 
many similar specifics in OCL and this text does not aim to introduce 
them all, we consider let a particularly helpful tool to remind about, or 
introduce to (if the reader is choosing a more hands-on approach than 
studying OCL first).

Among other, locally scoped variables enable us to declare constants in a 
separate block of code than that in which they are used. If the implemen-
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tation of an operation or derivation of an attribute requires multiple con-
stants or other values to be accessed by its name instead of a complicated 
sub-statement, it is reasonable to define them somewhere above the core 
calculation in the operation. If we only keep them spread across the code 
without assigning them a name, it might become non-apparent what 
they actually represent in the context in which they are used, as well as 
the overall structure and comprehensibility might suffer. Locally scoped 
variables declared through let expressions hence aid simplicity in pro-
gramming as well as cleanness and maintainability of code.

Example. The structure of an expression statement is the following:

" let [variable name] : [variable type] = [expression] in [expression]

The first expression provides a value for the local variable, and the other 
expression, the rest of the code, is the one, in and under which the local 
variable is defined. The “in” keyword seems to be optional, although it 
is advisable to use for more clarity. A let expression can be used as fol-
lows:

 [some eventual code] 
 let localVariable : Real = self.neighbor.anotherNeighbor->someOperation() in 
 [rest of the code (in OCL always as a single expression)]

or equivalently, just without “in”:

! [some eventual code] 
! let localVariable : Real = self.neighbor.anotherNeighbor->someOperation()  
! [rest of the code (in OCL always as a single expression)]

For multiple such local variables, let-expressions can be stacked up as fol-
lows:

 [some eventual code] 
 
 let localVariable : Real = self.neighbor.anotherNeighbor->someOperation() in  
 let localVariable2 : Real = self.neighbor->someOtherOperation() in 
 let localVariable3 : Real = localVariable->.yetAnotherNeighbor->someOperation() in 
 
 [rest of the code (in OCL always as a single expression)]

Let expressions can define any variables. They can be fetched from some-
where in the object model that is being evaluated.

Recursive calls in operations

Proposed practice and expected benefit. In procedural programming lan-
guages (also assuming Turing completeness3), looping algorithmic prob-
lems can be solved iteratively or recursively; while for each iterative solu-
tion has a recursive exists, and vice versa. Using declarative program-
ming languages OCL, this might be the case for some problems, but for 
others, one might only be left to find a recursive solution to. In an itera-
tive approach, there is a loop, which iterates through elements of a collec-
tion until a specific condition is reached. One can also use multiple loops 
under each other. In OCL, operations such as iterate or forAll enable for 
iterative solutions. In a recursive approach, one defines an operation so 
that it performs partial steps that lead to solving the problem and calls 
itself further (i.e., recursively calls itself), until a termination condition 
occurs. If a termination condition occurs, the operation just returns a 
value and does not recur further. Recursion thus creates a tree of calls of 
the same operation, each time with different input parameters. Given a 
limited amount of operating memory and stack size, recursive ap-
proaches to a same problem might pose tighter limits than iterative ones. 
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Sometimes however, recursion might be considerably more 
straight-forward and elegant to read in code, and thus more 
than welcome by a programmer who deals with some ad-
vanced computation. A potential challenge with recursion 
arises, however, when it comes to making sure that the termi-
nating conditions are appropriately defined and imple-
mented so that the recursion finishes after a finite amount 
steps given any possible combination of valid inputs. Also, 
correct implementation and eventual debugging of an ad-
vanced algorithmic design such as recursion is none of the 
simplest tasks, even more difficult given the limited feature 
set and rather low level of maturity of the tools that enable 
OCL development to date. Therefore, extra care is needed 
when using recursion. Not only it can be difficult to arrive at 
a correct implementation, but also make such an implementation operate 
efficiently. The benefit of using recursion may be decreased amount of 
code to write to implement some calculation. At other times, a recursive 
solution to a problem might be considerably more intuitive to compre-
hend than an iterative one. Yet at other times, it might not be practical to 
implement an iterative solution, which could justify for a recursive one 
in case it was more practical.

Example. For an example, let us revisit the PDU encapsulation model 
mentioned in relation to self-associations of a class. You might wish to 
refer back to the example to recall the context. Let us say that we want to 
calculate the number of PDUs that carry some specific PDU in a specific 
hierarchy. It is even difficult to think of an iterative solution, but let us 

look at a recursive solution to the problem. A slightly modified class 
model from figure 12.9 is depicted in figure 12.18. To the definition of the 
PDU class, two things were added - an integer attribute, called numberOf-
Carriers, and an operation called getCarriers. The operation takes in two 
parameters - a PDU object to begin the search from and a set of PDUs to 
exclude from all subsequent rounds in the search (as will read from the 
code given further below). The operation returns a set of PDUs - the ac-
tual carriers found. It not only returns direct carriers, but searches the hi-
erarchy transitively.

The integer attribute numberOfCarriers is derived as follows:

" self.getCarriers(self, Set{})->size()
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Figure 12.18. Modification of the class model from the example given in the descrip-
tion of the self-association pattern (see the attribute numberOfCarriers and the opera-

tion getCarriers in the PDU class).
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The operation, getCarriers( thisPdu : PDU, pdusToExclude : Set(PDU) ) : 
Set(PDU) is defined as follows:

 let pdusToConsider : Set(PDU) = 

  thisPdu.carryingPdu->asSet()->excluding(pdusToExclude) in 
 
 if ( pdusToConsider->size() = 0 ) then  
  -- no carriers for this PDU 
  pdusToConsider  -- this is an empty set 
 else 
  -- return the carriers considered in this round and 
  -- those that carry them (in a transitive fashion) 
  let newPdusToExclude : Set(PDU) = pdusToExclude->union(pdusToConsider) in 
  pdusToConsider->union(  
   pdusToConsider->collect( p : PDU |  
    self.getCarriers(p, newPdusToExclude)  -- the recursive call 
   ) 
  ) 
 endif

A corresponding object model, which was only modified by the change 
in the class model and adding the numeric values besides the object 
boxes, looks as depicted in figure 12.19.

Translating mathematical formulas

Proposed practice and expected benefit. OCL has no built-in facilities 
for advanced mathematical calculations to date. In case such calculations 
are needed (e.g., exponential functions), the modeler needs to translate 
the mathematical formulas so that OCL is able to calculate the result. De-
pendent on how advanced the calculations are, it might be a matter of 
simply transforming the formula, or one might need to implement the 

operations in a satisfactory way through the facilities OCL readily pro-
vides.

Example. For example, formula for a power of three of a real value does 
not exist in the OCL standard, but can be simply translated as follows:
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Figure 12.19. An object model corresponding to the class model de-
picted in figure 18.
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" let value : Real = [expression for the value to be powered] in 
 value * value * value

Clearly, that example would not work for all formulas, simply because of 
its lacking generality. A more general power function can be imple-
mented as a recursive operation. Let us consider operation power( base : 
Real, exponent : Int ) : Real on a class defined as follows:

" self._calculatePower(base, base, exponent)

And also the operation _calculatePower( value : Real, base : Real, exponent : 
Int ) : Real, which we call from the power operation:

" if ( exponent = 0 ) then 
  -- a number powered by zero equals one 
  1 
 else 
  if ( exponent = 1 ) then 
   -- a number powered by one equals the number itself 
   value 
  else 
   -- otherwise we multiply the value by base and call the 
   -- operation recursively with a decremented exponent 
   _calculatePower( value * base, base, exponent - 1 ) 
  endif 
 endif

The calculation can then be called on the class through power([some 
base], [some exponent]) in an OCL expression. In the above provided ex-
ample, however, the power operation only works with non-negative inte-
ger exponents. It is also possible to develop more general operations for 
arbitrary mathematical functions, which is out of scope for this text, 
though.

This is no longer a part of the above example. Here it is important to 
mention that although the OCL standard does not require the implemen-
tation of a power function, the EAAT tool now implements this. Hence, 
instead of needing to write the above code (which now only serves an 
illustration purpose), one can, and should, simply write the following to 
achieve the same functionality (equally applicable to integer as it is to 
real values):

" let value : Real = [some value] in value->power( [some exponent] )

Another such mathematical functionality that might often come handy is 
now supported by EAAT – linear interpolation:

" let x : Set(Real) = Set { [some comma separated values] } in  -- a set of x-values 
 let y : Set(Real) = Set { [some comma separated values] } in  -- a set of y-values (equally 

many) 
  
 x->linear( y, [some y-value] ) -- lin. interp. of an x-value that corresponds to the y-value given

Concluding remarks

This text has described several modeling patterns (cf. our definition of a 
modeling pattern) and several OCL coding practices. The authors hope 
that you as the reader will find the information found here useful or in-
spiring. All in all, the patterns and practices described are no magical or 
definitive solutions to concrete real problems, and a lot of mental work is 
required for a modeler to apply them to solve a real problem. On the one 
hand, the descriptions provided in the text are rather simple and far 
from being comprehensive. On the other hand, their prime purpose is to 
serve as a source of advice and inspiration for you as a modeler, who 
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might face more difficult and complex modeling problems, decomposi-
tions of which might allow you to constructively apply even as simple 
and general patterns as those, in order to solve your modeling chal-
lenges in ways that are satisfactory to you.
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