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Abstract

In this paper we generalize the median regression method in order to make it applicable to
systems of regression equations. Given the existence of proper systemwise medians of the
errors from different equations, we apply the weighted median regression with the weights
obtained from the covariance matrix of errors from different equations calculated by
conventional SURE method. The Seemingly Unrelated Median Regression Equations
(SUMRE) method produces results that are more robust than the usual SURE or single
equations OLS estimations when the distributions of the dependent variables are not
symmetric. Moreover, the estimations of the SUMRE method are also more efficient than
those of the cases of single equation median regressions when the cross equations errors are
correlated. More precisely, the aim of our SUMRE method is to produce a harmony of
existing skewness and correlations of errors in systems of regression equations. A theorem is
derived and indicates that even with the lack of statistically significant correlations between
the equations, using the SMRE method instead of the SURE method will not damage the
estimation of parameters.

A Monte Carlo experiment was conducted to investigate the properties of the SUMRE
method in situations where the number of equations in the system, number of observations,
strength of the correlations of cross equations errors and the departure from the normality
distribution of the errors were varied. The results show that, when the cross equations
correlations are medium or high and the level of skewness of the errors of the equations are
also medium or high, the SUMRE method produces estimators that are more efficient and less
biased than the ordinary SURE GLS estimators. Moreover, the estimates of applying the
SUMRE method are also more efficient and less biased than the estimates obtained when
applying the OLS or single equation median regressions. In addition, our results from an
empirical application are in accordance with what we discovered from the simulation study,
with respect to the relative gain in efficiency of SUMRE estimators compared to SURE
estimators, in the presence of Skewness of error terms.
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1. Introduction

Regression analysis is often used to explain the behaviour of an explained variable for fixed
values of the explanatory variables. Traditionally, this kind of analysis is focused on the
mean, i.e., by using a conditional mean function we try to summarise the relationship between
the explained variable and the explanatory variables. The Ordinary Least Squares (OLS)
method is a typical estimation method for this purpose. Intuitively, the OLS estimation
method describes the relationship between these variables when the distribution of the
dependent variable is symmetric. Otherwise, when this symmetry does not exist the mean will
not be the most proper measure of central tendency for calculating the conditional function. In
practical studies, there exist numerous cases where the data of interest, in one way or another,
are not symmetric. The distributions of for example earning variables are often highly
skewed. This, of course, may render inferences invalid when using standard estimation
methodology such as OLS. In such cases, other measures of central tendency, like median,

might be more appropriate for this purpose.

The median regression is a statistical technique intended to estimate and draw inferences
about conditional median functions. Just as the classical linear regression method based on
minimising sums of squared errors enables one to estimate models for conditional mean
functions, the median regression method offers a mechanism for estimating models for the
conditional median function. Moreover, the median regression is less sensitive to outliers and

departure from the normality assumption than the ordinary linear regression method is.

Originally, median regression was suggested by Koenker and Bassett (1978) as a robust
regression technique, so called L; or Least Absolute Deviation (LAD) regression, as an
alternative to the OLS for a case where the errors are not normally distributed. For these
reasons, this method and other robust estimation methods have been used in many empirical
works instead of the traditional OLS method. Practically, the median regression is more
difficult to apply than the standard OLS method since it requires special algorithms that
previously were not readily available in standard statistical software packages. However,

recent versions of STATA do include routines for estimating the median regression.

The median regression has been mainly applied strictly to single equation environments and

disappointingly to multivariate regression (excluding SURE models). Many models are
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expressed in terms of multivariate models (sometimes referred to as systems of equations),
due to the fact that the different marginal models are connected to each other. Treating each
equation separately, may lead to the loss of efficiency and to the reduction of the validity of
the conclusions. In general, the use of median regression is quite uncommon in multivariate
models, which may partly be due to the lack of availability of a standard methodology, or

even a standard definition of multivariate median.

The purpose of this study is to generalize the median regression and make it applicable to
systems of regression equations. Given the existence of proper systemwise medians of the
errors from different equations, we apply the weighted median regression with the weights
obtained from the covariance matrix of cross equations errors calculated by the ordinary
SURE method. The SURE method is considered as one of the most successful and efficient
methods for estimating seemingly unrelated regressions with the assumption of symmetric
regression errors. The resulting SURE model has stimulated countless theoretical and
empirical results in econometrics and other areas, (see Zellner, 1962; Srivastava and Giles,
1987; Chib and Greenberg, 1995). The benefit of SURE models in our case is that the SURE
estimators utilise the information present in the correlations of the cross equations errors and

hence are more efficient than other estimation methods such as the OLS method.

The paper is arranged as follows. In Section 2, we discuss the methodology. First, we give a
formal definition of median regression which is widely used in the literature, and discuss how
its notion is connected with the OLS method. Next, we give a formal definition of the SURE
model and its development from the OLS method, which was introduced by Zellner. Finally,
we introduce a new method, which we call the SUMRE method, and discuss how it is
connected with both the median regression and the SURE method. In Section 3, we present
the design of our Monte Carlo experiment and discuss the criteria used to evaluate the
efficiency of the SUMRE model. In Section 4, we interpret the output of the Monte Carlo
experiment and make a comparison between the SUMRE method, the SURE method and the
method of separate median regressions of single equations. Section 5 contains an empirical
application of the introduced SUMRE method to some data taken from Multi-Generation
Register at Statistics Sweden on three generations of male immigrants from Finland to
Sweden. The conclusions of the paper are presented in Section 6. The outputs of the Monte

Carlo experiment are arranged in tables and presented in the appendix.



2. Methodology

In this section, we present the methodology with regard to the median regression, the SURE

method and our introduced SUMRE method.
2.1. Median Regression:

Traditional regression analysis places heavy reliance on the conditional mean function, that is,
it fits a model based on the relationship between the mean of the response given a fixed value
of predictors. This approach suffices when the data have a symmetric distribution— such as
with the Gaussian distribution. In this case, the median coincides with the mean, and even all
other quintiles could be approximately predicted by the use of further information about the
dispersion of errors. Even for symmetrically distributed errors with longer or shorter tails than
those of a Gaussian distribution, some adjustments of the conditional mean function like

robust methods could be used.

For asymmetric distributions, the mean seems less desirable, but other measures like the
median could be taken as more suitable alternatives for the study of the locational behaviour
of a random variable. If we seek the mean of a distribution through a statistical decision
theoretic problem, represented as an optimization problem of a loss function, a suitable loss

function for this purpose is a quadratic loss function, as shown below,
L(Y, 0)=c|r -6 2.1.1)

where c is a positive real constant and € is a function used to predict the mean of the random
variable Y. With this loss function, the risk (expectation of the loss function) is the same

whatever positive constant ¢ is chosen, so, for more convenience it is usually chosen to be 1.

R(v;0)=E(L(Y, 0))= [ |v-6] dF(»)

- 0=V,;R(0)=, | y—éuzdF(y)

. O=E(Y) (2.1.2)



This means that the expectation of loss function (2.1.1) is minimized if 0 is chosen to be the
mean of Y, or in other words, the solution to the minimization problem gives the mean of Y .
Using a random sample of #n independently and identically distribute (iid) random variables,
and consequently, replacing the unknown distribution function of the random variables by the
empirical distribution function, we move from the realm of mathematics into the theory of
statistics, and obtain the following risk function.

R(¥:0)= [ |v-0] dF, ()

—00

-0 25 1040)

i=1

—0o0

2
s

1 n
:_Z||yl._9| (2.1.3)
ni—

which is the sum of squared errors divided by 7. Minimizing the risk (2.1.3) gives the sample

estimate of the mean.

Suppose & is a function of vector X (or the conditional mean of y given X is required)

through the relationship 6 = u y (x) =Xx'p, then minimizing the risk function with respect to

B, gives the following solution to the optimization problem (2.1.3):

L 0= VﬁR(Y; x'ﬁ)
:Vﬁig yi_xi'ﬁ ’
-y (V=8 (=)
L p=(xx)' XY, (2.1.4)

which is known as the least squared errors estimation of the parameter vector .

However, in decision-making, we can try to predict other parameters of a distribution
function, like unique mode, or a mode in a specific interval of parameter space, median or any
other quantiles of the distribution function of Y. The median of a distribution is obtained if

the quadratic loss function in (2.1.1) is replaced by the absolute deviation loss function,



L(Y, &)=c|y-

(2.1.5)

where ¢ is a positive real constant and & is a function used to predict the median of Y. Each

positive value of ¢ gives the same risk, and for more convenience it is usually chosen to be 1.
The probability distribution of a real-valued random variable Y is a right-continuous left-

limit (not necessarily) monotone increasing function:

F(y)=P(Y<y). (2.1.6)
The quantile function is the inverse of the distribution function

Oy(0)=F '(z)=inf{y: F(y) 27} (2.1.7)

for 0 <7 <1. The value of the quantile function for each 7 is called 7 th quantile of Y. It is

obvious that the median is the 0.5" quantile of ¥ .

By minimizing the risk of the loss function (2.1.5) we get the median of Y, as shown below.

OR(Y; &
o _er(rg)
o0&
= 5{ -5 dF(y)—j (y=&) dF(y)
=1-2F (&)
. &=F(1/2) = median . (2.1.8)

This solution may not be unique, but an interval of values may satisfy the minimization, since
F 1s monotone (but not necessarily a strict monotone). In this case, the smallest value in the

interval is chosen. Replacing the unknown F by the empirical distribution function F,,, when

we have a sample of » iid random variables, gives the following risk function:



R(Y:&)=E(L(Y, &))

= [ |y—¢ dF(»)

:z|y_§| d(%i](yi Sf)j

S ) (2.1.9)
n =y

Minimizing the risk (2.1.9) gives the sample median. A minimizer that minimizes a function
divided by 7 minimizes the function, as well. Or, a simpler argument is that we can choose
¢ =n in the loss function (2.1.5). Thus, we take the risk function (2.1.9) as the base of an
objective function for finding the sample least absolute deviations fitting function, in a

simpler form as follows:

R(é)=é|y,~—§|- (2.1.10)

Here, the problem is to find a value for & that minimises the objective function (2.1.10),

which also minimises the risk function (2.1.9). This optimization problem is expressed as

follows (see Bassett & Koenker, 1978):

minR(¢)=min2 |y — ¢ (2.1.11)
£eR £eR i=1

The optimization problem (2.1.11) is a linear programming problem, which after adding 2n
artificial variables {ui,vi} ,i=1... ,n, is formulated as (see Charnes, Cooper & Ferguson,

1955; Wagner 1959):

min {Lu+1,v | 1,E+u+v=y}. (2.1.12)
(&,u,v)eRxRI xR}

If £ is a function of x through a linear relationship (or when the conditional absolute

deviation function of y given X is required), £=0, (B | x)=x'p, then we want a minimizer

ﬁ that minimizes the objective function, as shown below,



min2|y; —xiB|. (2.1.13)

BeR? i=1

Using the linear programming reformulation of the problem as

min {L,bu+1,v | Xp+u+v=y}, (2.1.14)
(B,u,v)eRPxR xR

gives the solution (minimizer) to the objective function (2.1.13), where the rows of nx p

matrix X are transposes of vectors X;, for i=1,... ,n.
Optimality Conditions:

On one hand, if ﬁ, the solution to the linear programming (2.1.14), is the minimizer of the

objective function (2.1.13), it must be equivalent to the solution of differentiating the risk

function of the objective function (2.1.13) and then letting it be equal to zero, or to that of a

n
similar method. On the other hand, the risk function R(p) = Z| Vi — xl'.|3| is not a smooth, but a
i=1

piecewise continuous convex linear function, which is differentiable with respect to B except
at those points at which one or more errors Y; —X;B are zero (see Karst, 1958). For this
reason, instead of an ordinary derivative, we use the directional derivative with respect to

in all directions W , with ||W|| =1, and define the function y(¢) = p +tw, for t €[-1,1], where

7(0)=P and y'(0) = w, as described below (See Bassett & Koenker, 1978):

VWR(B)=V&R(B,W) :%(Roy(t))

1=0
=%§|yi—X£B—fX§WI 3
=— il//(yl-—x;[}, —X[W ) X;W (2.1.15)
i=1
where
sgn(u) , if u#0
= : 2.1.16
i) {sgn(v) i u=0 (2.1.16)



and the function sgn(.) is the sign of its argument.

Here, the necessary minimization condition of a smooth functionVR(ﬁ) =0 is met by the
condition that the directional derivative at ﬁ is nonnegative in all directions. Each p -tuple

solution fi, named a basic solution, interpolates at least p observations. But of course not
each p-element set of observations might give a basic solution, since for some of
observations there might be a linear relationship between their X’s, i.e., the matrix of their

X ’s might be singular. Let NV = {1, 2, ..., n} and /2 be any combination of p elements of
N whose corresponding rows of X are not linearly related to each other. Also, let X(h) be
the rows of matrix X corresponding to the elements of /4, and similarly, y(h) the vector of

elements of y corresponding to the elements of % and associated with X(h). A basic

solution, which is obtained by the observations indexed by the elements of /4, is as follows:
b(h) = X(h) 'y(h). (2.1.17)

If b(h) is to be a minimizer of the objective function (2.1.14), i.e., when the optimality holds
in b(%), the directional derivative of objective function (2.1.13) at b(%) must be nonnegative

in all directions w , as shown below:

0<VgR(b(h),w)= —il//(yi —X;b(/),— X;W)Xjw . (2.1.18)
i=1

Let v = X(/#)w, then the optimality condition is simplified as:

0<-Yy(0,—v)v-Yw (yj —Xb(h), X X(h)! v) X X(h) v

ich jeh
0<Y -3 ://( v; = X;b(h),~ X'J-X(h)_lv)x'jX(h)_lv, (2.1.19)
ieh jeh
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for all directions veR”. All the directions of R” are spanned by basis vectors e;,

i=1,...,p. Thus, choosing v =te,, for i=1,...., p, gives the following 2p inequalities.

0<1-Y l//(yj —xb(h),~ X X(h) e, )x'jX(h)‘le,. =1, p

seh (2.1.20)
0<1+Y t//(yj —xb(h), X' X(h) e, )X'J-X(h)_lei i=l,p

jeh

If the distribution of Y is continuous, then the probability of y; —x ;b(h) =0 is zero, for any

j ¢ h. This means that the errors of the observations not indexed by the elements of /4 could

not be zero. Consequently, the first argument of each of w( Y, —X'jb(h),—x'jX(h)_lel-) and
!//( y; =X;b(h), x’jX(h)_lel-) could not be zero and both of them are reduced to the simpler

form sgn(yj—x'jb(h)), for j¢h. Then, combining 2p inequalities in (2.1.20), the

optimality condition at b(%) becomes the following simpler inequality:

1, <(X(h)) " Y sgn(y, -xb(h))x; <1, (2.1.21)

Jjeh

The solution is unique if the inequalities are strict (See Bassett & Koenker, 1978).
2.2. SURE Models:

Consider a general system of m linear regression equations given by

Y, =XB, +e,, i=1,..M 2.2.1)
where, Y; is a T x1 vector of the dependent variables, e; is a T'x1 vector of random errors
with E(e;)=0, and X; is a Txk; matrix of observations on k; independent variables
including a constant term, and B, an k; x1 vector of coefficients to be estimated. The number
of equations in the system is M , where T is the number of observations per equation. k; is
the number of rows in the vector B, which is equal to the number of independent variables in

the i equation (including the intercept). Those M equations in the system can be written as

11



Y, = XB, +e¢

and then they can be combined into a comprehensive model written as

Y, X, 0 0 B e
Y, 0 X, 0 B, )
= . _+_

Yy 0 0 - Xy )\By €y

This model can be rewritten compactly as
Y=XB+e (2.2.3)

where, Y and e are of dimension 7M x1, X is of dimension TM x k, and finally B is of

M
the dimension &k x1, with k = Zki .
i=1

Assumptions:

At this stage we have to make the following assumptions:

a) X, is fixed with rank %;.

b) thFXz"Xi =Q,; 1s non-singular with finite and fixed elements, i.e., invertible.

¢) In addition, we assume that plim%XgX ; =Qy; also has finite and fixed elements.

d E (eie;- ) = 0,1y, where o; is the covariance between the i"™ and the /" equations.

e) E(e)=0,and
) E (ee ) =¥ =X®I;, where X = [al-j }MXM is a positive definite matrix and ® is

the Kronecker product. Thus, the errors in each equation are assumed to be
homoscedastic and non-autocorrelated, but that there exists contemporaneous

correlation between corresponding errors in different equations.
12



The OLS estimator of B is

Bos = (X'X) ' XY (2.2.4)

with the covariance matrix

var(Boys ) = (X'X) " X' PX(X'X) . (2.2.5)

Also, the Generalized Least Squares (GLS) estimator of B is given by:

By :(X'():‘1 ®IT)X)_1 X (o1 )Y (2.2.6)

with the covariance matrix
R -1
var (B ) = (X'(Z_l ®IT)X) . (2.2.7)

Generally, X is not an observable matrix and must be estimated from a sample of T
observations from each equation. The estimated M x M matrix is denoted by S, and replaces
Y in (2.2.6) and in all other places where X is used. The “feasible generalized least squares”

(FGLS) estimator of B in (2.2.3), is computed as below.
. -1
B, :(X’(S_l ®IT)X) X(s"e1, )y (2.2.8)

The components of the matrix S = [ } are estimated, as follows. First, we calculate

Sij

ﬁi =Y, - X (X;Xz )_1 X;Y;

:(IT -X; (XX, )_1 Xi)Yi =PY;. (2.2.9)

Then, the error vectors u; obtained from the OLS estimates of separate equations and the

matrices P;, defined in (2.2.9), are used to get an unbiased estimation of s;;, as follows:

jja
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G, forij=1,...M (2.2.10)

— g
Sy =——F——~u;,

v tmce(Pin).

2.3. Seemingly Unrelated Median Regression Equations (SUMRE) Models:

When the covariance matrix of the error terms of the regression model is not a scalar

covariance matrix of the form o1 , the OLS estimator of the parameter B is still unbiased,

but there is no guarantee that it is the best linear unbiased estimate (BLUE). In this case, when

the covariance matrix of error terms is a positive definite matrix X # 0'21, Aitken’s
generalized least squares method is preferable (See Aitken, 1934). The idea behind the
Aitken’s generalized least squares method is described below. With the lack of scalar
covariance matrix of a regression model, using a proper transformation, we can obtain a new
model with a scalar covariance matrix of error terms. Let G be an nxn full rank non-

stochastic matrix, and then define the following new model;

Y =GY

X" =GX , still is a non-stochastic matrix,

*

e =Ge,
Y =Xp+e (2.3.1)
Var(e*) =GIG' =o’l1, (G must suitably be chosen for this restriction).

The matrix oX /2 isa good candidate for G, by which the new estimation of  becomes
-1
_ *\ o ' _ 1~ =1 1o _ ry—1 -1 ry—1
bG—((X)Xj (X") y=(x¢'6x) ' xGGeY=(xx'X) Xx'y  (232)

The estimation is the same whatever value for o is assumed. Therefore, for simplicity and

1/2

convenience we let o =1, and consequently, G =X '“. The new estimator bg 1is called

the generalised least squares estimator, denoted as ﬁGLS'

14



The transformation (2.3.1) is in fact a multivariate standardization of the variables Y and X,
and the GLS method is then a simple application of the OLS method on those standardized
variables. In this case, the original squared errors, which are determined in terms of squared
Euclidian distances, are replaced by generalized squared errors, which are defined in terms of
Mahalanobis distances. In 1962, Zellner used the notion of generalized least squares method,
which at the time was proposed by Aitken for regression methods with one independent

variable Y, through a smart change in the form of the design matrix of the data.

In our method, we use the same Zellner’s design matrix and use the transformation (2.3.1) but
instead of using the OLS method, which gives Aitken’s GLS estimates, we use median
regression. The difference is in the use of the norms used for calculating the errors. In the
OLS method, the 2-norm (squared Euclidian distance) is used to calculate the errors and after
transformation the distances are transformed to Mahalanobis distances, whereas in our
method, the 1-norm (taxicab or city-block) distance is used to calculate the errors and after the
transformation the distances are transformed to a new form of distance. The new method
might be called the Generalized Least Absolute Deviations (GLAD) method. This enables us
to estimate all the parameters of a system of seemingly unrelated median regression

equations, where the correlations between the equations are also taken into account.

The relationship between the SURE method and the OLS method in some aspects is reflected
in the relationship between the SURE method and ordinary median regression, and that is due
to the structure of the design matrix of SURE models. For instance, if we use the OLS method
to estimate the parameters of a SURE model, it results in separate OLS parameter estimations
of SURE equations. The same argument holds for applying ordinary median regression on a
SURE model. In this case, median regression estimation of the SURE models is the same as
applying the median regression on each equation of the SURE model separately, as shown in

Theorem 2.1, below.

Theorem 2.1: The median regression estimation of the SURE model in (2.2.3) takes the form
B=[6i By ... Bl

where ﬁi is the estimation of the median regression model, Y; = X;B, +e;, for i=1,...,M .

15



Proof: Any solution to the median regression estimation of parameters must satisfy the

optimality condition (see Bassett & Koenker, 1978)

™ )
- Zl//(y,- -x; B, —XZ-W) X;iw 20,
i=1

. . . !/ Jal i
in all directions w € R* , where, w = (Wi, Wh,...,w), ), and B=(b],b),....b}, ).

Let w= (0’,0’,...,w'j, e 0’) , for j=1,...,M , the optimality condition becomes

T
_ Z‘{I//(yjl.—x’jibj,—x'jl-wj)x'jiijO. (2.3.3)
1=

Therefore, according to the optimality condition (2.1.18) of the median regression estimation

of parameters for the jth regression equation and the inequality (2.3.3), b; must be a solution

to the jth equation. This means ﬁ j =b;, when ﬁ ; 1s unique. l

According to this theorem, applying ordinary median regression on SURE models gives the
notion of applying OLS instead of GLS on SURE models, since also the OLS estimation of
parameters of the SURE model collapses to OLS estimation of separate equations. This means
that applying ordinary median regression on SURE models abandons the information
imbedded in the correlation matrix of cross equations errors. Our goal is to search for a
method in which the median regression is applicable on SURE models and at the same time

the information imbedded in the correlation matrix of cross equations errors is maintained.

In this paper we use the same notion of Aitken’s GLS method to deal with the correlations
between the equations of the SURE models, but this time for median regression, i.e., we use
generalized least absolute deviation (GLAD) method. Then, the same transformation (2.3.1),

which is used for GLS parameter estimation of SURE models in (2.2.3), is used, as follows.

16



Y =12y -z 2®I1,)Y

X =y 12x = xeI1,)X

e =¥ %= (2_1/2 ®1Ir)e,

Y =XB+e"

var(e” ) =¥ 2w 2 — (1, @17 ) = 1, (2.3.4)

Here, just like the objective function (2.1.13), we want to find a minimizer ﬁ that minimizes

the new objective function as shown below.

™ * *
minX. [y —x; B|- (2.3.5)
BeRF i=1
Using the linear programming reformulation of the problem as
min {I’TMu+1'TMV | X*B+u+V=y*}, (2.3.6)

(B,u,v)eR¥ xR™ xR™

M
gives the solution, where & = Zki ,and k; is the dimension of X, for i =1,...,M .
i=1

The objective function could be simplified as follows.

M

M T .
=1

(B.Byse.Bay )ERM xRK2 5 xRKMi=1 j=1|m
where k; is the dimension of X, for i =1,...,M , and y™ is the im™ element of the matrix

22 fori,m=1,..M.

Bassett and Koenker (1978) have shown that the single equation median estimators
. . o . X)X
asymptotically follow a multivariate normal distribution. Also, in our model ————
defined in (2.3.4) is a positive definite matrix, and the distribution of e is continuous. This
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means that the required assumptions mentioned in Bassett and Koenker (1978) are fulfilled,

and hence the SUMRE estimators are also asymptotically normally distributed.

Theorem 2.2: With finite variances of equation errors, the SUMRE method estimation in
(2.3.7) tends to the median regression estimations of separate equations in

(2.2.3), as the correlations between the equations tend to zero.
Proof: When the correlations between the equations tend to zero, the limits of yik for i#k
tend to zero, as well. In this case, concerning the objective function (2.3.7) and the fact that

7" >0, we have

M T|Mo
. . 1 !
lim min > 22 " (v X B )
7 i;t—;fo (By.Bs....Bas )ERM xRR2 x  xRFM i=1j=1]k=1
M T|Mo
N . 1
= min lim | 333 7" (v~ B )
(B.Bas- . Bas )ERF XRR2 x  xRFM ¥ .;]:0 i=1j=1k=1
l
M( T
. 11 ’
= min Z Y Z J’y’_xijBi
BBy By )ERF XRR2Z x  xREM =1\ j=1
M T
. 11 !
=> min 7Y vy = xi B
i=1\ (By.By.....By )ERM xRF2 5. xRFM j=1
M T
=y min > |y - xj B |- (2.3.8)
i=L \ (By.Bas-- Bar )RR 2RIV =

This means that the objective function of SUMRE model is equivalent to the summation of
objective functions of median regressions for separate equations. Mathematically, complete

equivalence holds when the correlations between the equations are exactly zero. .

The above theorem indicates that even if there is no statistically significant correlation
between the equations, using SUMRE method instead of SURE method will not damage the

estimation of parameters.
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We know that GLS estimation of SURE models will collapse to OLS estimations of separate
regression equations, when X; of all equations are identical, whereas this is not the case with
the estimation of SUMRE models. This could be verified from the objective function (2.3.7).
In other words, having the same variables X in common between all equations does not
cause the collapse of SUMRE estimations to the estimations of separate median regression
equations. An obvious reason of that is due to the problematic estimation of multivariate

median regression, since having X; variables identical in all equations changes the SURE

model to an ordinary multivariate regression model.

3. Monte Carlo Design and Experiment

In the following two subsections, we discuss the way we designed our Monte Carlo
experiment and the idea behind it. The idea behind the design is due to some criteria we have
used to assess the efficiency of our method and the factors that, intuitively and based on the

theory, may change the efficiency.

3.1. Criteria for performance evaluation

In a Monte Carlo study, set up to look at the good properties of the estimators for the purpose
of comparison between them, we calculate the mean squared error (MSE) of the estimators
through generalized sample variance, total sample variance and squared bias of the
estimators. Those calculations are done by simply calculating the estimators in repeated
samples under fixed combinations of conditions (factors). More precisely, the mean vectors
and the covariance matrices of the parameter estimates are estimated from 2000 replications
of the Monte Carlo experiment, for each combination of imposed factors. The idea behind

choosing these statistics arises from the following argument.
For a single parameter &, the efficiency of an estimator 6 is defined as,

Eff (6) =1/ MSE(6), (3.1.1)
where,

MSE(0) = E(6 - 9)2 - £(6- E(é?))2 +E(E@)- 9)2 = var(6)+bias*(8).  (3.1.2)
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In our simulation, we look at the efficiency of the estimators from two different points of

view. First, if we take the multivariate MSE, we need to estimate the total sample variance

and squared bias of 0, as shown below.
MSE(®) = E(0-0) (0-0)
= £(0-£(0)) (0~ £(0))+ E(E©0)-0) (£G)-0)
_ trace(E(é ~E0))(0-E£0)) ] +(E@0)-0) (E©)-0)
= trace(cov(®)) + (bias(é))' (bias(®)) (3.1.3)
Second, for a multidimensional parameter ., if we take the ellipsoid of estimators @ , which

is centred at 0, the efficiency is considered as the inverse of the volume of that ellipsoid. In

this case, we define a matrix of mean squared error, as follows.
MSE(®)=E(6-0)(6-0)
= £(0-E(6))(6- E(é))' +E(E6)-0)(E@)- e)'

- cov(é) +(E(é) —e)(E(é) —e) (3.1.4)

As the squared volume of ellipsoid of estimators centred at @ is proportional to the

determinant of MSE (6) , we will have
det( MSE(®)) < det(cov(@)) + det [(E(é) -0)(£(6)-0) j

det(MSE(é)) < det(cov(é)), (3.1.5)
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since the second matrix on the right hand side is not of full rank but of rank one. Thus, a

reduction in the determinant of the covariance matrix (generalized variance) of 0 increases its

efficiency.

Among two estimators, the one with smaller MSE (defined in 3.1.3 but not in 3.1.4) is usually
considered to be more efficient than the other. To compare the efficiency of an estimator with

the efficiency of another estimator, we usually use the relative efficiency, as shown below.

efficiency of éz _ MSE (él)
efficiency of él MSE (éz) .

(3.1.6)

relative efficiency of éz to él =

We use the same formula to compute the relative efficiency of each of the SURE GLS
estimators and the median regression estimators of single equations to the efficiency of
SUMRE estimators. A value greater than 1 means relative inefficiency of SUMRE estimators
to the estimators of one of the two other methods, whereas a value less than 1 is an indicator

of relative efficiency of SUMRE estimators.

All mathematical expectations are computed based on the empirical distribution function, i.e.
the method of moments for estimating, due to the fact that the number of repeated runs of the
Monte Carlo experiment was relatively large (2000 replications). Also, asymptotically normal

distribution could be used for any statistical inference about the estimators.

3.2. Factors that vary in the experiment

A number of factors can affect estimation properties of the SUMRE method. These are: the
number of equations (M ), the sample size (7), the skewness of the distribution of the errors
from each equation, and the correlations between errors from different equations. In the rest

of this section, we will explain these factors, in some more detail.
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The Monte Carlo experiment was performed by generating the data as follows:

X, = [1T Xf}mi : (3.2.1)

Where X; is a Tx(k —1) matrix, whose rows are vectors with the multivariate normal

distribution N, _, (p,.,o,%, I, ) 8

Y;(2) = XiB;(7) +¢;, (3.2.2)
B@=|1 B®]. (3.2.3)
B; (r) = a(z,7,)B;. (3.2.4)

for a constant vector B;, and a(z,y;) an exponential function of skewness level y; and the

quantiles 7, for 0<7z <1, and g, ~ Ny (0,0'1-2[T), fori=1,2,....M.

Our primary interest lies in the analysis of systemwise estimation, and thus the number of
equations to be estimated is of central importance. As the number of equations grows the
computation time becomes longer, and we took a system with five equations as our largest
model. This represents a fairly medium-sized model of the type that is used in, for example,
agriculture, economics or labour markets, while a three-equation system is a typical small
model. Moreover, different levels of strength of correlations between these equations have

been imposed.

To get the desired strength of correlations we impose a monotonically decreasing functional

relationship between o and the correlation coefficient as follows:

ox, =8(p). (3.2.5)

Here, we suppose that the correlation coefficients are almost the same (which are supposed to

be p) between all the equations. The correlation coefficient is Pearson's product-moment

coefficient of sample correlation, computed as follows.
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Using different functions g;; () instead of g(p), gives different correlation coefficients

between pairs of equations. For simplicity, we took almost the same level of correlation

between all the equations, as we mentioned just above.

When generating the data, we also imposed different distributional properties in terms of the
degrees of skewness of the errors. This goal was achieved by multiplying the vector B; by an
exponential function of both the level of skewness y;, and the quantiles 7 € (0,1), during the

processes of generating the data.

The skewness is computed according to the following formula.

i(%‘j _)_’1)3

T~NT -1 =1

T-2 (7 Y2
[Z(yl-j—?,-) }

J=1

v = izl M. (3.2.7)

Using proper coefficients in the functions g(p) and a(z,y;) it is possible to get a data set

with desired level of correlations between the equations and level of skewness of the errors,
respectively. However, because of the interaction between these two functions, the data set
probably would not have the required properties. Therefore, we regularly checked the data set,
through computing the coefficients of correlations between the equations and the coefficients
of skewness of errors using the formulas (3.2.6) and (3.2.7), respectively, and we then
removed those data sets that violated the desired properties. Thus, what were important for us
in this study were not the exact well-known probability distributions of errors, but the desired
properties of the distributions, represented in level of skewness of the distributions and level

of correlations between the distributions.
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Another prime factor that affects the performance of the SUMRE method is the number of
observations. We have investigated sample sizes of 50, 250 and 1000 observations that will
cover small, medium and large samples. Also, for each replication of the experiment with the
desired combination of factors we generated a set of data, estimated the model using that data
set, and computed the generalized sample variance, total sample variance, squared bias and

the mean squared errors of the estimators.

To make a comparison between the estimators of the SUMRE method and of each of the
ordinary SURE method and separate ordinary median regressions of equations, we performed
conventional median regression on each equation and the ordinary SURE method on all
equations together. Once again, we computed the generalized sample variance, total sample
variance, squared bias and the MSE of the estimators obtained in each of these two methods.
Then, relative efficiencies of SURE method and the method of separate median regression
equations to the efficiency of SUMRE method were computed through the ratios of the

generalized sample variance, total sample variance and MSE of their estimators.

The factors that vary for different models are presented in Table 3.2.1, and the results of the
simulation, for systems of 3 and 5 equations, are summarized in Tables 1 to Table 12 in the

appendix. All the calculations were performed using the GAUSS, version 8.0.6 program.

Table 3.2.1 Values of Factors that vary for Different Models

Factor Syr{lbo Design
No. of Equations in the Model M 3,5
No. of Observations in the Simulated Sample T 50, 250, 1000
Low (0.0 - 0.2), Medium (0.4 — 0.6)
Level of Correlations between Equations P
High (over 0.8)
Low (0.0 - 0.5), Medium (1.5 —2.0)
Level of Skewness v
High (over 3.0)
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4. Results

The results of the simulation, represented in squared bias, MSE and each of the determinant
ratio and the trace ratio of the covariance matrix of SUMRE estimators to those of each of
ordinary SURE GLS estimators and the estimators of the separate median regressions of

single equations, are presented in Table 1 to Table 12 in the appendix.

One can look at the results of the simulation from different perspectives, in order to draw
comparisons between efficiencies of the SUMRE method and the two other methods
mentioned just before. The efficiencies of any two methods (SUMRE with SURE or SUMRE
with separate median regressions) could be compared at the presence of a specific level of
skewness, level of correlation(s), number of equations and sample size, and/or any
combination of these factors. At first glance, one may think that the changes in ratios are
regular and parallel to the changes in these factors, but by delving into the columns of the
tables, it would be discovered that the changes could be interpreted differently, when the

results are looked at from different perspectives.

To reduce the terminology, we use the abbreviations L, M, H, S and C to stand for Low,
Medium, High, Skewness and Correlation, respectively. Then, for instance, MSHC stands for
a model with medium level of skewness of all equations errors and high level of correlations
of cross equations errors. Or, for instance, LC stands for low correlations between errors from

different equations, and so on.

Another attempt to simplify the terminology is using the term determinant ratio to mean the
ratio of the determinant of the covariance matrix of SUMRE estimators to the determinant of
the covariance matrix of SURE GLS estimators or to that of separate median regressions of
single equations. Also, trace ratio, by analogy, is the ratio of the traces of the corresponding
covariance matrices. Each of MSE ratio and squared bias ratio is meant in a way analogous to

that in which trace ratio and determinant ratio are labelled.

Finally, to further simplify the terminology, we use the term level of skewness to mean the
level of skewness of errors from each equation, and by level of correlations the level of
correlations between cross equations errors. Also, the method of separate median regressions

is used as the shorthand for the method in which we deal with each of the equations of SURE
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model separately and apply conventional median regressions on single equations. And, by

SURE estimators we mean feasible SURE GLS estimators.

4.1 Determinant Ratio Comparison

The changes in determinant ratio do not follow the same pattern when we compare the
SUMRE method to the SURE method and when it is to be compared to the method of
separate median regressions. The difference is due to the fact that strong correlations between
cross equations errors are beneficial to the SURE method and detrimental to separate median
regressions of single equations whereas the converse is true for the high levels of skewness.
These differences are explained in the following two subsections. In the entire subsection 4.1,

we use Table 1 and Table 2, to make comparisons.

4.1.1 SUMRE versus SURE GLS

From the tables, assuming the low skewness as fixed, by which the cases LSLC, LSMC and
LSHC are included, the determinant ratio (of SUMRE to SURE), without exception, increases
as the level of correlations increases. This ratio, which is, in a sense, inefficiency of the
SUMRE method related to the SURE method, increases for increasing number of equations,

as well.

Surprisingly, no asymptote of the determinant ratio could be revealed from the simulation
tables for the case of LS models. In other words, in the case of the LS models the sample size
even asymptotically does not have any effect on the gap between SUMRE method and SURE
method. However, the determinant ratios tend to zero asymptotically, in the presence of a
high level of skewness (non-LS cases), no matter what the level of correlations is. The more
equations in the model and the higher the level of skewness, the more rapid the reduction in

the determinant ratios occurs, for non-LS cases.

For fixed levels of correlation, the gap between SUMRE and SURE methods reduces rapidly
as the level of skewness increases. The reduction of this gap continues in a way that after
relatively small rises in the level of skewness, SUMRE method estimators become more
efficient than those of SURE method, based on the value of the determinant ratio which

becomes less than 1, and further on very close to zero.
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As we mentioned above, for LS models, the determinant ratio becomes larger and larger as
the model moves from the case LSLC towards LSMC and LSHC cases. In other words, with a
fixed low level of skewness, the determinant ratio rises with incremental levels of correlation.
Generalising this notion for all levels of skewness, may lead to getting the wrong idea. As it’s
obvious from the tables, in the presence of a level of skewness, the determinant ratio is the
maximum at medium levels of correlation. By looking at the tables in more detail, we observe
that with a medium level of skewness and a medium level of correlation, the SURE method is
more efficient than the SUMRE method, whereas in all other non-LS models, the SUMRE

method 1s more efficient.

4.1.2 SUMRE versus Separate Median Regressions

As Theorem 2.2 (on page 15) indicates, for very low correlations between errors from
different equations, the SUMRE method almost collapses into separate median regression
models of single equations. The collapse is complete for mathematically zero correlations
between cross equations errors. Far from mathematical models, statistical models or simulated
models do not yield exact zero correlations between cross equations errors. However,
statistical models or simulated models with very low levels of correlations could
asymptotically resemble mathematical models with zero correlations between cross equations
errors. This resemblance is very sensitive to the level of skewness. The less the level of

skewness, the stronger the resemblance is.

Overall, for low levels of correlation, the gap between the SUMRE method and the method of
separate median regressions is not very large. This gap asymptotically tends to zero, looking
at the value of determinant ratio which increases to 1. The rise of the value of the determinant
ratio becomes slower as the number of equations included in the model increases. This means
that in spite of the sensitivity of asymptotically resembling a SURE model with zero
correlations to high levels of skewness, the sensitivity increases even more as the number of

equations included in the model increases.

What is expected intuitively and could be seen from the tables is the increasing relative
efficiency of the SUMRE method compared to the method of separate median regressions,
when the level of correlations increases. In the presence of correlations but no levels of
skewness, no asymptote of the determinant ratio could be guessed at. This means that the
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relative efficiency of the SUMRE method compared to the method of separate median
regressions, which is in order in the presence of correlations and the lack of skewness,
remains fixed and free from the effect of the sample size, no matter what the level of
skewness is. However, the determinant ratio asymptotically tends to zero in the presence of

correlations and high levels of skewness.

4.1.2 SURE versus Separate Median Regressions

It is not the aim of this paper to compare the SURE method with the method of separate
median regression equations, but we do want to take note of something here. Of the matching
determinant ratios in Table 1 and Table 2, and associated with each of the two methods of
SURE and separate median regressions, the greater ratio means its associated method is more
efficient. With lower levels of skewness and higher levels of correlations, for instance MSMC,
MSHC and LS models, the determinant ratios corresponding to the SURE method are greater
than their matching determinant ratios corresponding to the method of separate median
regressions, which again means the SURE method is more efficient. The converse is true with

higher levels of skewness and lower levels of correlations, e.g., all HS models.

4.2 Trace Ratio Comparison

The idea behind selecting trace or determinant of the covariance matrix of parameters for
checking the efficiency of a vector parameter estimator arises from two different viewpoints
of looking at the MSE of a vector parameter, as described in subsection 3.1. With the trace of
covariance matrix of the parameters, we maintain the focus on only the variances of the
parameters, whereas with the determinant of the covariance matrix we change this focus and
look at the covariances between the parameters, as well. Therefore, it will not be surprising
that generally the trace ratio and determinant ratio are not equal or even not consistent, under
the same factors imposed on (or present in) a SURE model, when we compare the SUMRE
method to each of the SURE method and/or the method of separate median regression

equations.

However, we must notice that the trace ratio by itself (without adding it to the squared bias)
does not give a correct result when we check the efficiency of a vector parameter estimator.

Nevertheless, for the sake of simplicity someone may take only the trace to check the
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efficiency of a vector parameter estimator. In this paper, apart from trace and squared bias, we
will look at the MSE of the vector parameter estimators and MSE ratio, as well. In the
following two subsections we are going to explain the differences between the trace ratios of
the SUMRE method to each of the SURE method and the method of separate median
regressions. We devote the entire subsection 4.2 to a discussion of the results in Tables 3 and

Table 4.

4.2.1 SUMRE versus SURE GLS

Most of the facts discussed in the subsection (4.1.1) are consistent with the facts that could be
discovered from a comparison of the SUMRE method to the SURE method based on trace

ratio, except for some slight differences.

Keeping the level of correlations fixed, the trace ratio increases as the level of skewness
increases. With very low levels of skewness, the trace ratio is greater than 1, which is an
indicator of inefficiency of the SUMRE method relative to the SURE method. With the level
of skewness fixed (excluding the case MSMC, just like subsection 4.1.1), incremental levels
of correlations do not reduce the trace ratio a great deal but only slightly. A reason for the
peculiar behaviour of MSMC case may be the higher bias of SURE parameters in the presence
of a medium level of skewness and a medium level of correlations, since with small changes
in MSE, according to the equation (3.1.3), when the squared bias increases, the trace
decreases. Finally, neither the sample size nor the number of equations taken into the model

has any remarkable effect on the trace ratio.

4.2.2 SUMRE versus Separate Median Regressions

Most of the facts that could be discovered from Table 3 and Table 4, concerning the trace
ratio of the SUMRE method compared to the method of separate median regressions, are very

nearly consistent with the facts that are discussed in subsection 4.1.2.

With a fixed level of correlations, the trace ratio does not change remarkably with increases in
the level of skewness, whereas with a fixed level of skewness, a considerable reduction of
trace ratio occurs with each rise of the level of correlations. Trace ratio is neither remarkably

changed by the sample size nor by the number of equations of the model.
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4.3 Squared Bias Ratio Comparison

In the following two subsections, we are going to compare the efficiency of the SUMRE
method and the efficiencies of each of SURE method and the method of separate median
regressions, based on the squared bias ratio. As we mentioned before, according to the
equation (3.1.3) none of the squared bias ratio and trace ratio alone could yield a complete
and valid conclusion about the efficiency or even the relative efficiency of some estimators.
However, first, for the sake of simplicity, one may desire to compare the efficiency of some
parameters, based on the squared bias ratio. Second, one may not wish to look at the
efficiency or relative efficiency of some estimators, but merely wish to look at their bias. In
both of these cases, the squared bias ratio can give a representation of some properties of an
estimator. Throughout subsection 4.3, we use Table 5 and Table 6 to make comparisons. We
compare the SUMRE method separately with each of SURE method and the method of

separate median regression equations, in the following two subsections.

4.3.1 SUMRE versus SURE GLS

In all cases, except the LSHC case and asymptotically each of LSMC and MSHC cases, the
squared bias ratio is less than 1. Furthermore, this ratio is very small in HS cases. However,
in the absence of skewness the ratio becomes greater than 1, which is an indicator of a smaller
bias of SURE parameters in those cases (LS cases). In the presence of correlations, the ratio
grows in the magnitude asymptotically. This is because of the asymptotically unbiasedness of

the parameters of the SUMRE method.

Another fact concerning the squared bias ratio of the SUMRE method to the SURE method is
that keeping whatever level of correlations as fixed, the ratio increases with any increase in
the level of skewness, and taking whatever level of skewness as fixed, the ratio decreases with

almost any rise in the level of correlation.

4.3.2 SUMRE versus Separate Median Regressions

In the case LSLC, the squared bias of separate median regressions estimators is less than the
squared bias of SUMRE estimators. Moreover, even in this case LSLC, the two squared biases
are asymptotically equal, since the ratio reduces to tend to 1 asymptotically. This is due to the
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fact that estimators of both methods are asymptotically unbiased. Furthermore, in all non-LC
cases, the ratio is less than 1. Finally, it is worth noticing that there seems to be the effect of

the interaction between the skewness and the correlations on the squared bias ratio.

4.4 MSE Ratio Comparison

The MSE ratio is computed using equation (3.1.6), and this is true only for the MSEs defined
in equation (3.1.3). For MSEs defined in equation (3.1.4), using the inequality (3.1.5), the
MSE ratio is replaced by the determinant ratio. Therefore, depending on the squared bias ratio
whether it is small or large, the trend of changes in MSE ratio is somehow consistent and
parallel to the trend of changes in trace ratio, for each pair of methods—SUMRE to SURE, or
SUMRE to the method of separate median regressions. In the following two subsections we
shed light on those changes, in more detail. Throughout subsection 4.4, we use only the

results in Table 7 and Table 8.

4.4.1 SUMRE versus SURE GLS

With the exception of LS cases, the MSE ratio is less than 1 in all the cases, which indicates
the relative efficiency of SUMRE estimators to the estimators of the SURE method. Taking
each level of correlation as fixed, the ratio decreases as the level of skewness increases. If we
interchange these two factors, i.e., fix the level of skewness and increase the level of
correlations, the ratio seems to be odd in MSMC case, due to a decrease in the squared bias in
that case. Also, the gap between SUMRE and SURE methods is not reduced asymptotically.

Overall, the results in MSE ratio are almost consistent with the results in trace ratio.

4.4.2 SUMRE versus Separate Median Regressions

In the presence of correlations, the relative efficiency of SUMRE estimators over the
estimators of separate median regressions is improved, according to the value of the MSE
ratio, which is less than 1 in most of non-LC cases. However, a very high level of skewness
disturbs the delicate balance between the levels of skewness and correlations in HSLC case. It
is worth noticing that the results based on the MSE ratio are almost consistent with the results
based on the trace ratio. Finally, the MSE ratio is not asymptotically changed in a
considerable amount.
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4.5. Squared Bias Changes

In this section, we are more interested in focusing on each method by itself—and we are not
going to compare any methods with each other. Because of that, the results in Table 9 and
Table 10, that are the only results used in this subsection, are not ratios (scale free) but the
squared bias of each method (scale squared). As we mentioned before, the results of squared
bias are more meaningful for the efficiency of some estimators if the trace of the covariance
matrix of the estimators is also taken into account. However, by looking at the biasness of the
estimators one can get a useful idea about the affect of any combination of factors present in

the model on the estimations.

For SURE estimators, we realize that, without exception, the squared bias rises at each level
of correlation, when the level of skewness increases. The squared bias reduces as the sample
size increases. An interesting fact is that in MS cases, the squared bias of SURE estimators
rises up as the level of correlations rises. For other cases, the changes are not regular,

especially in MC cases.

Concerning estimators of separate median regressions, the squared bias increases with each
rise in the level of skewness, at all levels of correlations, and the squared bias increases with
each rise in the level of correlations, at all levels of skewness. In other words, the changes in
squared bias are parallel to the changes in each of the level of skewness and the level of

correlations. However, the changes are reduced as the sample size increases.

The changes in squared bias of SUMRE estimators are not exactly parallel with the changes
in squared bias of the two other methods. But, some similarities are present in the changes
occurring to the squared bias of all the three methods. One such is that for all of the three
methods, at a fixed level of correlation, the squared bias increases as the level of skewness

increases. The other one is that the squared bias decreases as the sample size increases.
The changes in squared bias for all three methods are almost parallel, except for the case of

LSMC, where the changes in squared bias of SUMRE estimators and SURE estimators are not

as regular as the change of squared bias of the estimators of separate median regressions is.
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4.6 MSE Changes

In this subsection, analogous to subsection 4.5, we look at the changes that occur in the MSE
(defined in 1.3.3) of the estimators of each of the methods SUMRE, SURE and separate
median regressions, using the results presented in Table 11 and Table 12 exclusively. When
we do not look at the MSE of estimators comparatively, the results based on the MSE defined
in (3.1.4) are almost consistent with those based on the MSE defined in (3.1.3). Using the
linear algebra theory, for the MSE defined in (3.1.4) we have

de 55(9) e £(0-0) -0 |

This means any reduction in MSE defined in (3.1.3) automatically implies a reduction in the

MSE defined in (3.1.4).

Concerning SURE estimators, for the non-MC cases the MSE increases as the level of
skewness increases. Among the MC cases, the MSE reduces for the MSMC case. Keeping the
level of skewness as fixed, the behaviour of MSE is odd for the MC cases.

MSE of the estimators of separate median regressions is reduced for the MS cases, whatever
the level of correlations is, but their MSE increases at fixed levels of skewness, as the level of

correlations increases, except for the case MSHC.

For SUMRE estimators, the MSE almost (but not quite) increases as the level of skewness
increases. Depending on the balance between the level of skewness and the level of
correlations the MSE increases with very high levels of skewness and very high levels of
correlation. What is common between the changes in MSE of the estimators of all the above

methods is that the MSE decreases as the sample size increases.
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5. Empirical Application

To assess the performance of our SUMRE method, we consider an empirical example and
compare its estimators with the feasible SURE GLS estimators. In our empirical example we
use some data taken from Multi-Generation Register at Statistics Sweden on three generations
of male immigrants from Finland to Sweden. The male immigrants have been selected based
on their grandfather’s (the father’s father) place of birth which in our case is Finland. A more
thorough explanation of the variables in the data set can be found in (Hammarstedt 2009;

Ekberg, Hammarstedt and Shukur, 2009).

The first group in the study contains all the male individuals who were born in Finland and
living in Sweden in the year 1960. This group constitutes the first-generation immigrants in
the study. For all individuals in the first generation we have data on yearly earnings and their
background variables like: age, educational attainment, civil status and region of residence in
Sweden in the year 1968. All the individuals in that group were between 25 and 64 years of

age at the observation time (in year 1968).

The second group in the study contains the second generation male immigrants, which are the
first group individual’s biological sons. Yearly earnings, as well as data on the background
variables like: age, educational attainment, civil status and region of residence in Sweden, are
observed for the second generation in the year 1980. All the individuals in that group were

between 25 and 64 years of age at the observation time (in year 1980).

Finally, the third group in the study contains the third-generation male immigrants, which are
the second group individual’s biological sons. For this group, we have the same data as we
mentioned above for the first and second generation of male immigrants, in the year 2003. All
the individuals in that group were between 25 and 64 years of age at the observation time (in

year 2003).

For each individual, earnings are defined as yearly taxable income from work which includes
income from wage-employment, self-employment, sickness pay and parents’ allowances. We
only include individuals who are in their working ages (i.e. 25-64 years of age) and,

furthermore, active on the labour market (i.e. have positive earnings) at the observation time.
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To link the generations together, we first identify individuals from the first generation, and
then their sons and the sons of their sons (their grandsons) that have earnings. Since there is
the possibility that individuals from the first generation might have more than one son having
earnings, and their sons, in turn, might have more than one son with earnings, information
about the first and second generations might appear more than one time in the data. More
precisely, since the correspondence between the first, the second and the third generation of
male immigrants having earnings is not a one-to-one correspondence (bijection), for the
second and especially the first generations we will have some replicated observations.
Otherwise, to get a one-to-one correspondence between the individuals of different
generations, we had to remove some individuals from the second and especially the third
generations, and among two or more sons having earning select only one of them to be taken
into the sample. In this case, we would have two problems. First, which son should be
selected? Second, the samples would be much smaller. This means that the removal of the
individuals would not be without bias and a vast body of information would be lost. Though
this is not happening very often elsewhere, we decided to include replicated individuals from
the first and the second generations in the data when they have more than one son having

earnings, in an attempt to construct balanced SURE models.

The system of three equations is a model like (2.2.1), as shown below:
Yi:XiBi"'sh i=123 (51)
where, what the symbols in the model stand for are described as follows. The vector Y; is a

T x1 vector of observations on the dependent variable representing the natural logarithm of

the yearly earnings of the individuals of the ith generation. The matrix X; is an 7' x k; matrix

of presumed non-stochastic explanatory variables representing each of intercept, age, square
of age, dummy variables for each of civil status, living in metropoles, living in northern part
of Sweden and an ordinal variable indicating the level of educational attainments. The vector

B; is a k; x1 vector of unknown parameters in the model. The vector ¢; is an 7 x1 vector of
random error term with E(g;)=0. The symbol 7 stands for the number of observations per
equation. Since the sample size is 647 then 7'=647. Finally, k; is the number of columns
(number of explanatory variables with intercept) of X;, for i =1,2,3. In this example, all the

equations have the same number of explanatory variables, i.e., k; =7, for i =1,2,3.
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If we expand upon each equation of the proposed model, we will have the following

regression equations.
In(earnings;) = B;, + By Age; + ﬂizAgeiz + B3 CivilStaus;
+ B4 LivelnMetropoles; + ;s LivelnNorth; + ;s Education; ,

for i=1,2,3 (5.2)

We used the bootstrap method, based on 2000 times of resampling of observations (and not of
estimated errors), to compute the standard error of the estimated parameters of SUMRE and
SURE methods. At each time of resampling, feasible SURE parameters are estimated, using
the equations (2.2.8), (2.2.9) and (2.2.10), and the parameters of the SUMRE method are

estimated using the equation (2.3.7).

In Table 5.1, we see that the correlation coefficients, which are computed using the formula
(3.2.6), are rather low, particularly between the first and the third generation immigrants and

between the second and the third generation immigrants.

Table 5.1. Correlation Coefficients of the Cross-Equation Errors

Generations First Generation | Second Generation | Third Generation
First Generation 1 0.1600 -0.0151
Second Generation 1 0.0660
Third Generation 1

Using the formula (3.2.7), Table 5.2 shows that the distribution of the logarithm of yearly
earnings for the first generation immigrants is not very skewed, whereas for the second and

the third generation immigrants it is highly skewed to the left.

Table 5.2. Coefficients of Skewness of Errors

Generation | First Generation | Second Generation | Third Generation
Skewness -0.6464 -2.9863 -2.4189

As it appears from Table 5.3, the differences between SURE and SUMRE estimates are not
considerable in the first equation, due to the reason of very low skewness of the errors in the
first equation (see Table 5.2), whereas the differences are remarkable in the second and third
equations for the opposite reason. A similar argument holds for the standard errors. But which

estimates are more efficient?
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Table 5.3. SURE & SUMRE Parameter Estimators and Standard Deviations of Estimators

Equation . Parameter Estimator | Standard Deviation

Variables
(of) SURE SUMRE SURE SUMRE

Age -0.0379 -0.0922 * 0.0391 0.0445

Age Squared 0.0004 0.0009 * 0.0004 0.0004

First Civil Status 03177 * 0.2420 * 0.0911 0.1071

Generation Living in Metropoles 0.1155 0.1463 * 0.0602 0.0611

Living in North -0.1873 * -0.1019 0.0624 0.0655

Education 0.1782 * 0.1808 * 0.0238 0.0241

Constant 4.8909 * 6.3040 * 0.9063 0.9516

Age 0.0848 0.0472 0.0448 0.0296

Age Squared -0.0010 -0.0005 0.0007 0.0004

Second Civil Status 0.0750 0.0659 * 0.0421 0.0221

Generation Living in Metropoles |  0.0358 0.0530 0.0435 0.0305

Living in North -0.0852 -0.0265 0.0562 0.0292

Education 0.0276 * 0.0321 * 0.0074 0.0062

Constant 4.5550 * 5.2396 * 0.7318 0.4899

Age 0.3495 * 0.1819 * 0.0931 0.0516

Age Squared -0.0046 * | -0.0024 * 0.0015 0.0008

Third Civil Status 0.2505 * 0.0835 * 0.0930 0.0408

Generation Living in Metropoles | 0.2634 * 0.1499 * 0.0806 0.0477

Living in North -0.2000 -0.1122 * 0.1106 0.0524

Education 0.0188 0.0380 * 0.0201 0.0114

Constant 0.8626 4.0287 * 1.5280 0.8886

(.)* means that the estimate is significant at 5% level.

experiment.
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explanation of the results from this empirical exercise might be necessary.

However, the SUMRE estimates are more efficient at the presence of skewness, due to the
fact that their standard errors are lower than the standard errors of their matching SURE

estimates. This argument is consistent with the results of the Monte Carlo simulation

As we previously mentioned, we are only interested in explaining the benefits that we gain
from using our SUMRE method, under specific conditions. However, if we delve into the
results that we have obtained, and thence look at the parameter estimator of SUMRE method
separately or compare them with the parameter estimators of SURE method, we can realize

more interesting benefits from using our SUMRE method. Therefore, giving a brief




Taking the theory of economics into account, we realize some odd results in the Table 5.3. In
a quadratic functional relationship between the natural logarithm of earnings and the age, a
negative coefficient for age squared and a positive coefficient for age are obtained, as it is the
case with the corresponding parameter estimates of the second and the third generations. The
opposite is obtained for the first generation, i.e., the relationship between the natural

logarithm of earnings and the age for the first generation is negative.

Figure 5.1 Quadratic fit of In(earnings) vs. Age
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Table 5.4. Summary Statistics of Age and Education
Case Generation’s Age Generation’s Education
Summaries | First | Second | Third | First | Second | Third
Mean 50.3 32.6 302 | 7.2 10.7 12.4
Median 51 31 29 7 11 12
Minimum 31 25 25 7 7 7
Maximum 64 47 47 12 18 18
Std. Deviation | 7.75 | 5.42 452 1 0.89 | 2.76 1.89

An obvious reason for that is the age interval taken into the sample for each group of
immigrants, as shown in Table 5.4 and Figure 5.1. Individuals of the first generation
immigrants are relatively much older (and also less educated) than the individuals of the
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second and third generations. Consequently, for the first generation immigrants the age was
not beneficial to their earnings while the opposite is true for the second and especially the
third generation immigrants, since most of the individuals of these two groups taken into the
sample are of an age less than 40. Therefore, the quadratic fit lines for each generation will be
different, especially for the third generation, which is a sharp quadratic line having a very low

intercept (see Table 5.4 and Figure 5.1).

If we look at the SUMRE results for the first generation male immigrants, we find that the
variable age has an unexpected negative sign for its estimated coefficient (although non
significant) while the age-square has a positive estimate for its coefficient. The variables civil
(married) and metro (big cities) have positive significant effects while northern has a negative
effect. The number of years of education (school) has also shown to have positive effect
(although non significant). Since the skewness is small in this equation, these results are fairly

similar to those of the SURE model.

Another fascinating result of applying the SUMRE method in this exercise is the significance
of almost all of SUMRE estimators while many of their corresponding SURE estimators are

not significant at the 5% level of significance, as indicated in Table 5.3.

On the other hand, since the skewnesses are higher in the equations of the second and the
third generations, we find that the results from the SUMRE differ from those of the SURE.
This implies that results from the SUMRE are more accurate and representative than those
from the SURE. The estimated parameters of the independent variables in these two equations

have the expected signs.

Another fact that could be abstracted from the results of Table 5.3 is the relative efficiency of
SUMRE estimators in the first and second generation equations, where the data of these two
generations are highly skewed. This could be evaluated through the smaller standard error of
the estimated parameters. But, on the other hand, for the first generation equation, the SURE
estimators are more efficient due to the very low level of skewness of the data in that group.
This agrees with the results that we obtained from the Monte Carlo simulation experiment,
which indicate that in the presence of skewness of the data, the SUMRE estimators are more

efficient than SURE estimators.
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6. Summary and Conclusions

In this paper, we generalize the median regression method and make it applicable to systems
of regression equations. Given the existence of proper systemwise medians of the errors from
different equations, we apply the weighted median regression with the weights obtained from
the covariance matrix of errors from different equations calculated by the ordinary SURE
method. The SURE method is considered to be one of the most successful and efficient
methods for estimating seemingly unrelated regressions with the assumption of symmetric
regression errors of each equation. The benefit of SURE models in our case is that the SURE
estimators utilise the information present in the correlations of the cross equations errors and
hence are more efficient than other estimation methods like the OLS method. The Seemingly
Unrelated Median Regression Equations (SUMRE) Models produce results that are more
robust than the usual SURE or single equations OLS estimation when the distributions of the
dependent variables are not symmetric. Moreover, the results are also more efficient than for
the cases of single equations median regressions whose cross equations errors are correlated.
More precisely, the aim of our SUMRE method is to produce a harmony of existing skewness
and correlations of errors in systems of regression equations. A theorem is derived and
indicates that even with the lack of statistically significant correlations between the equations,
using SUMRE method instead of SURE method will not damage the estimation of

parameters.

A Monte Carlo experiment with 2000 replications has been conducted to investigate the
properties of the SUMRE method in situations where the number of equations in the system,
number of observations, strength of the correlations of cross equations errors, and the
departure from the normality distribution of the errors, have been varied. The results have
shown that, when the cross equations correlations are medium or high and the level of
skewness of the errors of the equations are also medium or high, the SUMRE methods
produces estimators that are more efficient and less biased than the ordinary SURE GLS
estimators. Moreover, the results are also more efficient and less biased than in the cases

where OLS or single equation median regressions are applied.

Our results from the empirical application are in accordance with what we discovered from
the simulation study, with respect to the relative gain in efficiency of SUMRE estimators

compared to SURE estimators, in the presence of Skewness of error terms.
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Appendix

Table 1: Determinant Ratio (3 Equations)

Correlation
] Low Medium High
n
% Skewness Skewness Skewness
£
& Low Medium High Low Medium High Low Medium High
SURE GLS 5.09e+02 2.17e-15 6.54e-67 1.81e+03 2.31e-04 6.50e-31 1.88e+04 2.14e-14 6.50e-58
50 Separate
Median 8.01e-01 6.60e-01 1.53e-02 2.63e-03 1.88e-06 3.80e-06 2.94e-23 5.51e-35 1.57e-21
Regression
SURE GLS 4.53e+02 4.91e-21 7.68e-98 1.44e+03 1.02e-07 6.33e-42 1.42e+04 4.70e-19 5.75e-86
250 Separate
Median 8.77e-01 8.20e-01 2.76e-01 4.15e-03 1.26e-06 2.00e-05 1.63e-24 4.27e-35 5.21e-26
Regression
SURE GLS 4.27e+02 4.24e-22 1.63e-106 2.37e+03 2.60e-09 7.89¢e-45 1.25e+04 8.59¢-20 4.68e-91
1000 Separate
Median 8.35¢-01 8.94e-01 3.98e-01 5.72e-03 1.83e-06 6.44e-05 2.95e-24 2.70e-36 2.59¢e-27
Regression
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Table 2: Determinant Ratio (5 Equations)

Correlation
[}
-% Low Medium High
% Skewness Skewness Skewness
£
A Low Medium High Low Medium High Low Medium High
SURE GLS 5.06e+04 1.03e-22 7.90e-66 3.19¢+05 6.94e-10 1.74e-68 1.08e+06 2.44e-15 1.36e-94
50 Separate
Median 1.45¢+00 3.57e-01 4.66e-02 2.87e-10 8.88e-11 7.34e-12 5.09¢-34 5.36e-29 2.70e-30
Regression
SURE GLS 4.95e+04 2.07e-34 7.49¢-92 2.59¢e+05 4.19e-16 5.60e-93 7.23e+05 1.90e-23 4.24e-156
250 Separate
Median 1.47¢+00 4.12e-01 1.94e-01 3.08e-10 5.52e-10 4.35e-10 5.12¢-34 2.09¢-30 9.08e-40
Regression
SURE GLS 4.20e+04 8.07e-39 6.03e-99 2.62e+05 3.57e-19 1.09¢-99 7.17e+05 9.40e-26 5.57e-166
1000 Separate
Median 1.26e+00 3.93e-01 2.32¢-01 3.43e-10 2.72¢-09 2.64¢-09 8.68¢-34 7.50e-30 1.10e-39
Regression
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Table 3: Trace Ratio (3 Equations)

Correlation
é Low Medium High
% Skewness Skewness Skewness
=
3 Low Medium High Low Medium High Low Medium High
SURE GLS 1.54e+00 1.13e-01 5.24e-05 1.60e+00 5.55e-01 1.23e-02 1.62e+00 8.30e-02 1.68e-04
50 Separate
Median 1.00e+00 1.01e+00 8.34e-01 6.16e-01 5.78e-01 8.47e-01 2.27e-02 4.46e-03 6.52e-02
Regression
SURE GLS 1.51e+00 4.82e-02 3.24e-07 1.57e+00 2.84e-01 1.81e-03 1.34e+00 3.84e-02 1.70e-06
250 Separate
Median 1.03e+00 1.04e+00 1.05e+00 6.55e-01 7.36e-01 1.19¢+00 1.58e-02 3.99¢-03 2.60e-02
Regression
SURE GLS 1.44e+00 3.98e-02 7.28e-08 1.62e+00 2.19e-01 1.06e-03 1.38e+00 3.34e-02 6.84e-07
1000 Separate
Median 1.00e+00 1.04e+00 1.05e+00 6.71e-01 8.68e-01 1.39¢+00 1.48e-02 2.54¢-03 1.85e-02
Regression
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Table 4: Trace Ratio (5 Equations)

o Correlation
'% Low Medium High
Lé Skewness Skewness Skewness
% Low Medium High Low Medium High Low Medium High
SURE GLS 1.55e+00 1.37e-01 3.26e-03 1.58e+00 4.87¢-01 3.26e-03 1.51e+00 2.68e-01 1.88e-04
50 Separate
Median 1.02e+00 1.04¢+00 1.00e+00 3.77e-01 7.06e-01 8.63e-01 3.45e-02 1.03e-01 1.06e-01
Regression
SURE GLS 1.55e+00 4.30e-02 2.24e-04 1.58e+00 2.52e-01 2.84e-04 1.46e+00 1.45e-01 7.36e-07
250 Separate
Median 1.01e+00 1.07e+00 1.09e+00 3.88e-01 1.05e+00 1.40e+00 3.27e-02 1.02e-01 5.79¢-02
Regression
SURE GLS 1.52e+00 2.64e-02 1.02e-04 1.55e+00 1.86e-01 1.38e-04 1.48e+00 1.12e-01 2.78e-07
1000 Separate
Median 1.01e+00 1.07e+00 1.14e+00 3.97e-01 1.21e+00 1.62e+00 3.21e-02 1.15e-01 5.63e-02
Regression
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Table 5: Squared Bias Ratio (3 Equations)

Correlation
5]
= Low Medium High
= Skewness Skewness Skewness
g
% Low Medium High Low Medium High Low Medium High
SURE GLS 1.95¢-01 2.86e-02 4.68e-05 5.38e-01 9.53e-02 1.24e-02 6.41e+00 1.07e-01 5.07e-05
50 Separate
Median 4.07e-01 6.18e-01 1.69¢+00 1.18e-01 2.26e-01 1.33e+01 3.33e-02 9.28e-02 4.96e-02
Regression
SURE GLS 2.73e-02 1.02e-02 7.43e-07 1.16e+00 4.88e-02 2.30e-04 1.15e+00 1.10e+00 1.91e-05
250 Separate
Median 3.20e-01 2.17e-01 1.37e+00 6.71e-01 3.62e-02 5.07e-01 6.48e-02 7.35e-02 1.58e-02
Regression
SURE GLS 4.61e-02 2.64e-02 8.19e-08 1.06e+01 2.51e-01 1.02e-04 1.08e+00 1.83e+00 1.39¢-04
1000 Separate
Median 5.43e-01 3.24e-01 9.72e-01 2.19e-01 8.49¢-02 2.00e-01 4.92e-02 1.07e-01 3.47e-02
Regression
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Table 6: Squared Bias Ratio (5 Equations)

Correlation
R Low Medium High
(qn) Skewness Skewness Skewness
o
(% Low Medium High Low Medium High Low Medium High
SURE GLS 1.33e+00 3.81e-03 1.20e-04 3.16e-01 1.08e-02 4.09¢-03 7.01e-01 8.58e-03 6.51e-08
50 Separate
Median 8.89e-01 1.45e+00 5.47e+00 4.58e-01 4.28e-01 1.20e+01 4.04e-01 7.91e-02 | 4.31e-03
Regression
SURE GLS 1.72e+00 2.54e-04 8.79e-06 1.64e-01 1.97e-02 7.83e-06 6.74e-01 8.05e-03 1.32e-08
250 Separate
Median 1.42¢+00 5.48e-01 2.67e+00 2.15e-01 5.26e+00 3.66e+00 1.16e-01 5.02¢-02 | 2.30e-03
Regression
SURE GLS 1.06e+00 2.99¢-04 7.08e-07 2.56e-01 2.21e-02 1.43e-06 6.06e-01 1.02e-02 | 5.15e-09
1000 Separate
Median 9.29¢-01 1.05e+00 1.92e+00 8.91e-02 6.98¢+00 1.67¢+00 6.86¢-02 1.73e-01 6.24e-04
Regression
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Table 7: MSE Ratio (3 Equations)




Correlation

0]
'(',[:]‘) Low Medium High
é Skewness Skewness Skewness
A Low Medium High Low Medium High Low Medium High
SURE GLS 1.36e+00 7.55e-01 1.86e-04 1.61e+00 9.78e-01 3.08e-03 1.61e+00 5.82e-01 7.55e-04
50 Separate
Median 1.00e+00 1.02¢+00 1.10e+00 6.30e-01 6.87¢-01 8.68e-01 1.44e-01 2.04e-01 1.27e-01
Regression
SURE GLS 1.32¢+00 5.91e-01 3.02¢-06 1.62e+00 8.62¢-01 4.89¢-04 1.56e+00 5.53e-01 1.29¢-04
250 Separate
Median 1.01e+00 1.04e+00 1.05e+00 6.44e-01 6.74e-01 1.21e+00 1.25e-01 2.10e-01 1.66e-01
Regression
SURE GLS 1.21e+00 5.44e-01 1.05e-06 1.54e+00 8.44¢-01 3.01e-04 1.55e+00 6.25e-01 1.23e-04
1000 Separate
Median 1.01e+00 1.05e+00 1.08e+00 6.38e-01 5.24e-01 1.14e+00 1.14e-01 1.75e-01 1.44¢-01
Regression
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Table 8: MSE Ratio (5 Equations)

o Correlation
a Low Medium High
ié Skewness Skewness Skewness
A Low Medium High Low Medium High Low Medium High
SURE GLS 1.55e+00 1.19¢-01 2.74e-03 1.51e+00 3.86e-01 3.32e-03 1.35e¢+00 1.23e-01 3.51e-05
50 Separate
Median 1.02¢+00 1.04¢+00 1.01e+00 3.77e-01 7.03e-01 9.35e-01 3.82e-02 1.02e-01 1.03e-01
Regression
SURE GLS 1.55e+00 3.82e-02 1.91e-04 1.47¢+00 1.61e-01 2.01e-04 1.34e+00 8.74e-02 4.52¢-07
250 Separate
Median 1.01e+00 1.07e+00 1.09e+00 3.85e-01 1.09¢+00 1.41e+00 3.46e-02 9.81e-02 4.53e-02
Regression
SURE GLS 1.52¢+00 2.26e-02 8.17e-05 1.44¢+00 1.21e-01 8.08e-05 1.33e+00 6.69¢-02 2.29e-07
1000 Separate
Median 1.01e+00 1.07e+00 1.14e+00 3.77e-01 1.29¢+00 1.62e+00 3.35e-02 1.18e-01 4.14e-02
Regression
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Table 9: Squared Bias (3 Equations)

o Correlation
-(,5) Low Medium High
i; Skewness Skewness Skewness
g
> Low Medium High Low Medium High Low Medium High
SURE GLS 2.22e+01 2.66e+03 1.26e+10 7.20e+02 5.70e+03 1.10e+07 6.89e+01 5.73e+04 2.32¢+09
Separate
50 Median 1.06e+01 1.24e+02 3.47¢+05 3.28e+03 2.41e+03 1.02e+04 1.33e+04 6.60e+04 2.37e+06
Regression
SUMRE 4.34e+00 7.63e+01 5.89¢+05 3.87e+02 5.43e¢+02 1.36e+05 4.42e+02 6.12e+03 1.18e+05
SURE GLS 7.38e+01 4.80e+02 1.99¢+09 1.18e+02 1.58e+03 4.16e+06 3.59e+01 3.35e+03 1.75e+08
Separate
250 Median 6.29¢+00 2.26e+01 1.08e+03 2.04e+02 2.13e+03 1.89¢+03 6.38e+02 5.00e+04 2.12e+05
Regression
SUMRE 2.01e+00 4.90e+00 1.48e+03 1.37¢+02 7.70e+01 9.58e+02 4.13e+01 3.67e+03 3.34e+03
SURE GLS 8.85e+01 2.66e+02 1.83e+09 2.45e+00 6.88e+02 3.65e+06 1.72e+01 2.32¢+03 2.67¢+07
Separate
1000 Median 7.52e+00 2.17e+01 1.54e+02 1.19¢+02 2.04e+03 1.86e+03 3.77e+02 3.95e+04 1.07e+05
Regression
SUMRE 4.08e+00 7.03e+00 1.50e+02 2.61e+01 1.73e+02 3.71e+02 1.85e+01 4.23e+03 3.72e+03
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Table 10: Squared Bias (5 Equations)

0 Correlation
-(,5) Low Medium High
%_ Skewness Skewness Skewness
g
3 Low Medium High Low Medium High Low Medium High
SURE GLS 9.19¢-02 5.86e+05 3.92¢+08 7.39e+02 2.57et04 5.60e+07 4.95e+03 3.87e+05 1.20e+12
Separate
50 Median 1.38¢-01 1.54e+03 8.62e+03 5.10e+02 6.47e¢+02 1.90e+04 8.58e+03 4.19e+04 1.81e+07
Regression
SUMRE 1.23e-01 2.23e+03 4.72e+04 2.34e+02 2.77e+02 2.29e+05 3.47¢+03 3.32¢+03 7.82e+04
SURE GLS 6.75e-03 9.27e+04 8.14e+07 2.35e+02 1.39¢+04 6.65¢+07 6.99¢+02 4.50e+04 7.42¢+10
Separate
250 Median 8.21e-03 4.31e+01 2.68e+02 1.79e+02 5.21e+01 1.42e+02 4.07e+03 7.21e+03 4.26e+05
Regression
SUMRE 1.16e-02 2.36e+01 7.15e+02 3.85e+01 2.74e+02 5.21e+02 4.71e+02 3.62e+02 9.77e+02
SURE GLS 6.12¢-03 3.31e+04 3.04e+07 6.27e+01 3.88e+03 3.31e+07 1.92e+02 1.39¢e+04 7.70e+09
Separate
1000 Median 6.96e-03 9.42e+00 1.12e+01 1.81e+02 1.23e+01 2.84e+01 1.69¢+03 8.24e+02 6.36e+04
Regression
SUMRE 6.46e-03 9.90e+00 2.15e+01 1.61e+01 8.59e+01 4.73e+01 1.16e+02 1.42e+02 3.97e+01
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Table 11: MSE (3 Equations)

Correlation
0] . .
%/5; Low Medium High
% Skewness Skewness Skewness
=
3 Low Medium High Low Medium High Low Medium High
SURE GLS 1.76e+04 5.17e+04 1.68e+11 4.86e+05 5.50e+04 5.15e+08 2.09¢+05 4.32e+05 5.22e+09
Separate
50 Median 2.40e+04 3.84e+04 2.84e+07 1.24e+06 7.83e+04 1.83e+06 2.33e+06 1.23e+06 3.12e+07
Regression
SUMRE 2.41et04 3.90e+04 3.13e+07 7.81e+05 5.38e+04 1.59¢+06 3.36e+05 2.52e+05 3.94e+06
SURE GLS 3.31e+03 1.01e+04 3.26e+10 9.01e+04 1.09e+04 9.67e+07 3.72¢+04 7.89e+04 8.23e+08
Separate
250 Median 4.34e+03 5.78¢+03 9.42¢+04 2.27e+05 1.39¢+04 3.91et+04 4.64¢+05 2.08e+05 6.43e+05
Regression
SUMRE 4.37¢+03 5.99¢+03 9.86e+04 1.46e+05 9.38¢+03 4.73e+04 5.81e+04 4.37¢+04 1.06e+05
SURE GLS 8.69¢e+02 2.62¢+03 1.05e+10 2.31e+04 3.00e+03 2.96e+07 8.87e+03 2.20e+04 2.08¢+08
Separate
1000 Median 1.05¢+03 | 136¢+03 | 1.02¢+04 | 5.57¢+04 | 4.84¢+03 | 7.84¢+03 | 1.20e+05 | 7.84e+04 | 1.77¢+05
Regression
SUMRE 1.05¢+03 1.43e+03 1.10e+04 3.56e+04 2.53e+03 8.91e+03 1.37e+04 1.37¢+04 2.55e+04
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Table 12: MSE (5 Equations)

0 Correlation
12 Low Medium High
% Skewness Skewness Skewness
g
3 Low Medium High Low Medium High Low Medium High
SURE GLS 8.72e+01 4.33e+06 2.36e+09 1.50e+04 1.22e+05 8.34e+08 2.47e+04 6.91e+05 1.48¢e+12
Separate
50 Median 1.32e+02 4.96¢e+05 6.39¢+06 6.01e+04 6.70e+04 2.96e+06 8.75e+05 8.36e+05 5.04e+08
Regression
SUMRE 1.35e+02 5.16e+05 6.46e+06 2.27e+04 4.71e+04 2.77e+06 3.34e+04 8.50e+04 5.18e+07
SURE GLS 1.61e+01 8.23¢+05 5.32e+08 2.93¢+03 3.55¢+04 2.20e+08 4.50e+03 1.07e+05 1.89e+11
Separate
250 Median 2.47e+01 2.93e+04 9.30e+04 1.12e+04 5.23e+03 3.13e+04 1.74e+05 9.53e+04 1.88e+06
Regression
SUMRE 2.50e+01 3.14e+04 1.02e+05 4.31e+03 5.72e+03 4.42e+04 6.03e¢+03 9.35¢+03 8.54e+04
SURE GLS 3.99¢+00 2.26e+05 1.51e+08 7.39e+02 9.81e+03 7.93e+07 1.11e+03 3.13e+04 4.30e+10
Separate
1000 Median 6.02e+00 4.78e+03 1.08e+04 2.82e+03 9.20e+02 3.97e+03 4.41e+04 1.77e+04 2.38e+05
Regression
SUMRE 6.06e+00 5.10e+03 1.23e+04 1.06e+03 1.19¢+03 6.41e+03 1.47¢+03 2.09¢+03 9.86e+03
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