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PROCESS? 
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Abstract: Accumulation of human capital is essential for economic growth. An important question is how 

knowledge spillover into innovations and production. One way of knowledge diffusion is within 

innovation networks. We investigate innovative networks in patent data in Sweden from 1994-2001. We 

define research networks with the help of direct and indirect ties among inventors. The main result clearly 

indicates that those researchers that collaborating, in innovation networks, improves the efficiency of the 

innovation process by getting more patents applications approved. The odds getting a patent application 

approved are in the range 1.1 to 1.5 times better if an application is a result from research collaboration. 

Moreover, the result suggests that collaboration is more important in the IT sector than in the mechanical 

engineering sector. Finally, the empirical outcomes indicate that networking is more important in less 

dense areas compared to the denser labor markets. Thus, networks in such areas might be a substitute for 

agglomeration advantages. 

 

Keywords: Innovation network analysis, patents, success and failure in innovation. 
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1. Introduction 

Out of all filed patent application in Sweden in the Year 1994, less than 50 percent were awarded by the 

end of Year 2001. In some industries, the success rate is higher, and in other, it is lower. What determine 

success and failure in innovation? It is not unreasonable to expect that corporation is more likely to get a 

patent application approved compared to private persons, and it maybe more likely that large corporations 

are more successful. Hence, size perhaps matters, but it seems that the size of the research project is more 

important than the size of the company. For example, some very small companies in the biotech sector are 

just one research project, hence, the size of the company is relatively small, but the size of the research 

project is large. Moreover, what is less obvious is that the number of researchers in R&D projects has an 

impact on the success rate (see Freeman and Soete, 1997). That is to say, given R&D resources, the size 

of the project team appears to increase the probability that the innovation will succeed.  

There has been a growing interest in research networks and its implications on the creation of new 

knowledge. For example, there seems to be a consensus that those “scientists who collaborate with each 

other are more productive, oftentimes producing ‘better’ science, than are individual investigators”.
1
 

According to Acs (2000), networks are also associated with a greater degree of innovativeness. Hence, 

innovative networks generate more knowledge, better innovations, and, therefore, higher profits and more 

wealth.  

What explains that the size of the research team and the network matter? Storper and Venables (2004) 

give one explanation. They analyzed the concept of face-to-face contacts as a way of transfer knowledge. 

Within networks, they argue, knowledge is more efficiently diffused among the inventors and, thereby, 

the innovation is more likely to succeed.  

The aim of the present research is to contribute to a better understanding of how important innovative 

networks are for the efficiency of research. Our objective is to test the hypothesis that innovative 

networks perform research more efficiently in the sense that they are more likely to get their patent 

application approved. In particular, we want to analyze and test the hypothesis on existing innovative 

networks in Sweden over the period 1994-2001.  

                                                 
1 Stephan (1996, pp 1221-1222). See also ”The Wisdom of Crowds” by Surowiechi (2004). 
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Section 2 presents a brief literature review on economic growth, human capital, and innovation, as well as 

networks and social network analysis. In Section 3, we discuss the used methods in the paper including 

the basic concepts of the social network analysis and the used discrete-time hazard model, and in Section 

4, we present the data together with some descriptive and social network statistics. In Section 5, we give 

the econometric analysis, and Section 6 ends this paper with a conclusion. 

2. A Brief Literature Review  

Externalities flowing from human capital in economic growth had a scientific revival with the 

endogenous growth models starting with Romer (1986). However, the precise linkage between academic 

research, knowledge, spillovers, and economic growth remains unclear. In the words of Jaffe et al (2002), 

the “transport mechanism” is not well understood.  

Empirical studies have attempted to quantify these knowledge transfers from research to innovating firms, 

through various proxies, for example, by investigating the patenting of innovations. Griliches (1979), 

Jaffe (1986), and others have all modeled this knowledge transfer effect in a production function 

framework and found a significant and positive effect of university research on output. 

In a different approach, Storper and Venables (2004) argue that face-to-face contact is the “missing aspect 

of mechanisms that are considered to generate agglomeration.” Why do networks come up with ‘better’ 

projects? One reason that collaboration on average produce ‘better’ research with a higher aggregated 

return is that networks and face-to-face contacts is efficient when it comes to communication and that it 

can solve incentive potential problems, as well as it can make socialization and learning easy, and 

provides psychological motivation. An alternative reason why networking projects have a higher success 

rate is that the networks in it self is a screening process, and the networks only include the best 

researchers. Hence, the networks will include a higher than average shares of competent researchers, that 

works harder, and that have a higher probability of undertaking successful projects.  

Owen-Smith and Powell (2004) make a distinction of innovation networks as channels and as conduits. 

The former is characterized as a personal tie among inventors making knowledge spillovers possible and 
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the latter is more a legal arrangement between two companies. By using firm data within the 

biotechnology industry in the Boston region, they showed that a “membership in a geographically 

collocated network will positively effect innovation.” Earlier results showing similar conclusions are, for 

example, Walker et al (1997) and Stuart (2000). For example, Stuart (2000) analyzes technological 

collaboration among firms and its outcome. His findings indicate that collaborating firms both performs 

better research and are more innovative than non-collaborating companies are. 

What determine “success and failure in industrial innovation”? Freeman and Soete (1997) have an 

extensive review and discussion on this issue. For example, Rothwell et al (1974) analyzed 58 pairs of 

innovations (29 successes and 29 failures) within the chemical and instrument industry in the so-called 

SAPPHO-project. The instrument industry was mostly electronic instruments and the chemical industry 

was mainly related to petroleum products. Among other things, their result revealed that the size of the 

project team is important for success. The size is important both in an initial stage of the research project 

and at the peak of the project. Furthermore, the size of the project team appears to be more important 

within the chemical industry than in the instrument industry. Other characteristics of success are the size 

of the project, but not necessarily the size of the firm, and that the project is linked to the outside 

scientific community, that is, that there exist a university-industry knowledge transfer.  

How can we measure and characterize innovative networks? Some recent empirical studies investigating 

innovative networks and discuss how networks could be measured are Balconi et al (2004) and Ejermo 

and Karlsson (2004), as well as Singh (2005) and Breschi and Lissoni (2006). They all use the social 

network analysis from sociology as a tool to elaborate the concept and deepen our understanding of 

networks.  

Balconi et al investigate the role of academia in innovation networks. They do that by performing a social 

network analysis of Italian patent data. Their conclusion is that the formation of networks is very 

scattered and fragmented in Italy. The exception is within science-oriented technology fields, such as in 
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the chemical industry. Their results also indicate that a substantial portion of the innovations within high-

technology sectors is a result of university-industry collaboration.  

In a recent paper by Ejermo and Karlsson (2006), the interregional structure of inventor networks in 

Sweden was investigated. They measure how close the relationship is between two regions. They found 

out that the relationship is highly affected by the distance between the two labor markets. Fritsch (2001) 

also emphasized in his study in Germany that spatial proximity is important for collaboration among 

firms. 

Recently, Singh (2005) and Breschi and Lissoni (2006) investigated, with he help of social network 

analysis, the question about knowledge diffusion (spillovers). The investigations use patent data from the 

U.S. and Italy, respectively. As anticipated, Singh's findings indicate that the flow of knowledge is 

stronger within firms and within regions than flows across firm and regional boundaries.  Breschi and 

Lissoni's result suggests that citation patterns are bounded in space if the inventors are relatively 

immobile and if the social network is not so spatially fragmented and dispersed. 

3. Methodology and Variable Selection 

Our proposition is that the likelihood to get a patent awarded is higher if the research forgoing the 

application has been a result of networking, everything else equal. The importance of networks may vary 

among industries and size of company. 

We are using two very distinct methods in this paper to test this hypothesis. First, in an attempt to 

investigate the innovative network we are going to use the toolbox of social network analysis. Here, only 

a limited descriptive part of the toolbox is used. By utilizing social network analysis, our aim is to 

construct a measure characterizing the size of the innovative networks. The second method is that of 

econometric analysis or more precisely the estimation of a discrete-time hazard (duration) model in order 

to answer the research question whether networked innovations of better quality and more successful 

when it comes to approval rates.  
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3.1.  Social network analysis 

Innovation networks will be investigated by using some basic concepts from the social network analysis 

toolbox. Social network analysis is not very common in economic literature. However, the method has 

become more and more accepted and used. Examples using empirical social analyses within Economics 

are Owen-Smith et al ( 2002), Balconi et al (2004), Singh (2005), and Ejermo and Karlsson (2006), as 

well as Breschi and Lissoni (2006) and Cantner and Graf (2006). 

The basic social network analysis examines the nodes and the ties, and the relationship between them. In 

the context of innovation networks, the nodes are the inventors and the ties are the relationship between 

the inventors. The ties (or edges, links) show the interconnectedness and the distance between the 

innovators. It is possible to use several different measures to characterize a network. Here we will 

especially use measures such as; Network Density, Geodesic Distance, Network Centrality, Isolates, 

Components and Size of the Largest Component. Details concerning the methodology can be found in 

Wassermann and Faust (1994) and Marsden (1990).
2
 

For example, assume that there are seven inventors (see Figure 1). Three of them (inventor 1, 2, and 3) 

collaborate and have patent A. That is, there exist direct ties between them. One of the inventors (3) also 

has patent C by himself and patent D with another inventor (7). Hence, besides the direct ties between 

inventors 1, 2, and 3 there also exist an indirect tie between inventors 1 and 7, and 2 and 7 through 

inventor number 3. Two other inventors (4 and 5) have patent B. One inventor (6) does not collaborate 

with anybody and have one patent (E). 

FIGURE 1 IN HERE 

The network density is defined as the number of existing ties between nodes divided by the maximum 

number of ties (nodes*(nodes-1)). This means that there are eight ties between four nodes and two ties 

between two nodes. The total number of ties is ten; hence, the network density is equal to almost one 

quarter. The number of components is equal to three; hence, two disconnected networks exist plus one 
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isolate. Note that two one-inventor patent exists but only one isolate. The size of the largest component is 

equal to the number of nodes in the largest network, in this case four. The geodesic distance between two 

nodes in a component is the minimum number of ties between them. Centrality of the network is a 

measurement of how much the network revolves around a node. 

3.2. The measurement of networking 

We are using three different measurements (proxies) to estimate the degree of networking (see the lower 

part of Figure 1). The first measurement (NW1) is a variable indicating if the number of inventors, with a 

direct tie to one another, is larger than 1. Hence, it is a binary variable that is equal to one if the patent is 

not a one-inventor patent, else zero.  

The second measurement (NW2) is the exact number of inventors with a direct tie to one another. Of 

course, these measures for networking (direct ties between inventors based on applicant information on 

patents applications) could be weak proxies, as they do not say anything about the strength of 

collaboration, or the breadth of the network that was involved in achieving the innovation. On the other 

hand, Singh (2005) argues that inventors on the same patent application works together intensively over a 

long period and, therefore, the co-inventor information on the patent application capture the most 

important ties between all (formal or informal) inventors.  

The third measurement (NW3) tries to overcome some of that problem in the two first proxies, by 

utilizing the concept of social network analysis. The measure is equal to the number of inventors with 

both a direct and an indirect tie to each other, that is, the size of the component. The NW1 variable for 

patent A, in our example, is equal to 1 and the NW2 variable is equal to 3. The NW3 variable is on the 

other hand equal to 4 as also inventor 7 is included in the network, even if he is not involved directly in 

patent A. 

3.2.  Discrete-time hazard model 

                                                                                                                                                             
2 Ucinet has been used as software for the social network analysis (see Borgotti et al, 2004). 



   

 10 

In our data set, patent status (approved vs. not approved) is given annually. Accordingly, we specify a 

discrete-time duration model to represent the patent approval process. As the data are limited in time, we 

have a right-hand censoring problem. The duration model provides an efficient solution to this problem. 

The basic discrete-time duration model can be regarded as a sequence of binary choice problems and is 

relatively simple to estimate (Kennedy, 2003). We are using the procedure outlined in Jenkins (1995).
3
 

After the data set has been re-organized, a logit regression model can be used and usual interpretation is 

applied (Jenkins, 1995, and Shumway, 2001). The logit regression model is equivalent as estimating a 

Prentice-Gloeckler (1978) hazard model without taken care of potential unobserved heterogeneity.
4
 More 

precisely, the discrete-time hazard rate h(t) can be generalized as (see Dor and Friedman, 1994, and 

Jenkins, 1995): 
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where the dependent variable h is the probability of obtaining a patent in period t. The relative weight of 

the factors in predicting the outcome is given by the coefficients. The interpretation of the coefficient is as 

a multiplicative effect on the odds ratio. In the case of a dichotomous explanatory variable, for instance 

product type, e
β
 the estimate of the odds-ratio of having the outcome for, say, biochemistry is compared 

with the default sector. The baseline hazard can be represented as a continuous variable or as separate 

intercept, one for each period. The parameters α, β1, ..., βk, in the model, are estimated by maximum 

likelihood method. 

3.3. The independent variables 

The X's are vectors of explanatory variables that in our case does not vary in time. As discussed, the first 

variables included in the matrix X are different proxies for networks. However, to be able to isolate the 

networking effect we need to control for other determinants.  

                                                 
3 We are using the pgmhaz routine in STATA created by Stephen P. Jenkins (Jenkins, 1997). 
4 However, we have also used a Prentice-Gloeckler (1978) hazard model with unobserved heterogeneity, but there 

are no differences in parameter estimates. 
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As firms and industry differ in their patenting propensity (Griliches, 1990), but not necessarily in their 

approval rates, we are controlling for the product types. Furthermore, Fritsch and Lucas (2001) stress that 

industrial sector is an important determinant of networking, that is, some industries are more likely to 

cooperate than others are. Hence, if we are not controlling for the product types there is a potential risk 

we interpret the product type effect as a networking effect. The product type variable is represented as a 

binary variable.  

Moreover, Freeman and Soete (1997), Adams et al (2001), Cassiman and Veugelers (2002), and Freel 

(2002) all highlight that firm size and in-house R&D are drivers of networking and determinants of 

success in innovation. We do not have critical information of firm level R&D expenditures. However, we 

do have the information if it is a private person or a corporation that have filed the application. The latter 

is a proxy for higher R&D expenditures. Moreover, we have the information of the approximate size of 

the corporation measured in total turnover. Our proposition (not testable) is that larger companies have 

larger R&D expenditures. Hence, we are going to use different proxies for networking and size of the 

company together with product types as independent explanatory variables in our discrete-time hazard 

model. 

 

 

  

4. Data and Descriptive Analysis 

4.1.  The data 

For the purpose of this study, we define innovation as commercial patents applications or awarded patents 

in Sweden. The data are based on applied or approved patents registered to the Swedish Patents and 

Registration Board (PRV) or the European Patent Office (EPO). Each patent, in our database, has the 

information on the application firm and their address and all the inventors with home address. As in 
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Balconi et al (2004), Ejermo and Karlsson (2006), and Cantner and Graf (2006), we implicitly assume 

that the inventors, on the patent application, know one another and share knowledge. Furthermore, we 

assume they share information with other researchers in the broader definition of network that we are 

using. 

TABLE 1 IN HERE 

4.2. The descriptive statistics 

The data set is based on the patent and includes only applied patents in 1994. Some of the applied patents 

have been approved, and we have recorded all approvals over the years 1994 to 2001. This data set has 

been supplemented with data concerning the product type of the patent, number of inventors with direct 

and indirect ties, information whether or not it is corporation, and size of the firm (dummy for large 

capitalization firms and turnover).
5
 The total number of application amounts to 3,815. 

FIGURE 2 IN HERE 

In total, 42 percent of the total number of applications in the year of 1994 was approved over the period 

1994 to 2001. Most of them were awarded within 3-4 years from the application year (see Figure 2).  

TABLE 2 IN HERE 

The number of inventors per patent is around 1.5 in 1994. This number is lower compared to Ejermos and 

Karlssons (2006) and Balconis et al (2004) estimates concerning Sweden and Italy (around 1.75-1.90 

inventors per patent). However, they all investigated a longer period and the variation over time can be 

substantial. There is a substantial variation in the number of inventors among industry sectors. For 

example, the average number of inventors per patent in the sector of Organic chemistry is 2.3 compared 

to only 1.2 in the sector of Sports and amusements. 

                                                 
5 The definition of product type is original based on the International Patent Classification system created in 1997. 

However, we will use the same classification as in Andersson et al (2005), which is a classification that is closer 

related to economic activities. The classification we are using can be found in the Appendix and in Table 1. 
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The number of one-inventor application is around 70 percent. That means that around one third of the 

applications are a result of collaboration. Most of them are intra-firm collaborations. Corporations file 

more than half of the applications and around one third of the applications come from the large 

companies.   

4.3. The social network analysis 

The social network analysis presented in the present paper is limited. Our main objective is to estimate a 

measure of networks. In the table below, some network statistics are presented. 

TABLE 3 IN HERE 

The total number of inventors is not the unique number of inventors. The unique number of inventors has 

been identified by using the name of the inventors. If the inventor has a unique name, she/he is considered 

to be a unique inventor. If two inventors, with the same name, have a different job and home address, they 

are considered to be unique. If the have the same job address and/or home address, they are not 

considered to be distinct different. The total number of inventors is equal to 5,630 inventors. Almost 75 

percent of them are unique.  

The number of patents is equal to 3,815 and the total number of components (including the isolates) 

amounts to 2,674. Around 50 percent of the applied patents are isolates, that is, much fewer than the one-

inventor patents. The percentage isolates are the same among the approved patents. The size of the 

components is similar regardless if the patent application is approved or not. However, this is not true if 

we look at different industries. For example, within the IT sector, almost 7 percent of the components 

include more than five inventors, but with the sector Mechanical Engineering, it is as low as 1 percent. 

The network density is very low. However, the statistics reveals that the network density is higher among 

those applications that were approved than those that have not been approved. It is also interesting to note 

that the network density varies substantially among industries. The density is highest within the IT sector. 
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The average geodesic distance is almost the same regardless if the patent has been approved or not and 

regardless industry. However, the network centralization seems to vary. Not approved patents are more 

centralized than approved patents, that is, network centrality is inversely related to approval rates. 

Moreover, it seems that the centralization is larger within the IT sector. 

4.4. Networks and approval rates 

What about the relationship between network, product type and approval rates? In Table 4 are the three 

measurements of networking related to the product types. 

TABLE 4 IN HERE 

The relationship ship is clear. More than 36 percent of the approved patents are a result from networking 

compared to less than 25 percent among the not approved patents. The average number of inventors in the 

research team on the application is around 1.6 for the approved patents but only 1.4 for the not approved. 

Using the broader network definition, the numbers are 2.5 and 2.0, respectively.  

The variation among industries is substantial. For example, within the Metallurgy sector, almost 57 

percent of the approved patents were a result from collaboration with project teams with more than one 

inventor compared to only 24 percent of the not approved applications. Moreover, within the IT sector, 

the average component size is equal to 3.3 inventors per approved patent but only 1.9 inventors per not 

approved patent. The above giving us reason to believe that networking do have an effect on the 

probability to succeed. However, in an attempt to control for such thing as firm size and handling the 

censoring problem, a discrete-time duration (hazard) model will be estimated in the next section. 

5. Econometrics Analysis 

5.1. The basic model 

In the discrete-time duration models, presented below, the dependent variables will indicate whether the 

patent application has been successful. As baseline hazard is both a continuous year variable and separate 
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year intercept tested. We transformed, by natural logarithm, all continuous variables because of apparent 

outliers. 

TABLE 5 IN HERE 

One interesting result of the analysis is of course that networking has a positive affect on approval rates. 

The result indicates that patent application with more than one inventor have a higher probability to be 

approved. The parameter estimates concerning the dummy for networking (NW1) is highly significant. 

Furthermore, it is not only the existence of network that increases the likelihood to be approved. More 

inventors seem to increase the likelihood that the application will be approved. However, the estimated 

parameter concerning the NW2 variable (number of inventors with a direct tie to each other) is not 

statistically significant. On the other hand, the coefficient concerning the NW3 variable (number of 

inventors with direct and indirect ties to each other) is significant suggesting that the broader definition of 

networking is more important in explaining the success rates. Hereafter, we will use the NW3 variable 

together with baseline hazard rates represented as separate year effect. 

The estimates are robust in the sense that the magnitude and the significance are stable even if we control 

for the proxies concerning R&D expenditures (the size variables). With no exception, the likelihood to 

succeed is higher for corporations (or corporations are more likely to file patent application of better 

quality that is more likely to be approved). Even though private persons are less likely to collaborate with 

others, controlling for corporations and large company effects, networking do increase the likelihood to 

be approved.  

The interpretation of the individual estimate (NW1) is that, everything else equal, that the odds getting the 

application approved are 1.21 (the odd ratios = exp(0.19)) times higher if the patent application is a result 

of research collaboration. An application from a corporation is more than twice as likely to be approved. 

The odds getting a corporation application approved are 2.41 times higher than a non-corporation 

application. 

5.2. Variation among industries 
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The models, presented in Table 6, explore the possibility that product type have an influence on the 

likelihood to be approved (the first model) and that product type have an influence how networking is 

related to approval rates (model two to four).  

TABLE 6 IN HERE 

The first model includes all observation and a dummy variable for each product type. Overall, it does not 

appear to be any difference among product types when it comes to the likelihood to get an application 

approved. The only exception is the Organic Chemistry and Biochemistry sectors, where it is less likely to 

succeed compared to the other product types. It is interesting to observe that the parameter concerning the 

NW3 variable is larger in magnitude and more significant if we are controlling for product type. The 

economic interpretation is that if the number of inventors increases by one percent, the hazard of getting 

the application approved will increase by 13 percent.
6
  

The following three models explore the relations between success rates and networking within three 

specific fields – Performing operations, Mechanical engineering, and IT. Research collaboration seems to 

be most important in the sectors Performing operations and IT and of less importance in Mechanical 

engineering. The latter result is in line with, for example, Rothwell et al (1974). 

 

5.3. Regional variation and variation by size of company 

In the models presented in Table 7, we have divided the data by size of the labor market and the 

corporation. We are analyzing the relationship within the three largest metropolitan areas with the rest of 

Sweden. Moreover, we are exploring the relationship between networking and success rate among 

corporations and among large corporations. 

TABLE 7 IN HERE 

                                                 
6 As the independent variable NW3 is in the form natural logarithm, the interpretation of the parameter is equal to 

the percentage change in the hazard, given a percent change in number of inventors in the research network. 
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The results suggest that innovative networking is not that important in the three large metropolitan areas. 

Research projects, with more than one inventor, do not increase the probability to get the application 

approved. However, the parameter is highly significant in the rest of the country.  

Furthermore, the result also appears to indicate that large corporations have a larger effect on the 

probability in the denser labor markets. The results seem to support the hypothesis by Johansson and 

Quigley (2004) that networking in dispersed areas can act as substitutes to agglomeration economies in 

other more dense areas.  

If we analyze only corporations or only large firms, the results are not altered. Networking seems to be 

important regardless of size of the firm. 

6. Conclusion  

Both earlier empirical findings and theoretical analyses indicate that the firm performance is better among 

companies that cooperate in research. Moreover, some results suggest that cooperative companies are 

more likely to be more innovative than non-cooperative companies are, and they participate in more 

projects. Finally, earlier result suggests that large project team is more likely to succeed, that is, intra-firm 

networks are important for the success of the innovation. 

Our hypothesis is that intra-firm collaborative research produces research of higher quality. We 

investigated patent data and approval rates from 1994-2001 in Sweden. The main result clearly shows that 

researchers collaborating in innovation networks improve the efficiency of the innovation process by 

getting more patents applications approved even after controlling for product type and size of the 

company. The odds getting a patent application approved are in the range 1.1 to 1.5 times better if an 

application is a result from research collaboration. Furthermore, the results indicating that the size of the 

research team is more important in the IT sector and outside the three large metropolitan areas. For 

example, the hazard getting a patent application approved within the IT sector is 52 percent higher if the 

team size increase by 1 percent compared to only 13 percent within all sectors. 



   

 18 

One implication from the result is that innovation hubs can play an important role and both increasing the 

quality of the research and increase the innovativeness, especially outside the largest metropolitan areas 

and in markets where the IT sector is strong. However, as Meagher and Rogers (2004) point out, it can be 

hard to duplicate the success of Silicon Valley. 

Further research should focus on elaborating the concept of networking and not only using the 

information on the patent application. For example, further research should focus on collecting new 

information about the nature of the networks, both informal and formal ties, directly from the inventors 

by a questionnaire. Furthermore, the questionnaire could be used to collect information on individual 

projects R&D expenditures. In the present research, we only have the information about the size of the 

company. Although this is important in explaining the success rates, the size of the research project could 

be very important. 
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Appendix: Classification 

Industry New-code IPC-code 

Human necessities C1 A-A61-A63+C05 

Medical or veterinary science; 

hygiene 

C2 A61 

Sports, games; amusements C3 A63 

Performing operations C4 B-B60-B61-B62-B63-B64-B82 

Transporting C5 B60 to B64 

Nanotechnology C6 B82 

Chemistry; metallurgy C7 C-C05-C07-(C12M to C12S) 

Organic chemistry C8 C07 

Biochemistry C9 C12M to C12S 

Textiles; paper C10 D 

Fixed constructions C11 E 

Mechanical engineering; 

lighting, heating; weapons 

C12 F 

Physics C13 G-G05-G02-G06-G09C-G11 

Information technology C14 G02+G06+G09C+G11+H04 

Controlling; regulating C15 G05 

Electricity C16 H-H04 
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Figure 1. Social Network Analysis. 
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Table1. Variable definition. 

 

Variable name Description Unit Total Percent 

     

Patents     

Number of 

patents 

Patent application in 1994 Number 3815  

Approval rates Approved patents 1994-2001 out of 

application 1994 

Binary 2533 66.4 

     

Proxies for 

networking 

    

NW1 Dummy if more than 1 inventor Binary 1113 29.2 

NW2 Number of inventors per patent Number 1.476  

NW3 Number of inventors per component Number 2.212  

     

Size     

Corp Corporation Binary 2211 57.9 

Turnover Turnover (the 100 largest 

corporations)  

SEK 

(million) 

109,951  

Large Large market capitalization firms Binary 832 21.8 

     

Product type     

C1 Human Necessities Binary 398 10.4 

C2 Medical science Binary 409 10.7 

C3 Sport; games Binary 70 1.8 

C4 Perf. Oper. Binary 759 19.9 

C5 Transporting Binary 298 7.8 

C6 Nanotechnology Binary 0 0 

C7 Metallurgy Binary 133 3.5 

C8 Organic chem. Binary 38 1.0 

C9 Biochemistry Binary 30 0.8 

C10 Textiles, Paper Binary 99 2.6 

C11 Constructions Binary 346 9.1 

C12 Mechanical Engineering Binary 433 11.3 

C13 Physics Binary 321 8.4 

C14 IT Binary 256 6.7 

C15 Controlling Binary 17 0.4 

C16 Electricity Binary 205 0.5 
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Figure 2. Approvals over time. 
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Table 2. Descriptive statistics. 

 

Product type Patents Approve

d 

Approval 

rates 

Inventors One-

inventor 

Corporation  Large Cap 

firms 

   (percent)     

Human 

Necess. 

398 134 33.7 491 329 138 22 

Medical 

science 

409 164 40.1 713 227 287 148 

Sport; games 70 18 25.7 84 57 16 1 

Perf. Oper. 759 374 49.3 1065 544 473 141 

Transporting 298 111 37.2 361 248 126 40 

Metallurgy 133 66 49.6 214 84 88 30 

Organic 

chemistry 

38 5 13.2 92 14 27 19 

Biochemistry 30 1 3.3 62 15 19 11 

Textiles, 

Paper 

99 57 57.6 205 49 78 42 

Constructions 346 145 41.9 432 286 158 19 

Mech. Engin. 433 197 45.5 589 326 267 87 

Physics 321 133 41.4 514 211 184 54 

IT 256 118 46.1 454 156 186 134 

Controlling 17 9 52.9 25 12 13 6 

Electricity 205 91 44.4 325 142 149 77 

Total 3815 1625 42.6 5630 2702 2211 832 



   

 27 

Table 3. Social network descriptive. 

 

 All Approved 

patents 

Performing 

operations 

IT Mechanical 

Patents 3,815 1,625 759 256 433 

Inventors 5,630 2,533 1,065 454 589 

Unique inventors 4,213 2,092 889 352 507 

Ties 6,586 2,854 888 874 436 

Network density (x100) 0.021 0.045 0.078 0.425 0.126 

Components 2,674 1,274 618 190 364 

Isolates 1,904 834 445 283 273 

One-inventor patents 2,702 1,034 544 156 326 

Largest size 28 13 13 10 8 

Number of components 

with more than 5 

inventors 

84 46 10 13 4 

Average geodesic 

distance 

1.057 1.053 1.049 1.023 1.027 

Network centralization 0.19% 0.09% 0.18% 1.35% 0.53% 
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 Table 4. Descriptive statistics – Network size. 

 

Product type Approve

d 

  Not Approved   

 NW1 

(percent) 

NW2 NW3 NW1 

(percent) 

NW2 NW3 

Human 

Necess. 

26.9 1.38 1.74 12.5 1.16 1.34 

Medical 

science 

54.4 1.62 4.36 45.2 1.82 3.58 

Sport; games 24.8 1.28 1.78 11.9 1.17 1.83 

Perf. Oper. 31.0 1.51 2.28 19.5 1.30 1.63 

Transporting 41.4 1.29 1.57 29.3 1.17 1.42 

Metallurgy 56.8 1.74 2.71 23.9 1.48 2.79 

Organic 

chemistry 

22.2 2.80 3.40 37.5 2.36 5.24 

Biochemistry 38.5 3.00 3.00 24.6 2.03 2.93 

Textiles, 

Paper 

43.3 2.02 3.21 45.3 2.14 2.71 

Constructions 22.2 1.35 1.54 17.3 1.17 1.49 

Mech. Engin. 34.8 1.46 2.22 22.1 1.28 1.69 

Physics 25.2 1.57 2.28 11.8 1.62 2.57 

IT 45.5 2.12 3.27 28.4 1.48 1.86 

Controlling 60.0 1.33 1.33 63.6 1.62 1.75 

Electricity 100.0 1.61 2.54 48.3 1.56 1.89 

Total 36.4 1.56 2.46 23.8 1.41 2.03 
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Table 5. Basic discrete-time hazard model. 

 

 Model A Model B Model C Model D 

 Coefficient Coefficient Coefficient Coefficient 

     

Baseline hazard rates     

Year -0.0479 - - - 

 (-4.10)    

T94 - Default Default Default 

     

T95 - 4.2541 4.2534 4.2537 

  (10.32) (10.32) (10.32) 

T96 - 4.9708 4.8697 4.8704 

  (11.84) (11.84) (11.84) 

T97 - 4.1210 4.1186 4.1196 

  (9.95) (9.94) (9.94) 

T98 - 4.0153 4.0118 4.0130 

  (9.66) (9.65) (9.66) 

T99 - 3.7056 3.7020 3.7040 

  (8.86) (8.85) (8.85) 

T00 - 2.7710 2.7674 2.7696 

  (6.41) (6.40) (6.40) 

T01 - 3.1133 3.1095 3.1123 

  (7.30) (7.29) (7.29) 

     

Networking     

NW1 0.1912 0.1936 - - 

 (3.35) (3.31)   

Ln(NW2) - - 0.0842 - 

   (1.46)  

Ln(NW3) - - - 0.0858 

    (2.29) 

     

Size     

Company 0.8591 0.8739 0.8880 0.8829 

 (13.42) (13.45) (13.67) (13.61) 

Ln(Turnover) 0.0186 0.0185 0.0208 0.0190 

 (3.38) (3.26) (3.66) (3.30) 

     

Constant 92.3521 -7.1810 -7.1572 -7.1672 

 (3.96) (-17.45) (-17.40) (-17.42) 

R
2
 0.0319 0.1198 0.1191 0.1193 

Note: t-values within parentheses. 
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Table 6.  Variation among industries. 

 

 All  Performing 

Operation (C4) 

 IT (C14)  Mechanical 

(C12) 
 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff t-value 

         

Baseline Hazard Rate         

T94 -  -  -  -  

T95 4.2612 (10.33) 3.8118 (5.31) 2.6234 (4.22) 2.7748 (6.37) 

T96 4.8890 (11.88) 4.4309 (6.19) 3.5742 (5.90) 3.1845 (7.35) 

T97 4.1435 (10.00) 3.8691 (5.36) 2.5918 (4.04) 2.3853 (5.18) 

T98 4.0466 (9.74) 3.8852 (5.37) -  2.2944 (4.87) 

T99 3.7434 (8.94) 3.9183 (5.40) 1.0409 (1.26) 2.1052 (4.32) 

T00 2.8108 (6.50) 2.7578 (3.63) 1.7827 (2.49) 0.9879 (1.61) 

T01 3.1562 (7.37) 1.9337 (2.36) 3.3883 (5.40) -  

         

Networking         

Ln(NW3) 0.1353 (3.47) 0.2025 (2.27) 0.5217 (3.81) 0.1385 (1.16) 

         

Size         

Corporation 0.8713 (13.20) 0.8158 (5.98) 1.0628 (2.85) 1.0634 (5.28) 

Ln(turnover) 0.0277 (4.58) 0.0270 (2.07) 0.0189 (0.82) 0.0453 (2.69) 

         

Product type         

C1 -0.6104 (-0.73) -  -  -  

C2 -0.9237 (-1.11) -  -  -  

C3 -0.9060 (-1.05) -  -  -  

C4 -0.4188 (-0.51) -  -  -  

C5 -0.5408 (-0.65) -  -  -  

C6 -  -  -  -  

C7 -0.5706 (-0.68) -  -  -  

C8 -2.3871 (-2.53) -  -  -  

C9 -3.6906 (-2.84) -  -  -  

C10 -0.3541 (-0.42) -  -  -  

C11 -0.4152 (-0.50) -  -  -  

C12 -0.4881 (-0.59) -  -  -  

C13 -0.6197 (-0.75) -  -  -  

C14 -0.7852 (-0.94) -  -  -  

C15 -0.3848 (-0.43) -  -  -  

C16 -0.7546 (-0.91) -  -  -  

         

Constant -6.6233 (-7.19) -20.9448 (-32.15) -6.3716 (-9.78) -5.6355 (-12.82) 

R
2
 0.1277  0.1907  0.1835  0.1466  

Note: t-values within parentheses 
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Table 7.  Regional variation and variation among different size of company. 

 

 Three largest  Rest  Companies  Large   
 Coeff. t-value Coeff. t-value Coeff. t-value Coeff t-value 

         

Baseline Hazard Rate         

T94 -  -  -  -  

T95 5.1822 (5.16) 3.9037 (8.60) 3.9087 (9.44) 4.5820 (4.55) 

T96 6.0116 (6.00) 4.3404 (9.58) 4.7092 (11.42) 5.7986 (5.78) 

T97 5.0813 (5.05) 3.7713 (8.24) 3.8885 (9.33) 4.8588 (4.82) 

T98 5.0054 (4.97) 3.6515 (7.94) 3.7591 (8.97) 4.8312 (4.78) 

T99 4.7316 (4.69) 3.3210 (7.14) 3.4633 (8.19) 3.9091 (3.82) 

T00 3.8522 (3.78) 2.3347 (4.75) 2.5558 (5.77) 3.9235 (3.83) 

T01 4.4971 (4.45) 2.2375 (4.50) 3.1309 (7.28) 4.6094 (4.54) 

         

Networking         

Ln(NW3) 0.0787 (1.54) 0.1461 (2.66) 0.1153 (2.84) 0.1127 (1.97) 

         

Size         

Corporation 0.8598 (8.76) 0.8520 (9.80) -  -  

Ln(turnover) 0.0342 (4.34) 0.0137 (1.56) 0.0216 (3.69) 0.0527 (2.02) 

         

Product type         

C8 -1.2649 (-2.75) -  -1.8560 (-3.64) -3.9662 (-3.04) 

C9 -2.8484 (-2.83) -  -2.8995 (-2.88) -2.5069 (-2.48) 

         

Constant  (-8.33) -6.5536 (-14.48) -6.0601 (-14.77) -7.3851 (-7.07) 

R
2
 0.1305  0.1907  0.1099  0.1349  

Note: t-values within parentheses 

 

 

 

 

 

 
 

 

 


