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Abstract

Recent empirical evidence strongly supports Jacobs�(1969) externality

hypothesis, that urban diversity provides a more favourable environment

for economic development. In order to correctly gauge Jacob�s hypothesis,

economic development should be understood as a result of innovations.

Furthermore, it is argued that a relevant diversity-measure should take

into account the degree of diversity between the inherent classes (e.g.

pharmaceuticals are closer to chemicals than to forestry). These ideas

are tested using regionally classi�ed Swedish patent application data as a

measure of innovativeness. Patent data are also used to re�ect technolo-

gical diversity. The results show that the number of patent applications in

Swedish regions, are highly and positively dependent on regional techno-

logical specialization, quite the opposite to Jacobs�prediction. The paper

raises general questions about earlier empirical results. It is concluded

that the size of regions is important is an important factor to consider,

since this in itself may a¤ect patenting intensity and technological di-

versity.
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1 Introduction

Specialization and diversity of regional economic environments have been seen

as partially opposing forces in agglomeration economies (Marshall, 1920; Jacobs,

1969). Recent empirical evidence strongly supports Jacobs�(1969) externality

hypothesis, that urban diversity provides a more favourable environment for

economic development. This paper claims that such an interpretation may be

misleading. It is argued that in an empirical application of the concept, diversity

should consider two dimensions. First, there is a "classi�cation diversity" that

arises because activities are grouped under di¤erent headings. That is, an en-

vironment is diverse if two activities are in di¤erent classes. Most contributions

in the literature are content with a numerical measurement taking this into

account. However, the classes of which any measure necessarily has to be com-

posed are in themselves in varying degreees interrelated. For instance, a region

producing chemicals and pharmaceuticals has clearly much more (technologic-

ally) related activities than a region producing paper and dairy products, a fact

which is not captured by previous measures. This leads us to the second type of

diversity which is labelled "technological diversity" in the paper. In response to

these ideas, a measure of technological coherence earlier is adapted for regional

use. This measure has previously been used used on the �rm level (Teece et al.,

1994 and Breschi, et al. 2003).

The measure is based on the following principles. All patents �led at the

European Patent O¢ ce (EPO) are assigned a main and a supplementary class.

Hinze et al. (1997) used this information to construct a table of closeness

among patent technologies based on a divison on 30 patent classes. This table is

adopted as a means to obtain numerical values of diversity in Swedish regions,

after removing classi�cation diversity, i.e. the diversity that accrues due to

table of technological closeness. The remaining part is labelled technological

diversity since it is mainly related to the technological coherence of the patents

in a region. The resulting measure is used to re-evaluate the dependence of

regional economic development, interpreted as development of new patents, on

regional diversity.

The paper is organized as follows. Section 2 reviews theories on agglomera-

tion economies relevant for the present contribution. Section 3 makes a critical

examination of empirical tests of the theories. Section 4 argues in favour of

our measure of diversity based on patents and go on to describe its construc-

tion. Section 5 tests how patent diversity a¤ects development of new patents
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for Swedish regions in the 1990s period. Section 6 concludes.

2 Theories about agglomeration

Historically, agglomeration economies have played an integral part in urban and

regional economics.1 Identi�cation of e¤ects follows a long tradition. Marshall

(1920, pp. 271) stressed that there were three main reasons why industries

should agglomerate into industrial districts. First, subsidiary trades (i.e. spe-

cialised intermediaries) grow up in the neighbourhood of an industry, is facilit-

ated by cost-e¢ ciently and extensively used specialised machinery. Second, la-

bour becomes specialized and moves between nearby-�rms, thus reducing hiring

costs and uncertainty, to the bene�t of both labourers and employers. Third,

ideas about inventions and improvements in machinery, in processes and the

general organization, spread swiftly through the local district. According to

Henderson et al. (1995, p. 1068), the e¤ects described by Marshall may best be

described as static localization externalities. One can visualize a local economy

in equilibrium, with no dynamic development of products and where input-

output relationships between industries are stable. Glaeser et al. (1992, p.

1127) form the MAR acronym by adding the contributions by Arrow (1962)

and Romer (1986) to the discussion. These additions are motivated from a

dynamic-localization externalities perspective. Arrow (1962) formalized the dy-

namic in�uence that learning has on unit-costs for the competitiveness of �rms.

Romer�s (1986) paper, brought increasing returns to scale on the �rm level into

the picture by formalizing the impact of dynamic knowledge accumulation. All

MAR-e¤ects give support to the idea that specialization is what matters for

the �rm. Thus, these localization economies lead to lower average costs of an

industry as more �rms in an industry co-locate. As stressed by Hall (1959,

quoted in Quigley, 1998), these economies arise because of fractional needs.

Since there are many (potential) buyers, also fractional needs may be catered

by the individual �rm. Urbanization economies on the other hand (cf. Ohlin,

1933; Hoover, 1937), refer to advantages of the size and density of the local

economy. This includes variety of specialized services, which having di¤erent

industries located near each other entail. Consumers enjoy similar advantages.

Building on these works is the contribution of Storper (1995) with his recog-

nition of the concept untraded dependencies. Untraded dependencies arise, not

1This discussion draws in part from Pettersson (2001). It is stressed that only agglomera-
tion theories considered relevant for the present discussion are covered.
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only through input-output linkages, but also due to conventions, rules, prac-

tices and institutions, which combine to produce �worlds of production�(Stor-

per and Salais, 1997). The empirical studies of Pinch and Henry (1999a; 1999b

among other contributions) of the British �Motor Sport Valley� act as illus-

trations of the Storper type of interdependencies. In this area of South-East

England, there is �erce competition between suppliers to car-producers, and

between car-producers themselves, in the racing-car industry. Yet, suppliers

may occassionally provide subtle information about more promising directions

of development for the di¤erent manufacturers based on their contacts with

competitors. Also, new developments can seldom be kept hidden for long, since

they are often partially visible on the racing circuit and hence noticable through

learning-by-observing processes. Labour is relatively mobile between �rms, and

key engineers are paid large incomes to remain within the �rm. Start-ups and

spino¤s (as well as deaths) of �rms are frequent, and seem to be "accepted" as

a manifestation of an entreprenurship culture. There is a competitive environ-

ment, yet most actors seem aware about the bene�ts for the sport as a whole

that competitors do not lag too far behind (Pinch and Henry, 1999a). Thus,

there is also informal collaboration going on.

A di¤erent idea is attributed to Jacobs (1969). She argues that more diverse

environments, such as those existing in cities, provide a better breeding-ground

for new ideas, because in this way cross-fertilization of ideas from di¤erent areas

are facilitated. The diversity idea is used di¤erently in new spatial agglomera-

tion theory (cf. Fujita et al., 1999 and Fujita and Thisse, 2001). The fact that

diversity should enter the utility function of the consumer was modelled in the

contributions by Spence (1976) and Dixit and Stiglitz (1977). As such, the very

fact that consumers enjoy higher utility from a diverse set of consumer goods

was explicitly modelled in a trade-o¤ between diversity and output quantity

by the later contribution. This result has been translated into spatial regional

economics in two versions. In the �rst, the core-periphery model (Krugman,

1991, repeated in Fujita and Thisse, 2001), consumers�desire for variety is ap-

plied to a two-region case. concentration of people to one region, with ensuing

production concentration implies a circular causation process. In the second

version, higher specialization of individual intermediate producers entail higher

production quantities for the �nal producer.2 This specialization of the indi-

vidual producer entails a higher diversity in the aggregate, which renders the

2See Fujita and Thisse, 2001, ch. 4 for a formalization.
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end-producer more productive.

Given the advantages of residing in cities, suggested above, why does not all

economic activity concentrate in large cities? The countervailing force comes

from congestion, which impairs a cost penalty for the producer locating in urban

areas (cf. Mills, 1967; Henderson, 1974 for a formalization). Price of land plays

the role of an allocation mechanism, implying that only activities in su¢ cient de-

mand of urban space will locate where the density of economic activities is high.

If innovative activities can meet these conditions, an immediate link to spatial

product life cycle theory is evident. This theory is exempli�ed by the formalized

model of Duranton and Puga (2001), where diversi�ed cities act as nurseries for

new products. In the work by Andersson and Johansson (19xx) and Johansson

and Karlsson (19xx), this nursing arises for several reasons. Urban settlement

have a higher concentration of "alert customers", people with preference for

trying out new goods.3 This provides an impetus on the consumption side. On

the supply side, production of these new goods require more educated workers,

which are also concentrated in cities. It is also argued that knowledge-intensive

�rms are more concentrated to these regions, which give a comparative advant-

age for the innovative �rm. Once �rms have found a suitable production system

for the new good, they decentralize production to avoid congestion costs, and

engage in mass production. The comparative advantage of cities therefore reside

in their abilitiies to develop and test new products, whereas the comparative

advantage of more peripheral areas are in routinized production. In this way,

the established fact that specialized and diverse cities co-exist can be explained,

but due to the presence of congestion, we would expect more innovations to

take place in the larger cities. Furthermore, while innovations are developed,

static localization and urbanization economies are interwoven in a complicated

dynamic game within urban settlements, so that cities can seldom be identi�ed

as completely diverse or specialized.

The above discussion suggests that the stage of the product life cycle and the

size of the urban settlement together play a crucial role for the location of pro-

duction, and as suggested by Jacobs, the development of ideas. We can conclude

from this theoretical discussion that while diversity/specialization arguments

emphasize agglomeration in general, Jacobs�discussion always emphasizes the

development of ideas, resulting from diversity. The Marshallian externality lit-

erature is more complex, but "production" is generally considered to be the

3 It can quite simply be argued that cities with a larger mass of people will contain more
people with a preference for trying out new goods.
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most a¤ected factor. On the one hand, industries concentrate into specialized

districts, so that a good indicator of the merits of specialization seems to be

measure �industrial development�. On the other hand, ideas are according to

Marshall (1920), "in the air" in those districts, suggesting that specialization is

useful even in this case. Therefore, it can be concluded that a test of Jacobs�

externalities should focus on an empirical application of the concept "ideas",

whereas Marshallian externalities should more likely be associated with produc-

tion, with a weaker test based on "ideas". In addition, spatial product life cycle

theory suggests that the extent to which production is sensitive to specialization

is related to the stage of the product�s life cycle.

3 Empirical Evidence

We now critically examine how the empirical literature has dealt with Marshal-

lian and Jacobs�externalities in the light of the previous discussion. To start

out, it is by now an established fact that innovations tend to cluster in space.

Moreover, this concentration seems to be much stronger when industries are

�high-tech�. For instance, Audretsch and Feldman (1996) studied geographic

concentration of innovative activity, measured by innovation counts from the

Small Business Administration database, to compare this with the concentration

of production. The starting point of their study was that innovations should,

other things equal, follow the general structure of production activity. If new

economic knowledge is a more important externality than other agglomeration

externalities, the implication would be that these industries would concentrate

more. Audretsch and Feldman (1996) are able to con�rm this hypothesis, and

also �nd that concentration of innovation is higher in R&D-intensive industries

and in industries for which university R&D and skilled labour is important. A

similar conclusion was reached by Kelly and Hageman (1999), who use a dart-

board approach (cf. Ellison and Glaeser, 1997). That is, the distribution of

patenting is studied with regard to how it di¤ers from the distribution implied

by the geographical structure of production. They �nd that the concentration

of innovative activities in space is often quite di¤erent from the one of pro-

duction. An interesting conclusion of their paper is that "tests of Marshallian

externalities that focus on the growth of output (investigating whether areas

with high wages or high concentrations of an industry experience the highest

growth rates) may miss the most important aspect of these externalities, which
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is their e¤ect on the innovation process." (Kelly and Hageman 1999, p. 50).

The empirical problem of evaluing Marshallian and/or Jacobs�externalities

can from the perspective of this paper mainly be evaluated by means of two

parameters. First, what is a relevant measure of specialization and diversity

respectively, and secondly what is the outcome, i.e. the dependent variable to

be tested. The empirical problem of evaluing Marshallian and/or Jacobs�ex-

ternalities can from the perspective of this paper be approached in the following

way. First, a relevant measure of specialization has to be selected. In what fol-

lows, it is assumed that diversity increases as this measure decreases. Second,

an outcome or performance variable has to be selected.

Most researchers recognise the importance of controlling for �normal� ag-

glomeration e¤ects, that is, other things equal, higher population density should

increase economic concentration. Glaeser et al. (1992) is the starting point for

the recent empirical evidence. This paper measures Marshallian, localization ex-

ternalities in industries by using location quotients, the share of local industry

production in a speci�c industry in relation to the average national share. Di-

versity is simultaneously measured by taking the share of local employment of

the top �ve industries (other than the one in question) of total employment.

These measures are, after controlling for population, gauged with regard to

their e¤ects on employment development over the period 1956-1987 in US cit-

ies. They �nd that more diverse industries have higher growth in employment.

The fact that the investigated industries may be considered mature, should how-

ever have an e¤ect on the outcome. Mature industries may have a slower growth

of employment and distort true results. These observations led Henderson et

al. (1995) to re�ne the setup by considering a later and shorter time-period,

1970-1987 thereby including all cities.4 In addition, initial and regional condi-

tions are included as control variables. Still, their focus is on industry growth,

measured by employment. Specialization is measured by location quotients, and

diversity by the Hirschmann-Her�ndahl index. This measure5 has the advant-

age that all industries are taken into account. On the other hand, its drawback

is that diversity is measured symmetrically. That is, diversity comes from the

fact that employment falls into di¤erent industry classes, not from how dif-

ferent these industries are. Henderson et al. (1995) divide between perceived

4 In fact, the cities are American Metropolitan Statistical Areas (MSAs).
5 In Henderson et al. (1995) the Hirschman-Her�ndahl index for city i for industry k is

written HHIik =
X
j =2k

s2ij , where sij is the share of employment in city i in industry j.
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mature industries (machinery, electrical machinery, primary metals, transporta-

tion and instruments) and new (computers, electronic components and medical

instruments) and conclude that Marshall-Arrow-Romer e¤ects are important for

traditional industries, Jacobs externalities seem important for attracting new,

but MAR-externalities are important for retaining them.

Apart from the continued use of employment growth, these papers use loc-

ation quotients to account for the importance of specialization. It should be

well-known, however, that this measure is very sensitive to the size of the re-

gion.6 Nonetheless, it carries on to perhaps the most well-known piece in this

literature, Feldman and Audretsch (1999). They count US innovations, as found

in about 100 technology, engineering and trade journals for 1982 (the Small Busi-

ness Administration data base) for industries, grouped together into six groups

based on their scienti�c similarity. This similarity is taken from a survey of

managers (cf. Levin et al. 1987) where company leaders rank the importance

of di¤erent academic disciplines. Concentration of the scienti�c base of the in-

dustry is also measured by the location quotient. Even though Feldman and

Audretsch in this way partially avoid problems of using the industry classi�c-

ation, the latter is still in the background when combining the six groups. A

higher location quotient is interpreted to validate localization economies; lower

to validate urbanization. Feldman and Audretsch (1999) �nd that diversity pro-

motes the number of innovations; concentration acts in the opposite direction.

Nearby concentration of industries from the same scienti�c base also increases

the amount of innovations. Thus, Feldman and Audretsch (1999) check whether

the number of innovations and not employment grows. A problem is that their

results cannot be replicated easily, because data on innovation counts exist only

for one year and it is unknown whether their results are speci�c to the US.

While their approach avoids many pitfalls, as mentioned, they rely on the ex-

isting industry classi�cation, at least indirectly.

The setup of Paci and Usai (1999) is quite similar to that of Feldman and

Audretsch (1999), but Italian local labour markets is used as the regional unit

of analysis. Location quotients are used to check for the presence of Mar-

shallian externalities, together with an inverse Gini coe¢ cient to estimate the

importance of diversity. They use the same scienti�c group division as Feldman

6The location quotient of industry i in region r is written LQir = (Eir=Er)=(Ei=E), where
it measures the share of local employment in industry i in the region r in relation to that
of the whole of the nation. Clearly, the quotient rises if relatively more people works in the
regional industry, but also if the region becomes smaller (Er goes down) as would happen if
a factory is located to a small region.
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and Audretsch (1999). Moreover, they include a high-tech dummy to specify

whether certain sectors are a¤ected di¤erently by localization or urbanization

economies (as in Henderson et al., 1995). Also, spatial econometric techniques

are used to take into account the possibility of cross-bordering e¤ects. The

results seem, in contrast to Feldman and Audretsch (1999) to show concen-

tration to be more important for innovation development in Italy than in the

US. The authors attribute this result to the structure of Italy�s economy, which

is largely composed of small- and medium-sized �rms in traditional industries.

This is further corroborated by the fact that the high-tech dummy for diversity

is signi�cant, meaning that high-tech sectors are more dependent on diversity,

consistent with earlier results. Another interesting �nding is that the e¤ects do

not transcend regional borders. Thus, local labour systems seem indeed to be

largely self-contained units in this case.

van Oort (2002) examines the importance of diversity and specialization in

a spatial econometrics framework for innovation intensity in the Netherlands.

Labour costs of R&D across Dutch municipalities is used to proxy innovation

activity. Concentration is measured by the location quotient of employment by

a particular industry in a municipality, lack of diversity is measured by the Gini-

coe¢ cient of the distribution of employment by sector in a municipality. Also,

competition is measured as establishments per worker in a municipality. The

author �nds it relevant to divide the country into national zoning areas and core-

periphery regions. An interesting empirical fact reside in the fact that innovation

intensity, R&D labour costs per employee, tend to be lower in population dense,

i.e. core locations, in the Netherlands.7 The econometric results show that

innovation tends to cluster in urban areas, interpreted as needing ensurance of

proximity to reservoires of high-skilled workers. Including spatially dependent

lag variables does not change the results, which is interpreted as a limited reach

of R&D spillovers and that innovation intensity patterns are caused by �hot-

spots�of large, dominants �rms causing a spatial concentration of innovation

intenstiy. Similar to earlier results, reported on above, innovation intensity

seems to be fostered by diversity and an absence of concentration. Also, lack of

competition seems to be innovation-inducing.

Acs, Fitzroy and Smith (2002) estimate panel equations for 5 high technology

clusters in 36 MSAs for the four years 1988-1991. Employment was estimated

7The core, the Randstad region contains the major cities Amsterdam, Rotterdam, The
Hague and Utrecht. It contains the provinces North Holland, South Holland, Utrecht and
Flevoland.

9



to be dependent on real wages, total amount of innovations in the region and

R&D expenditures from industry and university, respectively, in the speci�c

high technology sector. Spillovers between industries and from one university

sector to a speci�c industry cluster were measured by simply adding-up research

expenditures of all other sectors, except for the sector studied. Thus, there

is no attempt to control for technological di¤erences and/or the technological

proximity between high-tech sectors. While the authors control for possible

selection-bias and endogeneity of employment to wages, it is not surprising they

don�t �nd evidence of spillovers between sectors. Rather they �nd a strong

e¤ect of research expenditures on employment, thus claimed to support the

MAR-hypothesis.

Harrison et al. (1996) and Kelley and Helper (1999) study microdata to ex-

amine whether adoption of new production processes, by individual enterprises

in machine-making industries, are promoted by specialized or diverse employ-

ment in the region. Diversity was found to promote adoption.

The only paper to investigate e¤ects of something that comes close to tech-

nological diversity of regions, inferred by the patent classi�cation, seems to be

Autant-Bernard (2001). She investigates the production of patents in French ad-

ministrative regions (departements) as a function of research and human capital,

while also considering the impact of these variables from neighbouring regions.

The technological pro�le index, inspired by the one used by Ja¤e (1986)8 , takes

into account how much is patented in di¤erent groups, but not the technolo-

gical relatedness of di¤erent groups. The results point to a positive e¤ect from

technological proximity. That is, when the region and/or its neighbours techno-

logical specialization increase, patenting is positively a¤ected. It is hypothesized

that technological and geographical proximity seem to be determined simultan-

eously. The measure of technological proximity, however markedly di¤ers from

the one used in this paper. As will be seen, the measure used here in addition

considers the relatedness between classes.

To sum up the empirical evidence, we note that as a general rule industry

codes are used to classify �rms. This industry classi�cation is used to con-

struct a diversity index (usually the Hirschmann-Her�ndahl). We also note

that specialization is measured by localization quotients despite its small-region

problems. Diversity measures do not capture technological diversity as outlined

in the introduction. Some papers use employment growth to test for Jacobs�

8See equation (1) below.
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externalities, although it seems more apt to test localization economies.

4 The Use of Patents for Measuring Diversity

This section describes and explains how a measure of regional diversity based on

patent data can be constructed. Given that innovations seem to be of special

importance for clustering of activities, and therefore agglomerations, a measure

trying to evaluate the e¤ects of specialization or diversity should avoid the

industry classi�cation. This was already noted by Jacobs (1969, p. 61):

�These are useful categories for some types of economic analysis,

but insofar as they are relevant at all to understanding how old work

leads to new, they interfere with our understanding.�

She concludes:

�The point is that when new work is added to older work, the

addition often cuts ruthlessly across categories of work, no matter

how one may analyze the categories�(ibid, p. 62)

Desrochers (2001, p. 375) adds that:

�virtually all functional processes and material continually tra-

verse �industrial branches�and that �rms producing widely di¤erent

outputs often use related production technologies. Another problem

with industrial classi�cation data is that they hide the multi-product

nature of virtually all �rms of any signi�cance.�

Patents on the other hand have their own classi�cation codes. Within their

own limits, databases provide full coverage of the units of observations. That

is, patent data provide whole populations of data, and not just samples. Des-

rochers (2001) argues that the patent classi�cation system would provide a

better indicator of diversity, quoting Griliches (1990, p. 1666), because it �is

based primarily on technological and functional principles and is rarely related

to economists� notions of products or well-de�ned industries�. Furthermore,

more information can be conveyed from inventive actors, rather than just their

industry code. We get more information on the technological pro�les of regions

from studying patents.
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How are patents classi�ed? Patents use the International Patent Classi�c-

ation (IPC) system which is �...based on its need to ease the search for prior

art.�(Griliches, 1990, p. 1666). Thus, patents are classi�ed mainly due to ease

of �nding them for the patent examiner and others wishing to obtain knowledge

about them. We should however note the disadvantages of patents as an ob-

servable. Some of the de�ciencies include: 1) not all innovations are patentable;

2) not all patentable innovations are patented; 3) there are strong biases in the

propensity to patent depending on the industry of origin, the size of the �rm

and the type of invention; 4) there are important reliability problems in patent

data; 5) some patents prove to have an economic value, but the vast majority

do not; 6) many patents are of a purely defensive nature; 7) patent requirements

have evolved drastically over time and geographical space (see Griliches 1990;

Desrochers 1998 and Kleinknecht 2002 for discussions).

Can patents be used to proxy innovations? Surely, patents have been used

to proxy both inventive and innovative activity. In principle, a patent is not

always used commercially for strategic reasons, but there is a strong inclina-

tion for doing so since the investment costs are high.9 Secondly, a precondition

for patenting is that it should be "industrially applicable" (Michel and Bettels,

2001).10 In addition, recent evidence by Acs et al. (2002) suggest that patents

are in fact very good proxies for "true" innovations. On balance, I conclude

that patents can be used to proxy innovative activity and that their classi�ca-

tion circumvent many of the problems of using industry classi�cations. Patent

documents give information on where inventor(s) live, the applying organiza-

tion, and we know what patents are cited etc. The regional location can for

instance be obtained with high precision. We now turn to the diversity issue,

i.e. how we can measure the degree of diversity.

4.1 The Technological Closeness of IPC-classes

In the literature, methods to relate patent classes have principally followed three

routes, depending on what has been the research focus. One strand of analysis

adopts the Yale concordance table, �rst used by Putnam and Evenson (1994),

to assign patents to industries by sector of use and sector of production.11 For

9Precise �gures are hard to obtain, since this seems to vary by technology, application costs
and practices by di¤erent law �rms assisting the inventor(s).
10Although Michel and Bettels (2001) indicate that this requirement may to be too restrict-

ive.
11Andersson and Ejermo (2004) use an improved version of this table to estimate knowledge

production functions for sectors of Swedish regions.
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our purpose, as has already been discussed, the industry classi�cation is not a

viable option. The second route uses the citation of patents to others to infer

�spillovers� between classes.12 Our analysis is not interested in the spillover

dimension, but instead in the relatedness of each pair of technologies in use.

Therefore, we use the third route, which takes advantage of how close two

IPC-classes are by examining the main and supplementary classi�cation of pat-

ents. Verspagen (1997) claim that the main classi�cation of a patent classi�ca-

tion can be used to infer �spillovers�to the supplementary class of the patent. In

this way, he forms a spillover matrix. However, in the work by the Frauenhofer

Institute of Karlsruhe jointly with CESPRI of Milan and described in Hinze et

al. (1997), no support could be found for the spillover hypothesis between the

classes, because this is not the procedure by which patent examiners are instruc-

ted to add the supplementary codes. Rather, supplementary class information

re�ect further claims of the patents. Therefore, Breschi et al. (2002, 2003) con-

clude that this is a relevant measure of how technologically close classes are. We

now describe this method in detail, because we will use it to construct measures

of regional diversity.

Hinze et al. (1997) create a table which relates classes based on how often two

classes occur jointly in main and supplementary classes. Dividing the material

into 30 classes of the three countries USA, Germany and Japan over the years

1982-1993 such a classi�cation proves to be robust both over the countries, and

over time, from data of the European Patent O¢ ce (EPO). In their use of this

material, Breschi et al. (2002 and 2003), devise a measure based on technological

likeness. The degree to which there is co-occurrence in the classi�cation of two

classes, is denoted wij ; where i and j are two of 30 classes and wij is the raw

count of the number of co-occurrences. In principle, a measure could use only

this relation, but it makes more sense also to use indirect relations. This can be

done using the cosine index (cf. Ja¤e 1986) which jointly relates the similarities,

not only between groups i and j, but also at the same time takes into account

their similarity to other classes:

qij =

nP
k=1

wikwjks
nP
k=1

w2ik

nP
k=1

w2jk

(1)

12Such analyses have for instance been done by Verspagen (1997) and Verspagen and Loo
(1999).
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If i = j; the similarity qij becomes 1 and when i 6= j; 0 � qij � 1. The

result using EPO patents from six major OECD countries from the EPO patent

database is taken from Breschi et al. (2002) and is reproduced in Table 3 of

Appendix 7.1. These relations between classes are used also in this paper. The

underlying assumption is that the stability reported on by Hinze et al. (1997)

carries on to Swedish patenting. Higher amounts of patenting in di¤erent classes

can be the result of higher technological opportunities (cf. Dosi 1988) and higher

propensities to patent (Scherer 1983, Breschi et al. 2000). Therefore, it is to

our advantage that this information is �built into�(1).

We now take into account patenting in di¤erent technologies and their mu-

tual relationship through (1) in a single compound measure that re�ects di-

versity.

4.2 Weighted Average Relatedness Measures

Teece et al. (1994) used two measures to operationalise �rms�activities relative

strength in a network (also used in Breschi et al., 2002, 2003). We apply one of

them for measuring regional diversity and adjust the notation. Before describing

the data we note that there are 81 regions used in the empirical analysis. Thus,

each region (r = 1; :::; 81) may have some activity in one of patent technology

�elds i = 1; :::; 30 and a relation between two classes i and j denoted by qij .

The weighted-average-relatedness (WAR) of region r:s technological activities,

outside a given class i, is written:

WARir =

P
j 6=i
qijpjP

j 6=i
pj

(2)

where qij is the weight of activities in each technology �eld j with respect to

technology i for the region. In the case of patents, pj is the share of patents in

class j. Teece et al. (1994, p. 14-15) write:

�The index measures the degree to which technology �eld i is

linked to all of the other activities of �rm k, both in terms of �tech-

nical distance�and relative weight. For each �rm, an average value

of WARi can thus be calculated to get an index of global technolo-

gical coherence. Further average values can be computed for speci�c

�rm categories, such as �rms with the same size (in our case, size is

given by the number of patents held by the �rm), a similar diversi-
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�cation range (the number of technological �eld in which the �rm is

found to be active)�

The measure�s main weakness is, however, its dependence on the individual

region�s (or �rm�s in the case of Teece et al., 1994) diversi�cation range. The

more technological �elds the �rm adds to its portfolio, the more �weak links�

between those �elds and �eld i (low qij values) will be added to the index.

A remedy to this problem is to use the weighted-average-relatedness of neigh-

bours (WARN). This measure takes into account only those links that belong

to the so-called maximum spanning tree, i.e. those (n�1) links which are strictly
necessary for creating a connected graph between a unit�s technological activit-

ies, and at the same time show the strongest connections. The (n�1) links refer
to the fact that regions may have no patents in several classes and the number

of links necessary to form therefore di¤ers. Originally, Teece et al. (1994) used

WAR and WARN to measure systematic diversi�cation of �rms�employment

across di¤erent activities. The striking result was that diversi�cation was sys-

tematic, so that activities were added to the �rm�s portfolio of activities reelated

to those previously undertaken. Similarly, theWARN (andWAR) measure was

used by Breschi et al. (2003) to examine whether companies in the U.S., Ja-

pan, France, Germany, Italy and the United Kingdom �ling applications to the

EPO over the period 1982-1993 period diversi�ed in a systematic way. They

found that diversi�cation into new technologies was more likely when the exist-

ing portfolio of technologies of companies was technologically related to the new

technology. Thus, in Breschi et al.�s (2003) analysis, higher values of WARN

re�ect higher technological coherence for �rms. For the present paper, a higher

value is assumed to measure higher connection between the patenting activities

in the region, interpreted as higher specialization towards similar technologies.

Smaller values show that patenting activity in regions are more diverse.

Mathematically we can write the WARN measure as follows. Denoting for

region r, class i

WARNir =

P
j 6=i
qij�rijprjP

j 6=i
�rijprj

(3)

where �rij = 1 if the link between i and j belongs to the maximum spanning tree

that relates region r�s activities, and �rij = 0 otherwise. Examining WARNir
we see that it is constrained between 0 and 1. Appendix 7.2 gives a practic
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numerical example of how this spanning tree was calculated. Equation (3) can

be modi�ed using the number of patents as weights instead, since the following

equalities hold:

WARNir =

P
j 6=i
qij�rijprjP

j 6=i
�rijprj

=

P
j 6=i
qij�ij

PrjP
j

PrjP
j 6=i
�ij

PrjP
j

Prj

=

P
j 6=i
qij�ijPrjP

j 6=i
�ijPrj

(4)

where Prj is the number of patents in class j for region r. where cr Taking

the average over the classes for each region gives us a measure for the overall

technological relatedness of patenting in a region.

WARNr =

X
i

WARNir

nr
=

X
i

 P
j 6=i

qij�rijPrjP
j 6=i

�rijPrj

!
nr

(5)

where nr denotes the number of classes in which region r has patents. Going

back to examine the components of equation (4), we see that for any component

qijPrj being added to the numerator, a component Prj is added to the denom-

inator. In a "network" with only patenting in one class, this would reduce to

qijPrj=Prj = qij . In a two-class example the equation reduces to a weighted

sum of the two qij�s. This means that there is no a priori reason to think that

an increase in the number of classes would by itself change the size ofWARNir.

There is also no reason to think that the weights for the di¤erent link strengths,

Prj , would be di¤erent in a random network. A randomly simulated WARNir
would therefore have equal weights with the random link simply being the av-

erage value of all possible E [qij ]j 6=i =
P
j 6=i
qij=nr � �q. Thus, the expected value

of WARNir and WARNr is simply:

E [WARNir] = E [WARNr] = �q (6)

�q is about 0.0457 with the values for qij from Table 3 in use. WARNDIFFr
is de�ned as the calculated valueWARNr minus the non-random, expected part:

WARNDIFFr =WARNr � �q (7)

Deducting �q, removes a non-random part from the diversity measure which

has been imposed due to the construct of the technological similarity measure.

In other words, there is always some technological closeness that arises because
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all the classes are related to some extent. To obtain the random part we remove

this. The technological similarity of patenting in a region consists of two parts:

1. The frequency of patenting, and 2. the �closeness�of these classes. These

two can safely be assumed to be inseparable and jointly determined in a region.

That is, the choice of how many patents to produce in a speci�c class is assumed

to be a function of both how many patents there were previously, and how

related they are technologically. The next section illustrates various features of

WARNDIFFr.

5 Diversity in Swedish Regions

We now go on to describe the acquired data set of patents for Swedish regions

with emphasis on diversity. Patent data from EPO exist from 1977 to the

present, following the establishment of the European Patent System. The sys-

tem was gradually developed in the �rst years and can from inspection of the

data, not be regarded to have been fully at work until 1982. The last year from

which we use data is 1999, given that these are based on the priority date.13

The setup considered here concerns testing the hypothesis that diversity in one

period a¤ects new innovations, proxied by the number of patent applications in a

later period. The patent data consisting of EPO data with at least one Swedish

inventor, was divided into two samples spanning equally long time periods, the

�rst from 1982-1990 and the second from 1991-1999. WARNDIFFr was cal-

culated for regions in the �rst period and the number of patents were summed

together for the same regions in the second period.

Figure 1 shows the number of patent applications in 81 Swedish functional

regions, i.e. local labour markets, 1991-1999. A functional region is determined

by its economic rather than administrative properties, because they are delim-

ited by their commuting patterns. A patent application is located to a speci�c

region depending on the residence of the �rst inventor in the list of inventors.

If the inventor for some reason could not be located, the location of number 2

was used and so on.14

13 It takes years for data to go through the system of patent application after they are
initially given a priority date. Hence, many patents �led after 1999 are not in the database.
14This method was preferred, since, as was also pointed out by an anonymous referee,

using the location of the company may introduce bias because it may re�ect the location of
headquarters, rather than the actual location of the R&D-lab. Using the inventor�s address
should avoid this problem.
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Figure 1: Patenting activity 1991-1999 in Swedish functional regions to the
European Patent O¢ ce.

It can be observed that patenting activity15 , is highly concentrated to the

three most populated regions: Stockholm, Göteborg and Malmö. Of course,

this has to do with the relatively high population concentration in these regions,

but this cannot be the only explanation; if we count the number of patents per

employees, we �nd that these regions still score among the top �ve. The two top-

scoring regions are Västerås and Ludvika. Västerås is ranked number 11 in terms

of population, while Ludvika is quite small. Both are important production

localities for the Swedish part of the power and automation technology company

ABB.16

Figures 2 and 3 illustrate di¤erent properties of WARNDIFFr. Figure 2

illustrates regional values. WARN -values could not be calculated for regions

without patents and those with patenting in only one class. Compared to Figure

15Henceforth referring to patent applications.
16The top 20 regions in terms of population and top 20 in terms of patents per employee

1991-1999 are listed in Appendix 7.3, Table 5.
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Figure 2: Technological specialisation measured by average WARN in Swedish
functional regions over the 1982-90 period.

1, we see that high values of WARNDIFFr tends to be where patenting is also

extensive. This means that technological specialisation tends to go hand in

hand with high levels of patent applications. The values range from -0.0147

for the Åre region17 to 0.1533 for the Göteborg region. We can also examine

WARNDIFFr with respect to the number of classes in which a region has

patenting. Figure 3 illustrates this.

Figure 3 plotsWARNDIFFr, the adjusted values for each region in relation

to the number of technology classes the region has. We see that there is a clear

tendency for WARNDIFFr to go up as regions add on more classes. This

therefore seems to indicate that as more classes are added, regions tend to patent

in classes which are technologically close and in which they may build on related

experience from other technologies. Breschi and Lissoni (2002) obtained rising

WARNDIFFr-values for �rms, but with a much faster rise in its value. The

lack of this rising speed of WARNDIFFr probably re�ects the fact that some

regions contain many �rms, and larger regions (those most likely to have patent

17This negative value arises only because we deduct the expected value.
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Figure 3: Calculated WARNDIFF -values in relation to the number of classes
with patenting for Swedish functional regions, 1982-1990.

activities in many classes) have of course, a lot of them. Hence,WARNDIFFr,

tends to be diluted compared to an increase of classes based on a pure �rm

calculation of the value.

Other variables are likely to a¤ect patent production concurrently. The

next section tests whether innovation, as measured by the number of patents,

is a¤ected by diversity, while controlling for other variables.

5.1 A Test of the E¤ects of Diversity on New Patents

The adjusted WARNDIFF -measure captures technological diversity, which

seems like a reasonable interpretation of Jacobs�externality hypothesis. With

regard to the Marshallian externalities, mainly product e¤ects are highlighted in

theoretical discussions, but Marshall (1920, Book IV, p 225) also speaks about

that "the mysteries of the trade become no mysteries; but are as it were in

the air". This has widely been interpreted as "knowledge spillovers". Since

suppliers of local intermediate goods and reserves of labour pool act as pro-
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viders of knowledge, higher specialization is thought to induce higher amounts

of "spillovers" and hence more innovations can build on these ideas. Therefore,

while Marshallian externalities is a mixture of many e¤ects, they can to some

extent be thought to run counter to Jacobs�arguments.

To test formally the connection with innovation, we regress the number

of patents applied for from 1991-1999 on diversity measured by WARNDIFF

from 1982-1990. The use of an earlier time period for the diversity variable takes

into account the implicit assumption that development of innovations should be

seen as dependent on previous diversity/specialization. From our introductory

discussion of the importance of agglomeration, we conclude that there should be

a general tendency for more densely populated regions to exhibit agglomeration

e¤ects. We therefore include a measure of employment to control for this e¤ect,

which should also reduce potential problems of heteroskedasticity. EMP9199

measures the sum of employment in the 1991-1999 period. In addition, there

may be path dependence of regional innovative activity, i.e. regions with high

activity in the past are more likely to patent more in the future.

The literature has identi�ed that certain sectors have di¤erent propensities to

patent. Regions may also exhibit path dependence in their innovation behaviour.

We therefore use the number of patents in the 1982-1990 period in each region,

as a proxy for �opportunities�in the region of future innovative activity.

Our starting model is of the type:

PAT9199r = f

 
�=+

WARNDIFFr;
+

PAT8290r;
+

EMP9199r

!
(8)

where PAT9199r is the number of patents applied for 1991-1999 in region r

modeled as a function of WARNDIFFr and PAT8290r, the number of applic-

ations 1982-1990. Above the variables is shown the expected relationship. If

Jacobs�externalities are more inducive to future patents,WARNDIFFr should

show a negative sign, since regions are less diverse in their technological activit-

ies when WARNDIFFr rises. If localization externalities are more important,

in line with Marshall�s suggestion i.e. specialization of economic activity, the

sign should be positive.

A number of authors have commented on the appropriate technique for es-

timation when the dependent variable is discrete, and � 0 as in our case (cf.

Cameron and Trivedi, 1998; Long, 1997). The basic setup for such data is the

Poisson regression. It is outlined by the following formulation:
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Pr[PATr = patr] =
e��r�r

patr

patr!
; patr = 0; 1; 2; 3; :::: (9)

where �r is in turn related to the set of regressors xr, normally in a linear

fashion:

ln�r = �
0xr (10)

A problem that often arises for users of the Poisson model is overdispersion.

Overdispersion refers to when the variance is higher than the expected value.18

The average number of patent applications 1991-1999 in regions where WARN

could be calculated is about 182 and the variance 354,198. Thus the high

variance observed suggest that there is a problem of overdispersion (see Long

1997, p. 220). Intuitively, ovderdispersion can be understood as heterogeneity

(e.g. productivity) in the observed units. The negative binomial model does not

impose the restriction of equality between expected value and variance. More

generally, the process is then written:

ln ~�r = �
0xr + " (11)

where e" is normally assumed to have a gamma distribution with mean 1 and

variance �, which is estimated from the data. The probability distribution of

this negative binomial model is:

Pr[PATk = patk j "] =
e�

~�r�r
patr

patr!
; patr = 0; 1; 2; 3; :::: (12)

It can be tested if the estimate of � equals zero, in which case we retain

the Poisson model. A value signi�cantly higher indicates overdispersion. If

H0 : � = 0 is rejected, it is taken as evidence in favour of the negative binomial

model. The test is implemented by computing the likelihoods of the restricted

model L
�
~�r

�
, i.e. � = 0 which results in the Poisson model, and the likelihood

from the unrestricted model, L
�
�̂u

�
. The likelihood-ratio statistic is given by

LR�=0 = �2
h
L
�
~�r

�
� L

�
�̂u

�i
(13)

18E[patk j xk] =Var[patk j xk] = �k = e�
0xk . See for example Hausman et al. (1981) or

Greene (2000, pp. 880-886) for discussions on the properties of Poisson and negative binomial
models.
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Table 1 shows a correlation matrix along with some descriptive statistics of

our data.

Table 1: Correlation matrix and descriptive data of variables.
Variable PAT9199 WARNDIFF PAT8290 EMP9199

PAT9199 1
WARNDIFF 0.4982 1
PAT8290 0.9961 0.5327 1
EMP9199 0.9862 0.5533 0.9867 1
min 1 -0.0147 2 14,997
max 4,492 0.1533 2201 7,729,353
mean 182.4286 0.0641 103.5714 498,932.3429
std. dev. 595.1454 0.0372 294.8615 1,022,604.464

All variables show positive correlation with each other. Not surprisingly,

we �nd a high positive correlation between employment size and the amount

of patenting in regions, and of patenting in the two periods (close to unity).

Also, WARNDIFF displays substantial correlation with patents in the 1982-

1990 period and employment 1991-1999. Because of high correlation between

PAT8290 and EMP9199, we exclude them in two models. Also, there are

two variants of estimations: a) the Poisson model and b) the negative binomial

model. The likelihood-ratio statistic below each estimated negative binomial

model indicate if the Poisson model was rejected based on the test indicated

in 13. Each model has the number of patent applications 1991-1999 as the

dependent variable. Model (1) excludes from the list of independent variables

EMP9199, Model (2) excludes PAT8290 and Model (3) includes all variables,

i.e. WARNDIFF; PAT8290 and EMP9199. The results are shown in Table 2

along with the marginal e¤ects of parameters.

Likelihood ratio tests of the overdispersion parameter � strongly reject the

null hypothesis in all cases, that is, the negative binomial model seems to be

the most appropriate one. The results show that higher technological special-

ization, WARNDIFF , in a region raises the likelihood for regional innova-

tions. This result is robust over both the Poisson and the Negative binomial

model and across speci�cations, and is highly signi�cant. Moreover, old pat-

ents (PAT8290) raise the likelihood for more patents in all models where it is

included. Employment shows an incoherent pattern, which is most likely attrib-

utable to the multicollinearity problem. It is positive and strongly signi�cant

in two cases (2a and 2b), negative and strongly signi�cant in one case (3a) and

23



insigni�cant in one case (3b). The marginal e¤ects are the parameter values

which we are normally interested in, in a likelihood setting such as this one.

The marginal e¤ects evalued at variable means, are given in the lower half of

the table. Increasing WARNDIFF "marginally" means increasing it by one,

which is a very high number in this case, since it is constrained betwen 0 and

1 (see Section 4.2). If we do so, the number of patents are expected to in-

crease by 1272-1530 (all models) if we start out at the average WARNDIFF

(0.0641). The parameter value for WARNDIFF is also similar among most

types of models (about 24), except for model (2b) where it is very low (but still

highly signi�cant and positive). Increasing the number of patents in the base

period, 1982-1990, has a "smaller" e¤ect. A rise of one patent 1982-90, from

the average of 104 patents in this period, is expected to raise the number of

patents 1991-1999 by 0.0251-0.1129. The marginal e¤ect of raising the number

of people employed in the region by one person, has di¤erent e¤ects depending

on the model. In the full negative binomial model (3b), it is not signi�cantly

di¤erent from zero, so we abstain from drawing conclusions.

24



Table 2: Estimation results of regression analysis along with marginal e¤ect estimates. Dependent variable PAT9199. Standard
errors are in parenthesis. Models marked (a) indicate that the Poisson model was used, (b) the use of the negative binomial
model. Values rounded to four decimals, except standard errors and marginal e¤ects which are rounded to two. *, ** and ***
correspond to signi�cance at 10, 5 and 1 per cent levels
Variable Model (1a) Model (1b) Model (2a) Model (2b) Model (3a) Model (3b)

constant 2 .4 6 8 0 ( 0 .0 3 )
���

2 .3 6 3 0 ( 0 .2 5 )
���

2 .3 9 5 1 ( 0 .0 3 )
���

2 .3 1 5 3 ( 0 .2 4 )
���

2 .5 0 1 6 ( 0 .0 4 )
���

2 .3 3 1 5 ( 0 .2 5 )
���

WARNDIFF 2 4 .2 2 4 8 ( 0 .3 1 )
���

2 3 .2 9 8 1 ( 4 .0 9 )
���

2 4 .5 3 4 6 ( 0 .3 1 )
���

6 .4 6 E -0 7 ( 2 .4 8 E -0 7 )
���

2 4 .1 0 8 5 ( 0 .3 1 )
���

2 2 .0 9 1 8 ( 4 .3 4 )
���

PAT8290 0 .0 0 1 2 ( 1 .1 8 E -0 5 )
���

0 .0 0 2 0 ( 7 E -0 4 )
���

- - 0 .0 0 1 8 ( 2 E -0 4 )
���

0 .0 0 0 4 ( 1 .7 - 0 3 )

EMP9199 - - 3 .3 3 E -0 7 ( 3 .4 1 E -0 9 )
���

2 2 .0 9 5 8 ( 4 .3 3 )
���

- 1 .7 2 E -0 7 ( 5 .3 7 E -0 8 )
���

5 .2 3 E -0 7 ( 5 .5 2 E -0 7 )

nobs 7 0 7 0 7 0 7 0 7 0 7 0

pseudo R2 0 .8 9 9 0 0 .1 3 1 9 0 .8 9 7 1 0 .1 3 0 .8 9 9 2 0 .1 3 3 0

LR-test. �=0 - 3 5 1 4 .1 9 - 3 5 9 2 .9 0 - 3 5 0 4 .8 8

Marginal e¤ects of coe¢ cients at variable mean

WARNDIFF 1 5 2 1 .4 4 8 ( 1 9 .1 1 )
���

1 3 4 7 .8 2 ( 2 7 3 .4 4 )
���

1 5 3 0 .2 5 1 0 ( 1 9 .1 6 )
���

1 2 7 2 .4 2 4 ( 2 8 0 .4 2 )
���

1 5 1 7 .3 2 1 0 ( 1 9 .1 4 )
���

1 2 7 1 .8 7 2 0 ( 2 8 0 .9 1 )
���

PAT8290 0 .0 7 2 7 ( 1 .4 E -0 3 )
���

0 .1 1 2 9 ( 0 .0 4 )
���

- - 0 .1 1 0 4 ( 0 .0 1 )
���

0 .0 2 5 1 ( 0 .1 0 )
���

EMP9199 - 2 .0 8 E -0 5 ( 4 .1 6 E -0 7 )
���

3 .7 2 E -0 5 ( 1 .4 8 E -0 5 )
���

- 1 .0 8 E -0 5 ( 3 .3 9 E -0 6 )
���

3 .0 1 E -0 5 ( 3 .2 0 E -0 5 )
���
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The most important result from these investigations is of course, that techno-

logical specialization seems to foster higher innovative output measured by the

number of patents. It should be noted that the regional unit of analysis, local

labour market regions, may in Sweden contain only few patent innovators in

those cases where the region is relatively small. In these cases the specialization

measure largely re�ects the diversi�cation ranges of individual innovators. As

shown by previous contributions using WARN (Teece et al., 1994 and Breschi,

et al. 2003), �rms tend systematically to diversify their patenting activities into

technological areas close to those they previously engaged in. If this is the case

here, as seems highly likely, this seems to drive the results. In larger regions,

with presence of more and larger �rms, these are likely to engage in more types

of technological activities, raising WARNDIFF of the region if their patenting

behaviour can be attributed greater technological coherence.

6 Conclusions and Extensions

This paper has examined the importance of diversity for regional innovativeness,

along the lines suggested by Jacobs (1969) and Desrochers (1998). Diversity, as

measured over Swedish local labour market regions, has been used in a novel

way to examine the diversity of Swedish regions. The measure used takes into

account technological diversity using both the relatedness of technologies in

patenting and the number of patents in individual classes. The results indicate

that higher technological specialization improves patenting productivity among

Swedish regions. This runs counter to the �ndings of earlier contributions which

do not take technological diversity into account. Even though there are limits

to patents as a measure of innovation and many patent have only indirect eco-

nomic value, they are useful as indicators of technological activity. The present

study highlights some additional important di¤erences to the studies in the

literature. Earlier contributions tend to analyze regional diversity using admin-

istrative units such as American states. The present study uses local labour

market regions, which is well motivated if we want to analyze the economic

outcome of policy-decisions, since policy-changes on a regional level are largely

con�ned within the borders of the local labour market region. In this case,

the regional unit is therefore smaller, and hence the number of innovations and

the diversi�cation range tends to be sensitive to individual �rms�diversi�cation

range. As regions get larger, we may conjecture that �rms in Swedish regions
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increase their range of activities in a systematic way to technological areas close

to those already existing in the �rm�s portfolio. Hence, the average relatedness

tend to go up for the individual �rms in the larger regions, as do the weighted

average relatedness of the whole region. Although the empirical results are only

for one country, technological diversity should be seriously considered as an

explanatory factor for a researcher evaluating the importance of diversity.

Innovations have here been proxied for by patent applications. A possible

way to remedy Jacob�s ideas in this setting, is to examine applications from �rms

that have not patented before. If many applications are based on old knowledge,

it is not so strange that the technological trajectory follows established paths.

However, innovation of a new patentee may follow a di¤erent route, and possibly

draw on a more diverse set of regional forces. This may be particularly important

in the Swedish case, with a dominance of R&D in multinationals with in many

cases century-long tradition of continuous innovation in related technologies. In

those cases, patent applications may re�ect incremental rather than radically

new ideas. This also points to the possibility to give weight to patents by the

number of times they have been cited to re�ect the "size" of new ideas.

The main conclusions/recommendations from this paper are that technolo-

gical diversity needs to be addressed to better examine the diversity hypothesis;

that regions re�ect the technological range of individual �rms and hence a divi-

sion on �rm-level data coupled, with care taken to the size of the regions under

analysis should be considered in future research.
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7 Appendix

7.1 Similarity of Technological Fields

Table 3: Relatedness of 30 patent technology classes, used as a measure of
technological similarity, qij , in the main text. Source: Adapted from Breschi et
al. (2003).

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0
1 1
2 0 .0 5 6 1
3 0 .0 6 0 .1 5 4 1
4 0 .0 3 3 0 .0 9 4 0 .1 4 3 1
5 0 .1 1 6 0 .0 3 8 0 .0 3 7 0 .0 5 4 1
6 0 .0 6 8 0 .0 9 8 0 .0 6 7 0 .0 3 8 0 .1 0 2 1
7 0 .0 8 3 0 .0 5 0 .0 8 7 0 .1 1 2 0 .0 4 3 0 .0 6 2 1
8 0 .0 2 2 0 .0 1 6 0 .0 1 1 0 .0 2 4 0 .0 0 8 0 .0 3 7 0 .0 8 1
9 0 .0 1 0 .0 0 8 0 .0 0 3 0 .0 0 4 0 .0 0 6 0 .0 4 8 0 .1 0 1 0 .0 3 1
1 0 0 .0 5 7 0 .0 1 9 0 .0 0 4 0 .0 0 3 0 .0 2 4 0 .0 9 5 0 .0 1 8 0 .0 5 3 0 .1 4 8 1
1 1 0 .0 0 5 0 .0 0 4 0 .0 0 2 0 .0 0 4 0 .0 0 3 0 .0 1 8 0 .0 9 7 0 .0 6 8 0 .7 5 5 0 .0 8 9 1
1 2 0 .0 1 0 .0 0 7 0 .0 0 9 0 .0 1 4 0 .0 0 6 0 .0 1 8 0 .2 5 7 0 .0 4 2 0 .4 7 7 0 .0 5 9 0 .4 7 9 1
1 3 0 .1 0 1 0 .0 1 6 0 .0 0 5 0 .0 0 4 0 .0 7 9 0 .0 4 0 .0 2 3 0 .0 2 1 0 .0 4 3 0 .0 8 6 0 .0 2 6 0 .0 1 9 1
1 4 0 .0 0 9 0 .0 0 2 0 .0 0 1 0 .0 0 3 0 .0 0 3 0 .0 0 8 0 .0 2 5 0 .0 3 0 .1 4 1 0 .0 4 3 0 .1 6 1 0 .2 3 2 0 .0 1 7 1
1 5 0 .0 2 7 0 .0 1 5 0 .0 0 2 0 .0 0 3 0 .0 1 2 0 .0 7 1 0 .0 3 3 0 .0 3 2 0 .4 1 1 0 .1 8 7 0 .2 1 4 0 .1 7 3 0 .0 9 2 0 .1 1 9 1
1 6 0 .0 3 1 0 .0 0 8 0 .0 0 6 0 .0 1 3 0 .0 1 8 0 .0 2 2 0 .0 9 5 0 .0 6 1 0 .1 5 2 0 .0 8 3 0 .0 7 3 0 .0 8 2 0 .1 6 5 0 .0 8 1 0 .1 7 1 1
1 7 0 .1 2 0 .0 2 7 0 .0 0 9 0 .0 0 7 0 .1 2 8 0 .0 6 2 0 .0 3 1 0 .0 3 5 0 .0 3 4 0 .1 5 9 0 .0 1 6 0 .0 1 5 0 .1 9 1 0 .0 2 0 .0 6 8 0 .1 0 2 1
1 8 0 .0 4 5 0 .0 2 1 0 .0 0 4 0 .0 0 7 0 .0 1 8 0 .0 5 3 0 .0 3 0 .0 5 0 .0 3 6 0 .2 6 8 0 .0 1 8 0 .0 2 1 0 .0 9 7 0 .0 2 3 0 .1 1 3 0 .0 9 8 0 .1 8 9 1
1 9 0 .0 7 8 0 .0 0 6 0 .0 0 8 0 .0 0 7 0 .0 1 9 0 .0 1 0 .0 6 0 .0 1 9 0 .0 0 9 0 .0 1 2 0 .0 0 4 0 .0 1 2 0 .1 2 4 0 .0 1 7 0 .0 3 3 0 .1 0 4 0 .0 3 7 0 .0 3 6 1
2 0 0 .0 1 9 0 .0 0 3 0 .0 0 2 0 .0 0 3 0 .0 1 0 .0 1 1 0 .0 2 6 0 .0 2 5 0 .0 4 5 0 .0 4 8 0 .0 2 1 0 .0 3 8 0 .1 5 1 0 .0 3 4 0 .0 9 7 0 .3 7 3 0 .0 6 7 0 .0 4 8 0 .1 3 3 1
2 1 0 .0 5 3 0 .0 0 8 0 .0 0 5 0 .0 0 9 0 .0 2 9 0 .0 2 6 0 .0 4 9 0 .0 2 4 0 .0 0 7 0 .0 2 4 0 .0 0 4 0 .0 0 8 0 .0 8 3 0 .0 1 2 0 .0 2 4 0 .0 4 3 0 .0 7 2 0 .0 9 0 .0 4 2 0 .0 2 1 1
2 2 0 .0 4 7 0 .0 0 5 0 .0 0 8 0 .0 0 7 0 .0 0 9 0 .0 0 6 0 .0 5 2 0 .0 1 9 0 .0 0 4 0 .0 0 5 0 .0 0 3 0 .0 0 8 0 .0 2 8 0 .0 0 3 0 .0 1 1 0 .0 4 2 0 .0 1 9 0 .0 1 3 0 .0 8 4 0 .0 5 8 0 .0 2 8 1
2 3 0 .0 5 7 0 .0 1 2 0 .0 0 8 0 .0 0 9 0 .0 1 0 .0 1 3 0 .0 5 5 0 .0 3 4 0 .0 0 4 0 .0 1 8 0 .0 0 2 0 .0 0 7 0 .0 3 1 0 .0 0 6 0 .0 1 2 0 .0 4 0 .0 4 7 0 .0 6 9 0 .0 6 7 0 .0 3 6 0 .0 8 9 0 .1 4 9 1
2 4 0 .0 3 5 0 .0 2 7 0 .0 1 5 0 .0 3 4 0 .0 2 1 0 .0 5 6 0 .0 6 0 .0 3 6 0 .0 1 2 0 .0 3 8 0 .0 0 7 0 .0 1 1 0 .0 2 1 0 .0 3 7 0 .0 2 3 0 .0 6 6 0 .1 0 2 0 .1 1 6 0 .0 2 6 0 .0 2 2 0 .0 7 3 0 .0 1 5 0 .0 6 7 1
2 5 0 .0 1 2 0 .0 0 5 0 .0 0 3 0 .0 0 6 0 .0 0 4 0 .0 0 6 0 .0 3 6 0 .0 2 1 0 .0 2 1 0 .0 1 5 0 .0 2 2 0 .0 5 0 .0 1 2 0 .1 4 4 0 .0 3 8 0 .0 6 2 0 .0 1 8 0 .0 2 6 0 .0 2 6 0 .0 3 1 0 .0 3 5 0 .0 1 2 0 .0 3 4 0 .0 5 7 1
2 6 0 .0 5 1 0 .0 1 1 0 .0 1 5 0 .0 1 0 .0 0 7 0 .0 1 3 0 .0 5 5 0 .0 1 4 0 .0 0 3 0 .0 1 9 0 .0 0 2 0 .0 0 6 0 .0 1 3 0 .0 0 3 0 .0 0 5 0 .0 1 5 0 .0 3 1 0 .0 3 8 0 .0 3 7 0 .0 2 1 0 .0 2 6 0 .0 6 6 0 .2 0 7 0 .0 4 4 0 .0 2 1
2 7 0 .0 9 2 0 .0 2 5 0 .0 1 9 0 .0 1 9 0 .0 3 0 .0 4 5 0 .0 8 2 0 .0 6 3 0 .0 1 2 0 .0 1 4 0 .0 0 9 0 .0 1 8 0 .0 6 4 0 .0 0 7 0 .0 3 8 0 .0 4 5 0 .0 4 6 0 .0 1 6 0 .0 4 0 .0 4 0 .0 3 8 0 .0 1 5 0 .0 3 0 .0 2 3 0 .0 0 7 0 .0 1 1
2 8 0 .0 1 9 0 .0 0 8 0 .0 1 8 0 .0 1 1 0 .0 0 9 0 .0 2 3 0 .0 7 5 0 .0 0 7 0 .0 1 0 .0 1 3 0 .0 0 6 0 .0 1 4 0 .0 2 0 .0 0 4 0 .0 1 1 0 .0 2 5 0 .0 3 0 .0 2 1 0 .0 1 9 0 .0 1 3 0 .0 2 0 .0 2 8 0 .0 3 9 0 .0 2 2 0 .0 0 8 0 .0 5 4 0 .0 1 1
2 9 0 .0 3 5 0 .0 3 4 0 .0 1 1 0 .0 2 2 0 .0 1 1 0 .0 2 1 0 .0 5 6 0 .0 7 3 0 .0 0 7 0 .0 3 0 .0 0 7 0 .0 0 9 0 .0 2 0 .0 3 0 .0 1 6 0 .0 4 5 0 .0 7 7 0 .0 8 4 0 .0 5 8 0 .0 2 6 0 .0 7 2 0 .0 1 7 0 .0 7 5 0 .0 8 9 0 .0 3 7 0 .0 5 4 0 .0 1 4 0 .0 2 8 1
3 0 0 .0 2 6 0 .0 1 1 0 .0 0 9 0 .0 0 7 0 .0 0 7 0 .0 0 8 0 .0 4 1 0 .0 1 0 .0 0 7 0 .0 2 5 0 .0 0 3 0 .0 0 8 0 .0 4 5 0 .0 0 5 0 .0 2 2 0 .0 4 1 0 .0 5 3 0 .0 4 9 0 .0 4 2 0 .0 4 4 0 .0 4 5 0 .0 2 5 0 .1 3 5 0 .0 4 2 0 .0 3 8 0 .0 7 0 .0 1 5 0 .0 2 6 0 .0 7 2 1
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Table 4: Technology class names. Source: Breschi et al. (2002).
1. Electrical engineering 16. Chemical Engineering
2. Audiovisual techn. 17. Surface techn.
3. Telecommunication 18. Materials Processing
4. Information techn. 19. Thermal Processes
5. Semiconductors 20. Environmental techn.
6. Optics 21. Machine tools
7. Control techn. 22. Engines
8. Medical techn. 23. Mechanical Elements
9. Organic Chem. 24. Handling
10. Polymers 25. Food Processing
11. Pharmaceutics 26. Transport
12. Biotechn. 27. Nuclear Engineering
13. Materials 28. Space techn.
14. Food Chem. 29. Consumer Goods
15. Basic Materials Chem. 30. Civil Engineering

7.2 Calculations of maximum spanning trees

Two �gures conveniently illustrate the Kruskal algorithm of �nding the max-

imum spanning tree. A spanning tree connects all nodes, without unnecessary

connections. This means that for a network like in Figure 4 with �ve nodes

(n = 5), only four need to be selected to form the spanning tree. Inside the

nodes are denoted, (in this case) the number of patents in a speci�c class. The

numbered link between them denotes the strength of the link.

The Kruskal algorithm takes as its �rst link simply the largest value of the

valued links, 0.5 between nodes 1 and 2. The second link is the second largest

link, unless no new component is added to the tree. It may be that there are

more than one tree currently being formed, in which connecting two earlier

separete trees is ok (example will follow). If the second link is not valid, the

third largest link is used unless condition is not ful�lled. If two links are equally

strong (and both valid), it doesn�t matter which is chosen. In the �gure above,

0.4 is chosen in the second step between nodes 1 and 2. The third link should

be 0.3 between nodes 2 and 3. But this line is not valid, since no new node is

added. Therefore, we check the fourth largest number, 0.2 between nodes 4 and

5, which is allowed. The �fth largest value is 0.1, which is allowed because two

earlier disjoint tree-parts are linked together. The formed maximum spanning

tree is shown as Figure 5:

34



Figure 4: A network with corresponding strength of the links. Source: Con-
structed by the author with help of the freeware visone, http://www.visone.de/

Figure 5: The �nished maximum spanning tree, with emphasized lines showing
the chosen links.
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It remains to calculate the WARN -value for our tree. Since pj = Pj=
P
j

Pj ,

(3) may be rewritten as

WARNir =

P
j 6=i
qij�ij

PjP
j

PjP
j 6=i
�ij

PjP
j

Pj

=

P
j 6=i
qij�ijPjP

j 6=i
�ijPj

(14)

which highlights the importance of the strength of the nodes, and turned out to

be more convenient for the procedure of calculating di¤erent WARN . Taking

the average of the values for the WARNir belonging to the maximum spanning

tree, gives for our example above the value 0.2931. To calculate the values for

Swedish regions, an algorithm was written in SAS implementing the outlined

Kruskal procedure.

7.3 Regions ranked by Population and Patents per Capita
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Table 5: Top 20 regions ranked in terms of total population (1991-1999) and
patents per total number of employees. A star indicates that the region does
better than is motivated by its population size. Note: The names refer to the
regions and not only the cities themselves. Source: Own calculations based on
data from EPO and Statistics Sweden.
Regions ranked by Regions ranked by Patents per 1,000
population patents per employee employees 1991-1999
Stockholm Västerås� 0.7591
Göteborg Ludvika� 0.6639
Malmö Malmö 0.5824
Helsingborg Stockholm 0.5812
Uppsala Göteborg 0.5314
Linköping Uppsala 0.4926
Örebro Gävle� 0.4401
Uddevalla Karlskoga� 0.3945
Skövde Helsingborg 0.3834
Västerås Gnosjö� 0.3759
Norrköping Fagersta� 0.3518
Kristianstad Karlstad� 0.3367
Borås Linköping 0.3290
Karlstad Åmål� 0.3074
Gävle Lycksele� 0.2782
Sundsvall Luleå� 0.2681
Falun Sundsvall 0.2631
Luleå Hudiksvall� 0.2630
Jönköping Karlshamn� 0.2619
Umeå Eskilstuna� 0.2434

37


	Introduction
	Theories about agglomeration
	Empirical Evidence
	The Use of Patents for Measuring Diversity
	The Technological Closeness of IPC-classes
	Weighted Average Relatedness Measures

	Diversity in Swedish Regions
	A Test of the Effects of Diversity on New Patents

	Conclusions and Extensions
	Appendix
	Similarity of Technological Fields
	Calculations of maximum spanning trees
	Regions ranked by Population and Patents per Capita




