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Abstract 

 
In this paper we generalize the median regression method in order to make it applicable to 
systems of regression equations. Given the existence of proper systemwise medians of the 
errors from different equations, we apply the weighted median regression with the weights 
obtained from the covariance matrix of errors from different equations calculated by 
conventional SURE method. The Seemingly Unrelated Median Regression Equations 
(SUMRE) method produces results that are more robust than the usual SURE or single 
equations OLS estimations when the distributions of the dependent variables are not 
symmetric. Moreover, the estimations of the SUMRE method are also more efficient than 
those of the cases of single equation median regressions when the cross equations errors are 
correlated. More precisely, the aim of our SUMRE method is to produce a harmony of 
existing skewness and correlations of errors in systems of regression equations. A theorem is 
derived and indicates that even with the lack of statistically significant correlations between 
the equations, using the SMRE method instead of the SURE method will not damage the 
estimation of parameters. 
 
A Monte Carlo experiment was conducted to investigate the properties of the SUMRE 
method in situations where the number of equations in the system, number of observations, 
strength of the correlations of cross equations errors and the departure from the normality 
distribution of the errors were varied. The results show that, when the cross equations 
correlations are medium or high and the level of skewness of the errors of the equations are 
also medium or high, the SUMRE method produces estimators that are more efficient and less 
biased than the ordinary SURE GLS estimators. Moreover, the estimates of applying the 
SUMRE method are also more efficient and less biased than the estimates obtained when 
applying the OLS or single equation median regressions. In addition, our results from an 
empirical application are in accordance with what we discovered from the simulation study, 
with respect to the relative gain in efficiency of SUMRE estimators compared to SURE 
estimators, in the presence of Skewness of error terms. 
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1. Introduction 
 
Regression analysis is often used to explain the behaviour of an explained variable for fixed 

values of the explanatory variables. Traditionally, this kind of analysis is focused on the 

mean, i.e., by using a conditional mean function we try to summarise the relationship between 

the explained variable and the explanatory variables. The Ordinary Least Squares (OLS) 

method is a typical estimation method for this purpose. Intuitively, the OLS estimation 

method describes the relationship between these variables when the distribution of the 

dependent variable is symmetric. Otherwise, when this symmetry does not exist the mean will 

not be the most proper measure of central tendency for calculating the conditional function. In 

practical studies, there exist numerous cases where the data of interest, in one way or another, 

are not symmetric. The distributions of for example earning variables are often highly 

skewed. This, of course, may render inferences invalid when using standard estimation 

methodology such as OLS. In such cases, other measures of central tendency, like median, 

might be more appropriate for this purpose. 

 

The median regression is a statistical technique intended to estimate and draw inferences 

about conditional median functions. Just as the classical linear regression method based on 

minimising sums of squared errors enables one to estimate models for conditional mean 

functions, the median regression method offers a mechanism for estimating models for the 

conditional median function. Moreover, the median regression is less sensitive to outliers and 

departure from the normality assumption than the ordinary linear regression method is. 

 

Originally, median regression was suggested by Koenker and Bassett (1978) as a robust 

regression technique, so called L1 or Least Absolute Deviation (LAD) regression, as an 

alternative to the OLS for a case where the errors are not normally distributed. For these 

reasons, this method and other robust estimation methods have been used in many empirical 

works instead of the traditional OLS method. Practically, the median regression is more 

difficult to apply than the standard OLS method since it requires special algorithms that 

previously were not readily available in standard statistical software packages. However, 

recent versions of STATA do include routines for estimating the median regression. 

 

The median regression has been mainly applied strictly to single equation environments and 

disappointingly to multivariate regression (excluding SURE models). Many models are 
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expressed in terms of multivariate models (sometimes referred to as systems of equations), 

due to the fact that the different marginal models are connected to each other. Treating each 

equation separately, may lead to the loss of efficiency and to the reduction of the validity of 

the conclusions. In general, the use of median regression is quite uncommon in multivariate 

models, which may partly be due to the lack of availability of a standard methodology, or 

even a standard definition of multivariate median.  

 

The purpose of this study is to generalize the median regression and make it applicable to 

systems of regression equations. Given the existence of proper systemwise medians of the 

errors from different equations, we apply the weighted median regression with the weights 

obtained from the covariance matrix of cross equations errors calculated by the ordinary 

SURE method. The SURE method is considered as one of the most successful and efficient 

methods for estimating seemingly unrelated regressions with the assumption of symmetric 

regression errors. The resulting SURE model has stimulated countless theoretical and 

empirical results in econometrics and other areas, (see Zellner, 1962; Srivastava and Giles, 

1987; Chib and Greenberg, 1995). The benefit of SURE models in our case is that the SURE 

estimators utilise the information present in the correlations of the cross equations errors and 

hence are more efficient than other estimation methods such as the OLS method. 

 

The paper is arranged as follows. In Section 2, we discuss the methodology. First, we give a 

formal definition of median regression which is widely used in the literature, and discuss how 

its notion is connected with the OLS method. Next, we give a formal definition of the SURE 

model and its development from the OLS method, which was introduced by Zellner. Finally, 

we introduce a new method, which we call the SUMRE method, and discuss how it is 

connected with both the median regression and the SURE method. In Section 3, we present 

the design of our Monte Carlo experiment and discuss the criteria used to evaluate the 

efficiency of the SUMRE model. In Section 4, we interpret the output of the Monte Carlo 

experiment and make a comparison between the SUMRE method, the SURE method and the 

method of separate median regressions of single equations. Section 5 contains an empirical 

application of the introduced SUMRE method to some data taken from Multi-Generation 

Register at Statistics Sweden on three generations of male immigrants from Finland to 

Sweden. The conclusions of the paper are presented in Section 6. The outputs of the Monte 

Carlo experiment are arranged in tables and presented in the appendix.   
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2. Methodology 
 

In this section, we present the methodology with regard to the median regression, the SURE 

method and our introduced SUMRE method.   

 

2.1. Median Regression: 

 

Traditional regression analysis places heavy reliance on the conditional mean function, that is, 

it fits a model based on the relationship between the mean of the response given a fixed value 

of predictors. This approach suffices when the data have a symmetric distribution— such as 

with the Gaussian distribution. In this case, the median coincides with the mean, and even all 

other quintiles could be approximately predicted by the use of further information about the 

dispersion of errors. Even for symmetrically distributed errors with longer or shorter tails than 

those of a Gaussian distribution, some adjustments of the conditional mean function like 

robust methods could be used. 

 

For asymmetric distributions, the mean seems less desirable, but other measures like the 

median could be taken as more suitable alternatives for the study of the locational behaviour 

of a random variable. If we seek the mean of a distribution through a statistical decision 

theoretic problem, represented as an optimization problem of a loss function, a suitable loss 

function for this purpose is a quadratic loss function, as shown below, 

( ) 2,L Y θ c Y θ= −     (2.1.1) 

where c  is a positive real constant and θ  is a function used to predict the mean of the random 

variable . With this loss function, the risk (expectation of the loss function) is the same 

whatever positive constant  is chosen, so, for more convenience it is usually chosen to be 1. 

Y

c

( ) ( )( ) 2; , ( )R Y E L Y y dFθ θ θ
+∞

−∞

= = −∫ y  

( ) 2
ˆ ˆ

ˆ ˆ0 (θ θR θ y θ dF y
+∞

−∞

)∴ =∇ =∇ −∫  

( )( )ˆ2 E Y θ= − −  

( )θ̂ E Y∴ =      (2.1.2) 
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This means that the expectation of loss function (2.1.1) is minimized if θ̂  is chosen to be the 

mean of , or in other words, the solution to the minimization problem gives the mean of Y . Y

Using a random sample of  independently and identically distribute (iid) random variables, 

and consequently, replacing the unknown distribution function of the random variables by the 

empirical distribution function, we move from the realm of mathematics into the theory of 

statistics, and obtain the following risk function. 

n

( ) 2; (nR Y θ y θ dF y
+∞

−∞

= −∫ )  

( )2

1

1 n

i
i

y θ d I y y
n

+∞

=−∞

⎛ ⎞
= − ≤⎜ ⎟

⎝ ⎠
∑∫  

2

1

1 n

i
i

y θ
n =

= −∑ ,    (2.1.3) 

which is the sum of squared errors divided by . Minimizing the risk (2.1.3) gives the sample 

estimate of the mean. 

n

 

Suppose θ  is a function of vector  (or the conditional mean of x y  given x  is required) 

through the relationship ( ) βx ′x= yμθ = , then minimizing the risk function with respect to 

, gives the following solution to the optimization problem (2.1.3): β

( )ˆ ˆ0 ;R Y ′∴ = ∇β x β  

2
ˆ

1

1 ˆ
n

i i
i

y
n =

′= ∇ −∑β x β  

( ) (ˆ
1 ˆ ˆ
n

′= ∇ − −β Y Xβ Y Xβ)  

( ) 1ˆ −∴ =β X'X X'Y ,    (2.1.4) 

which is known as the least squared errors estimation of the parameter vector β . 

 

However, in decision-making, we can try to predict other parameters of a distribution 

function, like unique mode, or a mode in a specific interval of parameter space, median or any 

other quantiles of the distribution function of . The median of a distribution is obtained if 

the quadratic loss function in (2.1.1) is replaced by the absolute deviation loss function, 

Y
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( ),L Y c Yξ ξ= − ,    (2.1.5) 

where  is a positive real constant and ξc  is a function used to predict the median of Y . Each 

positive value of  gives the same risk, and for more convenience it is usually chosen to be 1. c
The probability distribution of a real-valued random variable Y  is a right-continuous left-

limit (not necessarily) monotone increasing function: 

( )( )F y P Y y= ≤ .    (2.1.6) 

The quantile function is the inverse of the distribution function  

{ }1( ) ( ) inf : ( )YQ F y F yτ τ−= = ≥ τ

1

   (2.1.7) 

for 0 τ< < . The value of the quantile function for each τ  is called τ th quantile of Y . It is 

obvious that the median is the 0.5th quantile of Y . 

 

By minimizing the risk of the loss function (2.1.5) we get the median of Y , as shown below.  

( )ˆ;
0 ˆ

R Y ξ

ξ

∂
∴ =

∂
 

( )ˆ y dF yξ
ξ

+∞

−∞

∂
= −
∂ ∫  

ˆ

ˆ

ˆ ˆ( ) ( ) ( ) ( )ˆ y dF y y dF y
ξ

ξ

ξ ξ
ξ

+∞

−∞

⎧ ⎫∂ ⎪ ⎪= − − −⎨ ⎬
∂ ⎪ ⎪⎩ ⎭

∫ ∫  

ˆ1 2 ( )F ξ= −  

1ˆ (1/ 2) medianFξ −∴ = = .   (2.1.8) 

 

This solution may not be unique, but an interval of values may satisfy the minimization, since 

 is monotone (but not necessarily a strict monotone). In this case, the smallest value in the 

interval is chosen. Replacing the unknown  by the empirical distribution function , when 

we have a sample of  iid random variables, gives the following risk function: 

F

F nF

n
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( ) ( )( ); ,R Y E L Yξ ξ=  

( )y dF yξ
+∞

−∞

= −∫  

( )
1

1 n

i
i

y d I y
n

ξ ξ
+∞

=−∞

⎛ ⎞
= − ≤⎜ ⎟

⎝ ⎠
∑∫  

1

1 n

i
i

y
n

ξ
=

= ∑ − .    (2.1.9) 

 

Minimizing the risk (2.1.9) gives the sample median. A minimizer that minimizes a function 

divided by  minimizes the function, as well. Or, a simpler argument is that we can choose 

 in the loss function (2.1.5).  Thus, we take the risk function (2.1.9) as the base of an 

objective function for finding the sample least absolute deviations fitting function, in a 

simpler form as follows: 

n
c n=

( )
1

n

i
i

R yξ ξ
=

= −∑ .    (2.1.10) 

 

Here, the problem is to find a value for ξ  that minimises the objective function (2.1.10), 

which also minimises the risk function (2.1.9). This optimization problem is expressed as 

follows (see Bassett & Koenker, 1978): 

( )
1

min min
n

i
i

R
ξ ξ

yξ ξ
∈ ∈ =

= ∑
R R

− .   (2.1.11) 

 

The optimization problem (2.1.11) is a linear programming problem, which after adding  

artificial variables {
n2

},i iu v , , is formulated as (see Charnes, Cooper & Ferguson, 

1955; Wagner 1959): 

1, ,i = … n

{ }
( , , )

|min
n n

n n n
ξ

ξ
+ +∈ × ×

′ ′+ + +
u v

1 u 1 v 1 u v = y
R R R

.  (2.1.12) 

 

ξIf  is a function of x  through a linear relationship (or when the conditional absolute 

deviation function of  given x  is required), ( | ) 'yQξ = =β x x βy , then we want a minimizer 

 that minimizes the objective function, as shown below, β̂
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1
min

p

n

i i
i

y
=∈

′−∑
β

x β
R

.    (2.1.13) 

 

Using the linear programming reformulation of the problem as 

{ }
( , , )

|min
p n n

n n
+ +∈ × ×

′ ′+ + +
β u v

1 u 1 v Xβ u v = y
R R R

,  (2.1.14) 

n p×gives the solution (minimizer) to the objective function (2.1.13), where the rows of   

matrix  are transposes of vectors , for X ix 1, ,i n= … . 

 

Optimality Conditions: 

 

On one hand, if , the solution to the linear programming (2.1.14), is the minimizer of the 

objective function (2.1.13), it must be equivalent to the solution of differentiating the risk 

function of the objective function (2.1.13) and then letting it be equal to zero, or to that of a 

similar method. On the other hand, the risk function 

β̂

1
( )

n

i i
i

R y
=

′= −∑β x β  is not a smooth, but a 

piecewise continuous convex linear function, which is differentiable with respect to β  except 

at those points at which one or more errors βxiiY ′−  are zero (see Karst, 1958). For this 

reason, instead of an ordinary derivative, we use the directional derivative with respect to β  

in all directions w with wβ t+, 1=w d define the function t, an =)(γ , for ]1,1[−∈t , where 

=)0( =′ )0(β wγ γ and , as described below (See Bassett & Koenker, 1978): 

( ) ( ) ( )
0

, ( )
t

dR R Ro t
dt

γ
=

∇ ≡∇ =w wβ β wG  

1 0

n

i i i
i t

d y t
dt = =

′ ′= − −∑ x β x w  

(
1

,
n

i i i i
i

yψ
=

)′ ′ ′= − − −∑ x β x w x w   (2.1.15) 

where  

sgn( ) , if 0
( , )

sgn( ) , if 0
u u

u v
v u

ψ
≠⎧

= ⎨ =⎩
.   (2.1.16) 
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and the function sgn(.) is the sign of its argument. 

  

ˆ( ) 0R∇ =βHere, the necessary minimization condition of a smooth function  is met by the 

condition that the directional derivative at β  is nonnegative in all directions. Each -tuple 

solution , named a basic solution, interpolates at least  observations. But of course not 

each -element set of observations might give a basic solution, since for some of 

observations there might be a linear relationship between their ’s, i.e., the matrix of their 

’s might be singular. Let 

ˆ p

β̂ p

p

x

{ }x p1, 2, ,= …N n  and  be any combination of h  elements of 

( )N  whose corresponding rows of  are not linearly related to each other. Also, let X hX  be 

the rows of matrix  corresponding to the elements of , and similarly,  the vector of 

elements of 

(hy )X h

y  corresponding to the elements of h  and associated with . A basic 

solution, which is obtained by the observations indexed by the elements of , is as follows: 

(h)X

h

 
1( ) ( ) ( )h h −=b X hy .    (2.1.17) 

 

 If  is to be a minimizer of the objective function (2.1.14), i.e., when the optimality holds 

in , the directional derivative of objective function (2.1.13) at  must be nonnegative 

in all directions , as shown below: 

( )hb

( )hb ( )hb

w
 

( ) ( )
1

0 ( ), ( ),
n

i i i i
i

R h y hψ
=

′ ′ ′≤ ∇ = − − −∑w b w x b x w x wG .  (2.1.18) 

 

Let , then the optimality condition is simplified as: ( )h=v X w

 

( ) ( )1 10 0, ( ), ( ) ( )i i j j j j
i h j h

v v y h h hψ ψ − −

∈ ∉
′ ′ ′≤ − − − − −∑ ∑ x b x X v x X v  

( 1 10 ( ), ( )i j j j j
i h j h

v y h h hψ − −

∈ ∉
′ ′ ′≤ − − − ) ( )∴ ∑ ∑ x b x X v x X v , (2.1.19) 
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for all directions . All the directions of  are spanned by basis vectors , 

. Thus, choosing , for 

p∈v R pR

p

ie

1, ,i = … p 1,....,i = pi= ±v e , gives the following 2  inequalities. 

( )
( )

1 1

1 1

0 1 ( ), ( ) ( ) , 1,....,

0 1 ( ), ( ) ( ) 1,....,

j j j i j i
j h

j j j i j i
j h

y h h h i p

y h h h i

ψ

ψ

− −

∉

− −

∉

⎧ ′ ′ ′≤ − − − =
⎪⎪
⎨

′ ′ ′≤ + − =⎪
⎪⎩

∑

∑

x b x X e x X e

x b x X e x X e p
 (2.1.20) 

 

( ) 0j jy h− =x bIf the distribution of  is continuous, then the probability of Y  is zero, for any 

j h∉ . This means that the errors of the observations not indexed by the elements of  could 

not be zero. Consequently, the first argument of each of 

h

( )( ) 1( ),j j jy h ihψ −X′ ′− −x b x e  and 

( 1( ), )( )j j jy h h i
−

( ))

′ ′− x b x X e

sgn (j j

ψ  could not be zero and both of them are reduced to the simpler 

form y h′− x b j h∉ 2 p, for . Then, combining  inequalities in (2.1.20), the 

optimality condition at  becomes the following simpler inequality: b( )h

 

( ) ( )1( ) sgn ( )p j j
j h

h y h−

∉
′ ′− ≤ − ≤∑1 X x b x 1j p

i

  (2.1.21) 

The solution is unique if the inequalities are strict (See Bassett & Koenker, 1978).  

 

2.2. SURE Models: 

 

Consider a general system of m  linear regression equations given by 

1, ,i M= …    (2.2.1) i i i= +Y X β e ,  

where,  is a  vector of the dependent variables,  is a 1T × 1T ×iY ie  vector of random errors 

with , and  is a  matrix of observations on  independent variables 

including a constant term, and β  an 

( ) =e iX0 iT k×

i ik

ikiE

1×  vector of coefficients to be estimated. The number 

of equations in the system is M , where T  is the number of observations per equation.  is 

the number of rows in the vector  which is equal to the number of independent variables in 

the ith  equation (including the intercept). Those 

ik

iβ

M equations in the system can be written as 
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1 1 1= +Y X β e1

#

 

# #  

M M M M= +Y X β e     (2.2.2) 

and then they can be combined into a comprehensive model written as 

 

1 1 1

2 2 2

M M M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

Y X 0 0 β e
Y 0 X 0 β e

Y 0 0 X β e

"
"

# # # % # # #
"

1

2

M

⎞
⎟
⎟
⎟
⎟⎟
⎠

. 

 

This model can be rewritten compactly as  

 

= +Y XΒ e      (2.2.3) 
 

where,  and e  are of dimension Y 1TM × ,  is of dimension X TM k× , and finally  is of 

the dimension , with . 

Β

1

M

i
i

k k
=

= ∑k ×1

 

Assumptions: 

 

At this stage we have to make the following assumptions: 

a)  is fixed with rank . iX ik

1plim i i iiT
′ =X X Q  is non-singular with finite and fixed elements, i.e., invertible.  b) 

1plim i j ijT
′ =X X Qc) In addition, we assume that  also has finite and fixed elements. 

d) , where ( )i j ij TE σ′ =e e I  is the covariance between the ith and the jth equations. ijσ

e) , and ( )E =e 0

f) , where ( ) TE ′ = = ⊗ee Ψ Σ I ij M M
σ

×
⎡ ⎤= ⎣ ⎦Σ   is a positive definite matrix an  d ⊗  is 

the Kronecker product. Thus, the errors in each equation are assumed to be 

homoscedastic and non-autocorrelated, but that there exists contemporaneous 

correlation between corresponding errors in different equations. 
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The OLS estimator of  is Β

 

( ) 1ˆ
OLS

−′=Β X X X Y′     (2.2.4) 

with the covariance matrix  

 

( ) ( ) ( )1 1ˆvar OLS
− −′ ′ ′=B X X X ΨX X X .   (2.2.5) 

Also, the Generalized Least Squares (GLS) estimator of  is given by: B

 

( )( ) ( )11 1ˆ
GLS T T

−− −′ ′= ⊗ ⊗B X Σ I X X Σ I Y   (2.2.6) 

with the covariance matrix  

 

( ) ( )( ) 11ˆvar GLS T
−−′= ⊗Β X Σ I X .   (2.2.7) 

 

Generally,  is not an observable matrix and must be estimated from a sample of T  

observations from each equation. The estimated 

Σ

M M×  matrix is denoted by S , and replaces 

 in (2.2.6) and in all other places where  is used. The “feasible generalized least squares” 

(FGLS) estimator of  in (2.2.3), is computed as below. 

Σ Σ

B

 

( )( ) ( )11 1ˆ
F T

−− −′ ′= ⊗ ⊗B X S I X X S IT Y

i

i

  (2.2.8) 

 

The components of the matrix  are estimated, as follows. First, we calculate ijs⎡ ⎤= ⎣ ⎦S

( ) 1ˆ i i i i i i
−′= −u Y X X X X Y  

( )( )1
T i i i i i i

−′= − =I X X X X Y P Y .   (2.2.9) 

Then, the error vectors  obtained from the OLS estimates of separate equations and the 

matrices , defined in (2.2.9), are used to get an unbiased estimation of 

ˆ iu

ijsiP , as follows: 
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( )
1 ˆ ˆ.ij i j

i jtrace P P
s ′= u u , for , 1, ,i j M= …   (2.2.10) 

2.3. Seemingly Unrelated Median Regression Equations (SUMRE) Models: 

 

 

When the covariance matrix of the error terms of the regression model is not a scalar 

covariance matrix of the form 2σ I , the OLS estimator of the parameter l unbiased, 

but there is no guarantee that it is the best linear unbiased estimate (BLUE). In this case, when 

the covariance matrix of error terms is a positive definite matrix 2

β  is stil

σ≠Σ I , Aitken’s 

generalized least squares method is preferable (See Aitken 1934). T dea behind the 

Aitken’s generalized least squares method is described below.

, 

 W

covariance matrix of a regression model, using a proper transforma

model with a scalar covarian trix of error terms. Let  be an  full rank non-

stochastic matrix, and then define the following new model; 

 

 stil

e
*      (2.3.1) 

h i

ith the lack of scalar 

tion, we can obtain a new 

e 

n n×Gce ma

* =Y GY  
* =X GX , l is a non-stochastic matrix, 

* =e G , 
* *= +Y X β e

( )*r 2va σ′= =GΣG I , (G ust suitably be chosen for this res iction). e  m tr

 

The matrix  is a good candidate for , by which the new estimation of 1/ 2σ −Σ βG  becomes 

(2.3.2)( ) ( ) ( ) ( )* * * 1 1− −′ ′ ′ ′ ′ ′= = =X Y X G GX X G GY X Σ X X Σ Y  
1 11
−

−−⎛ ⎞′ ′
⎜ ⎟
⎝ ⎠

Gb X X  

The estimation is the same whatever value for 2σ  is assumed. Therefore, for simplicity and 

onvenience we let , and consequently, . The new estimator  is called  2 1σ = 1/ 2−Σ=G Gbc

the generalised least squares estimator, denoted as ˆ
GLSβ . 
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The transformation (2.3.1) is in fact a multivariate standardization of the variables Y  and X , 

and the GLS method is then a simple application of the OLS method on those standardized 

variables. In this case, the original squared errors, which are determined in terms of squar  

uclidian distances, are replaced by generalized squared errors, which are defined in term

 after the 

ansformation the distances are transformed to a new form of distance. The new method 

ters of a SURE model, it results in separate OLS parameter estimations 

f SURE equations. The same argument holds for applying ordinary median regression on a 

applying the median regression on each equation of the SURE model separately, as shown in 

 2.1, below. 

 

heorem 2.1:  The median regression estimation of the SURE model in (2.2.3) takes the form 

 where  is the estimation of the median regression model, i

ed

s of E

Mahalanobis distances. In 1962, Zellner used the notion of generalized least squares method, 

which at the time was proposed by Aitken for regression methods with one independent 

variable Y , through a smart change in the form of the design matrix of the data. 

 

In our method, we use the same Zellner’s design matrix and use the transformation (2.3.1) but 

instead of using the OLS method, which gives Aitken’s GLS estimates, we use median 

regression. The difference is in the use of the norms used for calculating the errors. In the 

OLS method, the 2-norm (squared Euclidian distance) is used to calculate the errors and after 

transformation the distances are transformed to Mahalanobis distances, whereas in our 

method, the 1-norm (taxicab or city-block) distance is used to calculate the errors and

tr

might be called the Generalized Least Absolute Deviations (GLAD) method. This enables us 

to estimate all the parameters of a system of seemingly unrelated median regression 

equations, where the correlations between the equations are also taken into account. 

 

The relationship between the SURE method and the OLS method in some aspects is reflected 

in the relationship between the SURE method and ordinary median regression, and that is due 

to the structure of the design matrix of SURE models. For instance, if we use the OLS method 

to estimate the parame

o

SURE model. In this case, median regression estimation of the SURE models is the same as 

Theorem

T

1 2
ˆ ˆ ˆ ˆ[ ]M′ ′ ′ ′=β β β β… ,  

ˆ
iβ i i i= +Y X β e 1, ,i M= … . , for 
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Proof: Any solu  the median reg tion otion to ression estima f parameters must satisfy the 

ality condition (see Bassett & Koenker, 1978)   

 

≥

 in all directions , where, 

optim

( )
1

ˆ, 0
TM

i i i i
i

yψ
=

′ ′ ′− − −∑ x β x w x w , 

( )1 2, , , M
′′ ′ ′=w w w w… ( )1 2

ˆ , , , M
′′ ′ ′=β b b b… . k∈w R , and 

 

Let ( ), , , , ,j
′′ ′ ′ ′=w 0 0 w 0… … , for 1, ,j M= … , the optimality condition becomes  

 ( )ji ji ji j jyψ ′ ′− − ≥∑ x w x w . 
1

, 0
T

j ji
i=

′−b x  (2.3.3) 

 

 Therefore, according to the optimality condition (2.1.18) of the median regression estimation 

of parameters for the jth regression equation and the inequality (2.3.3), jb  must be a solution 

to the jth equation. This means ˆ
j j=β b , when ˆ

jβ  is unique. █ 

 

According to this theorem, applying ordinary median regression on SURE models gives the 

notion of applying OLS instead of GLS on SURE models, since also the OLS estimation of 

parameters of the SURE model collapses to OLS estimation of separate equations. This means 

that applying ordinary median regression on SURE models abandons the information 

imbedded in the correlation matrix of cross equations errors. Our goal is to search for a 

method in which the median regression is applicable on SURE models and at the same time 

 

In this paper we use the same notion of Aitken’s GLS method to deal with the correlations 

between the equations of the SURE models, but this time for median regression, i.e., we use 

generalized least absolute deviation (GLAD) method. Then, the same transformation (2.3.1), 

which is used for GLS parameter estimation of SURE models in (2.2.3), is used, as follows. 

the information imbedded in the correlation matrix of cross equations errors is maintained. 
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* 1/ 2 1/ 2( )T
− −= = ⊗Y Ψ Y Σ I Y  

* 1/ 2 1/ 2( )T
− −= = ⊗X Ψ X Σ I X  

* 1/ 2 1/ 2( )T
− −= = ⊗e Ψ e Σ I e , 

* * *= +Y X β e  

( ) ( )* 1/ 2 1/ 2r M T T
− −= = ⊗e Ψ ΨΨ I I Iva M= .  (2.3.4) 

Here, just like the objective functio  that m izes 

e new objective function as shown below. 

n (2.1.13), we want to find a minimizer inimβ̂

th

 

* *

1
min

k

TM

i i
i

y
=∈

′−∑
β

x β
R

.    (2.3.5) 

 

sing the linear programming reformulation of the problem as 

 

U

{ }* *|min TM TM′ ′+ + +1 u 1 v X β u v = y , 
( , , ) k TM TM

+ +∈ × ×β u v R R R
(2.3.6) 

 

gives the solution, where , and  is the dimension of , for 

he objective function could be simplified as follows. 

 

1

M

i
i

k k
=

= ∑ ik iX 1, ,= …i M . 

T

( )
1 2

1 2 1 1 1( , , , )
m
∈

in
k k kM

M

M T M
im

mj mj m
i j m

yγ
= = =× × ×

′−∑∑ ∑
β β β

x β
… …R R R

 (2.3.7) 

 where  is the dimension of , for 

 
im

iXik 1, ,i M= … , and  is the element of the matrix 

del 

γ th

1/ 2−Σ , for , 1, ,i m M= … . 

 

Bassett and Koenker (1978) have shown that the single equation median estimators 

asymptotically follow a multivariate normal distribution. Also, in our mo

im  

( )
TM
′* *X X  

defined in (2.3.4) is a positive definite matrix, and the distribution of  is continuous. This *e
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means that the required assumptions mentioned in Bassett and Koenker (1978) are fulfilled, 

MRE estimators are also asymptotically normally distributed. and hence the SU

 

e correlations between the equations tend to zero. 

Proof: When the correlations between the equations tend to zero, the limits of

Theorem 2.2:  With finite variances of equation errors, the SUMRE method estimation in 

(2.3.7) tends to the median regression estimations of separate equations in 

(2.2.3), as th

 ikγ  for i k≠  

act that tend to zero, as well. In this case, concerning the objective function (2.3

, we have 

.7) and the f

0iiγ >

( )

( )

1 2
1 2

1 2
1 2

0 1 1 1( , , , )

0 1 1 1( , , , )

lim

lim

min

min

ik k k kM
M

ikk k kM
M

M T M
ik

kj kj k
i j k

i k

M T M
ik

kj kj k
i j k

i k

y

y

γ

γ

γ

γ

→ = = =∈ × × ×
≠

→ = = =∈ × × ×
≠

⎛ ⎞
⎜ ⎟′−
⎜ ⎟
⎝ ⎠

⎛ ⎞
′= −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑∑ ∑

β β β

β β β

x β

x β

… …

… …

R R R

R R R

 

1 2
1 2 1 1( , , , )

min
k k kM

M

M T
ii

ij ij i
i j

yγ
= =∈ × × ×

⎛ ⎞
′= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

β β β
x β

… …R R R
 

1 2
1 21 1( , , , )

min
k k kM

M

M T
ii

ij ij i
i j

yγ
= =∈ × × ×

⎛ ⎞
⎜ ⎟′= −
⎜ ⎟
⎝ ⎠

∑ ∑
β β β

x β
… …R R R

 

1 2
1 21 1( , , , )

min
k k kM

M

M T

ij ij i
i j

y
= =∈ × × ×

⎛ ⎞
′⎜ ⎟≅ −

⎜ ⎟
⎝ ⎠

∑ ∑
β β β

x β
… …R R R

. (2.3.8) 

This means that the objective function of SUMRE model is equivalent to the summation of 

objective functions of median regressions for separate equations. Mathematically, complete 

ates that even if there is no statistically significant correlation 

etween the equations, using SUMRE method instead of SURE method will not damage the 

equivalence holds when the correlations between the equations are exactly zero. █ 

 

The above theorem indic

b

estimation of parameters. 
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We know that GLS estimation of SURE m dels will collapse to OLS estimations of separate 

regression equations, when iX  of all equations are identical, whereas this is not the case with 

the estimation of SUMRE models. This could be verified from the objective function (2.3.7). 

In other words, having the same riables X  in common between all equations does not 

cause the collapse of SUMRE estimations to the es

o

va

timations of separate median regression 

quation to the problematic estimation of multivariate 

edian regression, since having  variab  identical in all equations changes the SURE 

mode

 we discuss the way we designed our Monte Carlo 

xperiment and the idea behind it. The idea behind the design is due to some criteria we have 

 and the factors that, intuitively and based on the 

theory, may change the efficiency.  

ore precisely, the mean vectors 

r m 2000 replications 

of the Monte Carlo experiment, for each combination of imposed factors. The idea behind 

choosing these statistics arises 

gle parameter 

e s. An obvious reason of that is due 

iX lesm

l to an ordinary multivariate regression model. 

 

 

3. Monte Carlo Design and Experiment 
 

In the following two subsections,

e

used to assess the efficiency of our method

 

3.1. Criteria for performance evaluation 

In a Monte Carlo study, set up to look at the good properties of the estimators for the purpose 

of comparison between them, we calculate the mean squared error (MSE) of the estimators 

through generalized sample variance, total sample variance and squared bias of the 

estimators. Those calculations are done by simply calculating the estimators in repeated 

samples under fixed combinations of conditions (factors). M

and the covariance mat ices of the parameter estimates are estimated fro

from the following argument. 

For a sin θ , the efficiency of an estimator θ̂  is defined as,  

ˆ ˆ( ) 1 ( )Eff MSEθ θ= (3.1.1) ,    

here,  w

( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) varMSE E E E E E bias ˆθ θ θ θ θ θ θ θ θ= − = − + − = + . (3.1.2) 
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In our simulation, we look at the efficiency of the estimators from two different points of 

view. First, if we take the multivariate MSE, we need to estimate the total sample variance 

and squared bias of , as shown below.  

θ

)− θ

θ̂   (3.1.3) 

e volume of that ellipsoid. In 

this case, we define a matrix of mean squared error, as follows. 

)

)

θ̂

( ) ( )ˆ ˆ ˆ( )MSE E ′= − −θ θ θ θ  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )E E E E E Eθ θ θ θ′ ′= − − + − −θ θ θ θ  

( )( ) ( ) (ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )trace E E E E Eθ θ θ θ⎛ ⎞′ ′= − − + −⎜ ⎟
⎝ ⎠

θ θ θ  

( ) ( ) ( )ˆ ˆcov( ) ( ) ( )trace bias bias′= +θ θ

 

Second, for a multidimensional parameter θ , if we take the ellipsoid of estimators θ̂ , which 

is centred at θ , the efficiency is considered as the inverse of th

( )(ˆ ˆ ˆ( )MSE E ′= − −θ θ θ θ θ  

( )( ) ( )(ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )E E E E E Eθ θ θ θ′ ′= − − + − −θ θ θ  θ

( ) ( )( )ˆ ˆ ˆcov ( ) ( )E Eθ θ ′= + − −θ θ θ .   (3.1.4) 

 of estimators centred at  is proportional to the 

determinant of , we will have 

 

As the squared volume of ellipsoid θ

 ˆ( )MSE θ

( ) ( ) ( )( )ˆ ˆ ˆ ˆdet ( ) det cov( ) det ( ) ( )MSE E Eθ θ⎛ ⎞′≤ + − −⎜ ⎟θ θ θ  
⎝ ⎠

θ

)( ) (ˆ ˆdet ( ) det cov( )MSE ≤∴ θ θ ,    (3.1.5) 
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since the second matrix on the right hand side is not of full rank but of rank one. Thus, a 

Among two estimators, the one with smaller MSE (defined in 3.1.3 but not in 3.1.4) is usually 

considered to be more efficient than the other. To compare the efficiency of an estimator with 

e efficiency of another estimator, we usually use the relative efficiency, as shown below. 

reduction in the determinant of the covariance matrix (generalized variance) of θ̂  increases its 

efficiency. 

 

th

2 1
2 1

1 2

ˆ ˆefficiency of ( )ˆ ˆrelative efficiency of  to ˆ ˆefficiency of ( )
MSE
MSE

θ θ
θ θ

θ θ
= = .   (3.1.6) 

 

We use the same formula to compute the relative efficiency of each of the SURE GLS 

estimators and the median regression estimators of single equations to the efficiency of 

UMRE estimators. A value greater than 1 means relative inefficiency of SUMRE estimators 

e method of moments for estimating, due to the fact that the number of repeated runs of the 

e (2000 replications). Also, asymptotically normal 

thod. These are: the 

umber of equations (

S

to the estimators of one of the two other methods, whereas a value less than 1 is an indicator 

of relative efficiency of SUMRE estimators. 

 

All mathematical expectations are computed based on the empirical distribution function, i.e. 

th

Monte Carlo experiment was relatively larg

distribution could be used for any statistical inference about the estimators. 

 

3.2. Factors that vary in the experiment 

A number of factors can affect estimation properties of the SUMRE me

Mn ), the sample size (T), the skewness of the distribution of the errors 

om each equation, and the correlations between errors from different equations. In the rest 

 this section, we will explain these factors, in some more detail. 

 

 

fr

of
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The Mo  Carlo e t was performed by generating the data as follows: 

, 

nte xperimen

   (3.2.1) 

Where  is a  mat ws ar rs with the multiva mal 

distribution )1−

*

i
i T i T k×

⎡ ⎤= ⎣ ⎦X 1 X

*
iX ( 1)iT k× −

( 2
1 ,

ik i σ− Xμ I

rix, whose ro e vecto riate nor

i ikN ,  

( ) ( )i i i iτ τ′=Y X β + ε ,    (3.2.2) 

*( ) ( )i i1τ τ⎡= ⎣β β    (3.2.3) 

*( )γβ β ,   

⎤
⎦  

i  (3.2.4) 

r a constant vector , and 

,

) ( ,i iτ α τ=

iβfo ( , )iα τ γ  an exponential function of  skewness level  and the iγ

quantiles τ ,  for 0 1τ< < , and ( )2~ ,i T i TN σε 0 I , for 1, 2, ,i M= … .  

 

Our primary interest lies in the analysis of systemwise estimation, and thus the number of 

equations to be estimated is of central importance. As the number of equations grows the 

computation time becomes longer, and we took a system with five equations as our largest 

model. This represents a fairly medium-sized model of the type that is used in, for example, 

griculture, economics or labour markets, while a three-equation system is a typical small 

 

To get the desired streng nal 

lationship between 

a

model. Moreover, different levels of strength of correlations between these equations have 

been imposed. 

th of correlations we impose a monotonically decreasing functio

 2
iXσre  and the correlation coefficient as follows: 

2 ( )
i

gσ ρ=X .     (3.2.5) 

 

Here, we suppose that the correlation coefficients are almost the same (which are supposed to 

be ρ ) between all the equations. The correlation coefficient is Pearson's product-moment 

coefficient of sample correlation, computed as follows. 
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1
,

2 2 2 2

1 1

i k

T

ij kj i k
j

Y Y T T

ij i kj k
j j

Y Y T
r

Y T Y T

=

= =

−

=

− −

∑

∑ ∑

Y Y

Y Y

 , , 1, ,i k M= … . (3.2.6)  

 

( )g ρ( )ij ikg ρ  instead of Using different functions , gives different correlation coefficients 

between pairs of equations. For simplicity, we took almost the same level of correlation 

between all the equations, as we mentioned just above. 

When generating the data, we also imposed different distributional properties in terms of the 

degrees of skewness of the errors. This goal was achieved by multiplying the vector  by an 

exponential function of both the level of skewness 

iβ

, and the quantiles (0,1)τ ∈iγ ,   during the 

processes of generating the data. 

 

The skewness is computed according to the following formula. 

( )

( )

3

1
3 2

2

1

. 1 .
2

T

ij i
j

i
T

ij i
j

y y
T T

T
y y

γ =

=

−
−

=
− ⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

 , 1, ,i M= … .  (3.2.7) 

( )g ρ  and ( , )iα τ γUsing proper coefficients in the functions  it is possible to get a data set 

with desired level of correlations between the equations and level of skewness of the errors, 

respectively. However, because of the interaction between these two functions, the data set 

probably would not have the required properties. Therefore, we regularly checked the data set, 

through computing the coefficients of correlations between the equations and the coefficients 

of skewness of errors using the formulas (3.2.6) and (3.2.7), respectively, and we then 

removed those data sets that violated the desired properties. Thus, what were important for us 

in this study were not the exact well-known probability distributions of errors, but the desired 

properties of the distributions, represented in level of skewness of the distributions and level 

of correlations between the distributions. 
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Another prime factor that affects the performance of the SUMRE method is the number of 

observations. We have investigated sample sizes of 50, 250 and 1000 observations that will 

cover small, medium and large samples. Also, for each replication of the experiment with the 

desired combination of factors we generated a set of data, estimated the model using that data 

set, and computed the generalized sample variance, total sample variance, squared bias and 

the mean squared errors of the estimators. 

 

To make a comparison between the estimators of the SUMRE method and of each of the 

ordinary SURE method and separate ordinary median regressions of equations, we performed 

conventional median regression on each equation and the ordinary SURE method on all 

equations together. Once again, we computed the generalized sample variance, total sample 

variance, squared bias and the MSE of the estimators obtained in each of these two methods. 

Then, relative efficiencies of SURE method and the method of separate median regression 

equations to the efficiency of SUMRE method were computed through the ratios of the 

generalized sample variance, total sample variance and MSE of their estimators. 

 

The factors that vary for different models are presented in Table 3.2.1, and the results of the 

simulation, for systems of 3 and 5 equations, are summarized in Tables 1 to Table 12 in the 

appendix. All the calculations were performed using the GAUSS, version 8.0.6 program.  

Table 3.2.1 Values of Factors that vary for Different Models 

Symbo
l Design Factor 

MNo. of Equations in the Model 3, 5  

T 50, 250, 1000 No. of Observations in the Simulated Sample  

Low (0.0 - 0.2), Medium (0.4 – 0.6) 
ρ  Level of Correlations between Equations 

High (over 0.8) 

Low (0.0 - 0.5), Medium (1.5 – 2.0) 
γ  Level of Skewness 

High (over 3.0 ) 
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4. Results 
 

The results of the simulation, represented in squared bias, MSE and each of the determinant 

ratio and the trace ratio of the covariance matrix of SUMRE estimators to those of each of 

ordinary SURE GLS estimators and the estimators of the separate median regressions of 

single equations, are presented in Table 1 to Table 12 in the appendix. 
 

One can look at the results of the simulation from different perspectives, in order to draw 

comparisons between efficiencies of the SUMRE method and the two other methods 

mentioned just before. The efficiencies of any two methods (SUMRE with SURE or SUMRE 

with separate median regressions) could be compared at the presence of a specific level of 

skewness, level of correlation(s), number of equations and sample size, and/or any 

combination of these factors. At first glance, one may think that the changes in ratios are 

regular and parallel to the changes in these factors, but by delving into the columns of the 

tables, it would be discovered that the changes could be interpreted differently, when the 

results are looked at from different perspectives. 
 

To reduce the terminology, we use the abbreviations L, M, H, S and C to stand for Low, 

Medium, High, Skewness and Correlation, respectively. Then, for instance, MSHC stands for 

a model with medium level of skewness of all equations errors and high level of correlations 

of cross equations errors. Or, for instance, LC stands for low correlations between errors from 

different equations, and so on. 
 

Another attempt to simplify the terminology is using the term determinant ratio to mean the 

ratio of the determinant of the covariance matrix of SUMRE estimators to the determinant of 

the covariance matrix of SURE GLS estimators or to that of separate median regressions of 

single equations. Also, trace ratio, by analogy, is the ratio of the traces of the corresponding 

covariance matrices. Each of MSE ratio and squared bias ratio is meant in a way analogous to 

that in which trace ratio and determinant ratio are labelled. 

 

Finally, to further simplify the terminology, we use the term level of skewness to mean the 

level of skewness of errors from each equation, and by level of correlations the level of 

correlations between cross equations errors. Also, the method of separate median regressions 

is used as the shorthand for the method in which we deal with each of the equations of SURE 
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model separately and apply conventional median regressions on single equations. And, by 

SURE estimators we mean feasible SURE GLS estimators.  

 

4.1 Determinant Ratio Comparison 

 

The changes in determinant ratio do not follow the same pattern when we compare the 

SUMRE method to the SURE method and when it is to be compared to the method of 

separate median regressions. The difference is due to the fact that strong correlations between 

cross equations errors are beneficial to the SURE method and detrimental to separate median 

regressions of single equations whereas the converse is true for the high levels of skewness. 

These differences are explained in the following two subsections. In the entire subsection 4.1, 

we use Table 1 and Table 2, to make comparisons.  

 

4.1.1 SUMRE versus SURE GLS 

 

From the tables, assuming the low skewness as fixed, by which the cases LSLC, LSMC and 

LSHC are included, the determinant ratio (of SUMRE to SURE), without exception, increases 

as the level of correlations increases. This ratio, which is, in a sense, inefficiency of the 

SUMRE method related to the SURE method, increases for increasing number of equations, 

as well. 

 

Surprisingly, no asymptote of the determinant ratio could be revealed from the simulation 

tables for the case of LS models. In other words, in the case of the LS models the sample size 

even asymptotically does not have any effect on the gap between SUMRE method and SURE 

method. However, the determinant ratios tend to zero asymptotically, in the presence of a 

high level of skewness (non-LS cases), no matter what the level of correlations is. The more 

equations in the model and the higher the level of skewness, the more rapid the reduction in 

the determinant ratios occurs, for non-LS cases. 

 

For fixed levels of correlation, the gap between SUMRE and SURE methods reduces rapidly 

as the level of skewness increases. The reduction of this gap continues in a way that after 

relatively small rises in the level of skewness, SUMRE method estimators become more 

efficient than those of SURE method, based on the value of the determinant ratio which 

becomes less than 1, and further on very close to zero. 
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As we mentioned above, for LS models, the determinant ratio becomes larger and larger as 

the model moves from the case LSLC towards LSMC and LSHC cases. In other words, with a 

fixed low level of skewness, the determinant ratio rises with incremental levels of correlation. 

Generalising this notion for all levels of skewness, may lead to getting the wrong idea. As it’s 

obvious from the tables, in the presence of a level of skewness, the determinant ratio is the 

maximum at medium levels of correlation. By looking at the tables in more detail, we observe 

that with a medium level of skewness and a medium level of correlation, the SURE method is 

more efficient than the SUMRE method, whereas in all other non-LS models, the SUMRE 

method is more efficient.   

 

4.1.2 SUMRE versus Separate Median Regressions 

 

As Theorem 2.2 (on page 15) indicates, for very low correlations between errors from 

different equations, the SUMRE method almost collapses into separate median regression 

models of single equations. The collapse is complete for mathematically zero correlations 

between cross equations errors. Far from mathematical models, statistical models or simulated 

models do not yield exact zero correlations between cross equations errors. However, 

statistical models or simulated models with very low levels of correlations could 

asymptotically resemble mathematical models with zero correlations between cross equations 

errors. This resemblance is very sensitive to the level of skewness. The less the level of 

skewness, the stronger the resemblance is. 

 

Overall, for low levels of correlation, the gap between the SUMRE method and the method of 

separate median regressions is not very large. This gap asymptotically tends to zero, looking 

at the value of determinant ratio which increases to 1. The rise of the value of the determinant 

ratio becomes slower as the number of equations included in the model increases. This means 

that in spite of the sensitivity of asymptotically resembling a SURE model with zero 

correlations to high levels of skewness, the sensitivity increases even more as the number of 

equations included in the model increases. 

 

What is expected intuitively and could be seen from the tables is the increasing relative 

efficiency of the SUMRE method compared to the method of separate median regressions, 

when the level of correlations increases. In the presence of correlations but no levels of 

skewness, no asymptote of the determinant ratio could be guessed at. This means that the 
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relative efficiency of the SUMRE method compared to the method of separate median 

regressions, which is in order in the presence of correlations and the lack of skewness, 

remains fixed and free from the effect of the sample size, no matter what the level of 

skewness is. However, the determinant ratio asymptotically tends to zero in the presence of 

correlations and high levels of skewness.  

 

4.1.2 SURE versus Separate Median Regressions 

 

It is not the aim of this paper to compare the SURE method with the method of separate 

median regression equations, but we do want to take note of something here. Of the matching 

determinant ratios in Table 1 and Table 2, and associated with each of the two methods of 

SURE and separate median regressions, the greater ratio means its associated method is more 

efficient. With lower levels of skewness and higher levels of correlations, for instance MSMC, 

MSHC and LS models, the determinant ratios corresponding to the SURE method are greater 

than their matching determinant ratios corresponding to the method of separate median 

regressions, which again means the SURE method is more efficient. The converse is true with 

higher levels of skewness and lower levels of correlations, e.g., all HS models.  

 

4.2 Trace Ratio Comparison 
 

The idea behind selecting trace or determinant of the covariance matrix of parameters for 

checking the efficiency of a vector parameter estimator arises from two different viewpoints 

of looking at the MSE of a vector parameter, as described in subsection 3.1. With the trace of 

covariance matrix of the parameters, we maintain the focus on only the variances of the 

parameters, whereas with the determinant of the covariance matrix we change this focus and 

look at the covariances between the parameters, as well. Therefore, it will not be surprising 

that generally the trace ratio and determinant ratio are not equal or even  not consistent, under 

the same factors imposed on (or present in) a SURE model, when we compare the SUMRE 

method to each of the SURE method and/or the method of separate median regression 

equations. 

 

However, we must notice that the trace ratio by itself (without adding it to the squared bias) 

does not give a correct result when we check the efficiency of a vector parameter estimator. 

Nevertheless, for the sake of simplicity someone may take only the trace to check the 
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efficiency of a vector parameter estimator. In this paper, apart from trace and squared bias, we 

will look at the MSE of the vector parameter estimators and MSE ratio, as well. In the 

following two subsections we are going to explain the differences between the trace ratios of 

the SUMRE method to each of the SURE method and the method of separate median 

regressions. We devote the entire subsection 4.2 to a discussion of the results in Tables 3 and 

Table 4. 

 

4.2.1 SUMRE versus SURE GLS 

 

Most of the facts discussed in the subsection (4.1.1) are consistent with the facts that could be 

discovered from a comparison of the SUMRE method to the SURE method based on trace 

ratio, except for some slight differences.  

 

Keeping the level of correlations fixed, the trace ratio increases as the level of skewness 

increases. With very low levels of skewness, the trace ratio is greater than 1, which is an 

indicator of inefficiency of the SUMRE method relative to the SURE method. With the level 

of skewness fixed (excluding the case MSMC, just like subsection 4.1.1), incremental levels 

of correlations do not reduce the trace ratio a great deal but only slightly. A reason for the 

peculiar behaviour of MSMC case may be the higher bias of SURE parameters in the presence 

of a medium level of skewness and a medium level of correlations, since with small changes 

in MSE, according to the equation (3.1.3), when the squared bias increases, the trace 

decreases.  Finally, neither the sample size nor the number of equations taken into the model 

has any remarkable effect on the trace ratio. 

   

4.2.2 SUMRE versus Separate Median Regressions 

 

Most of the facts that could be discovered from Table 3 and Table 4, concerning the trace 

ratio of the SUMRE method compared to the method of separate median regressions, are very 

nearly consistent with the facts that are discussed in subsection 4.1.2. 

 

With a fixed level of correlations, the trace ratio does not change remarkably with increases in 

the level of skewness, whereas with a fixed level of skewness, a considerable reduction of 

trace ratio occurs with each rise of the level of correlations. Trace ratio is neither remarkably 

changed by the sample size nor by the number of equations of the model. 
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4.3 Squared Bias Ratio Comparison 

 

In the following two subsections, we are going to compare the efficiency of the SUMRE 

method and the efficiencies of each of SURE method and the method of separate median 

regressions, based on the squared bias ratio. As we mentioned before, according to the 

equation (3.1.3) none of the squared bias ratio and trace ratio alone could yield a complete 

and valid conclusion about the efficiency or even the relative efficiency of some estimators. 

However, first, for the sake of simplicity, one may desire to compare the efficiency of some 

parameters, based on the squared bias ratio. Second, one may not wish to look at the 

efficiency or relative efficiency of some estimators, but merely wish to look at their bias. In 

both of these cases, the squared bias ratio can give a representation of some properties of an 

estimator. Throughout subsection 4.3, we use Table 5 and Table 6 to make comparisons. We 

compare the SUMRE method separately with each of SURE method and the method of 

separate median regression equations, in the following two subsections. 

 

4.3.1 SUMRE versus SURE GLS 

 

In all cases, except the LSHC case and asymptotically each of LSMC and MSHC cases, the 

squared bias ratio is less than 1.  Furthermore, this ratio is very small in HS cases. However, 

in the absence of skewness the ratio becomes greater than 1, which is an indicator of a smaller 

bias of SURE parameters in those cases (LS cases). In the presence of correlations, the ratio 

grows in the magnitude asymptotically. This is because of the asymptotically unbiasedness of 

the parameters of the SUMRE method. 

 

Another fact concerning the squared bias ratio of the SUMRE method to the SURE method is 

that keeping whatever level of correlations as fixed, the ratio increases with any increase in 

the level of skewness, and taking whatever level of skewness as fixed, the ratio decreases with 

almost any rise in the level of correlation. 

  

4.3.2 SUMRE versus Separate Median Regressions 

 

In the case LSLC, the squared bias of separate median regressions estimators is less than the 

squared bias of SUMRE estimators. Moreover, even in this case LSLC, the two squared biases 

are asymptotically equal, since the ratio reduces to tend to 1 asymptotically. This is due to the 
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fact that estimators of both methods are asymptotically unbiased. Furthermore, in all non-LC 

cases, the ratio is less than 1. Finally, it is worth noticing that there seems to be the effect of 

the interaction between the skewness and the correlations on the squared bias ratio. 

 

4.4 MSE Ratio Comparison  
 

The MSE ratio is computed using equation (3.1.6), and this is true only for the MSEs defined 

in equation (3.1.3). For MSEs defined in equation (3.1.4), using the inequality (3.1.5), the 

MSE ratio is replaced by the determinant ratio. Therefore, depending on the squared bias ratio 

whether it is small or large, the trend of changes in MSE ratio is somehow consistent and 

parallel to the trend of changes in trace ratio, for each pair of methods—SUMRE to SURE, or 

SUMRE to the method of separate median regressions. In the following two subsections we 

shed light on those changes, in more detail. Throughout subsection 4.4, we use only the 

results in Table 7 and Table 8. 

 

4.4.1 SUMRE versus SURE GLS 

 

With the exception of LS cases, the MSE ratio is less than 1 in all the cases, which indicates 

the relative efficiency of SUMRE estimators to the estimators of the SURE method. Taking 

each level of correlation as fixed, the ratio decreases as the level of skewness increases. If we 

interchange these two factors, i.e., fix the level of skewness and increase the level of 

correlations, the ratio seems to be odd in MSMC case, due to a decrease in the squared bias in 

that case. Also, the gap between SUMRE and SURE methods is not reduced asymptotically. 

Overall, the results in MSE ratio are almost consistent with the results in trace ratio. 

  

4.4.2 SUMRE versus Separate Median Regressions 

 

In the presence of correlations, the relative efficiency of SUMRE estimators over the 

estimators of separate median regressions is improved, according to the value of the MSE 

ratio, which is less than 1 in most of non-LC cases. However, a very high level of skewness 

disturbs the delicate balance between the levels of skewness and correlations in HSLC case. It 

is worth noticing that the results based on the MSE ratio are almost consistent with the results 

based on the trace ratio.  Finally, the MSE ratio is not asymptotically changed in a 

considerable amount. 
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 4.5. Squared Bias Changes 

 

In this section, we are more interested in focusing on each method by itself—and we are not 

going to compare any methods with each other. Because of that, the results in Table 9 and 

Table 10, that are the only results used in this subsection, are not ratios (scale free) but the 

squared bias of each method (scale squared). As we mentioned before, the results of squared 

bias are more meaningful for the efficiency of some estimators if the trace of the covariance 

matrix of the estimators is also taken into account. However, by looking at the biasness of the 

estimators one can get a useful idea about the affect of any combination of factors present in  

the model on the estimations. 

 

For SURE estimators, we realize that, without exception, the squared bias rises at each level 

of correlation, when the level of skewness increases. The squared bias reduces as the sample 

size increases. An interesting fact is that in MS cases, the squared bias of SURE estimators 

rises up as the level of correlations rises. For other cases, the changes are not regular, 

especially in MC cases.  

 

Concerning estimators of separate median regressions, the squared bias increases with each 

rise in the level of skewness, at all levels of correlations, and the squared bias increases with 

each rise in the level of correlations, at all levels of skewness. In other words, the changes in 

squared bias are parallel to the changes in each of the level of skewness and the level of 

correlations. However, the changes are reduced as the sample size increases.  

 

The changes in squared bias of SUMRE estimators are not exactly parallel with the changes 

in squared bias of the two other methods. But, some similarities are present in the changes 

occurring to the squared bias of all the three methods. One such is that for all of the three 

methods, at a fixed level of correlation, the squared bias increases as the level of skewness 

increases. The other one is that the squared bias decreases as the sample size increases. 

 

The changes in squared bias for all three methods are almost parallel, except for the case of 

LSMC, where the changes in squared bias of SUMRE estimators and SURE estimators are not 

as regular as the change of squared bias of the estimators of separate median regressions is. 
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4.6 MSE Changes 

 

In this subsection, analogous to subsection 4.5, we look at the changes that occur in the MSE 

(defined in 1.3.3) of the estimators of each of the methods SUMRE, SURE and separate 

median regressions, using the results presented in Table 11 and Table 12 exclusively. When 

we do not look at the MSE of estimators comparatively, the results based on the MSE defined 

in (3.1.4) are almost consistent with those based on the MSE defined in (3.1.3). Using the 

linear algebra theory, for the MSE defined in (3.1.4) we have 

( ) ( )( )ˆ ˆ ˆdet ( ) detMSE E⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

θ θ θ θ θ  

( )( )1 ˆ ˆ
kk

trace E
k

⎛ ⎞⎛ ⎞ ′≤ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
θ θ θ θ−  

( )( )ˆ ˆ
k

trace E⎛ ⎞′≤ − −⎜ ⎟
⎝ ⎠

θ θ θ θ  

( ) ( )ˆ ˆ
k

E⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

θ θ θ θ  

 

This means any reduction in MSE defined in (3.1.3) automatically implies a reduction in the 

MSE defined in (3.1.4). 

 

Concerning SURE estimators, for the non-MC cases the MSE increases as the level of 

skewness increases. Among the MC cases, the MSE reduces for the MSMC case. Keeping the 

level of skewness as fixed, the behaviour of MSE is odd for the MC cases. 

 

MSE of the estimators of separate median regressions is reduced for the MS cases, whatever 

the level of correlations is, but their MSE increases at fixed levels of skewness, as the level of 

correlations increases, except for the case MSHC. 

 

For SUMRE estimators, the MSE almost (but not quite) increases as the level of skewness 

increases. Depending on the balance between the level of skewness and the level of 

correlations the MSE increases with very high levels of skewness and very high levels of 

correlation. What is common between the changes in MSE of the estimators of all the above 

methods is that the MSE decreases as the sample size increases. 
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5. Empirical Application 
 

To assess the performance of our SUMRE method, we consider an empirical example and 

compare its estimators with the feasible SURE GLS estimators. In our empirical example we 

use some data taken from Multi-Generation Register at Statistics Sweden on three generations 

of male immigrants from Finland to Sweden. The male immigrants have been selected based 

on their grandfather’s (the father’s father) place of birth which in our case is Finland. A more 

thorough explanation of the variables in the data set can be found in (Hammarstedt 2009; 

Ekberg, Hammarstedt and Shukur, 2009).  

 

The first group in the study contains all the male individuals who were born in Finland and 

living in Sweden in the year 1960. This group constitutes the first-generation immigrants in 

the study. For all individuals in the first generation we have data on yearly earnings and their 

background variables like: age, educational attainment, civil status and region of residence in 

Sweden in the year 1968. All the individuals in that group were between 25 and 64 years of 

age at the observation time (in year 1968). 

 

The second group in the study contains the second generation male immigrants, which are the 

first group individual’s biological sons. Yearly earnings, as well as data on the background 

variables like: age, educational attainment, civil status and region of residence in Sweden, are 

observed for the second generation in the year 1980. All the individuals in that group were 

between 25 and 64 years of age at the observation time (in year 1980). 

 

Finally, the third group in the study contains the third-generation male immigrants, which are 

the second group individual’s biological sons. For this group, we have the same data as we 

mentioned above for the first and second generation of male immigrants, in the year 2003. All 

the individuals in that group were between 25 and 64 years of age at the observation time (in 

year 2003).  

 

For each individual, earnings are defined as yearly taxable income from work which includes 

income from wage-employment, self-employment, sickness pay and parents’ allowances. We 

only include individuals who are in their working ages (i.e. 25-64 years of age) and, 

furthermore, active on the labour market (i.e. have positive earnings) at the observation time. 
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To link the generations together, we first identify individuals from the first generation, and 

then their sons and the sons of their sons (their grandsons) that have earnings. Since there is 

the possibility that individuals from the first generation might have more than one son having 

earnings, and their sons, in turn, might have more than one son with earnings, information 

about the first and second generations might appear more than one time in the data. More 

precisely, since the correspondence between the first, the second and the third generation of 

male immigrants having earnings is not a one-to-one correspondence (bijection), for the 

second and especially the first generations we will have some replicated observations. 

Otherwise, to get a one-to-one correspondence between the individuals of different 

generations, we had to remove some individuals from the second and especially the third 

generations, and among two or more sons having earning select only one of them to be taken 

into the sample. In this case, we would have two problems. First, which son should be 

selected? Second, the samples would be much smaller. This means that the removal of the 

individuals would not be without bias and a vast body of information would be lost.  Though 

this is not happening very often elsewhere, we decided to include replicated individuals from 

the first and the second generations in the data when they have more than one son having 

earnings, in an attempt to construct balanced SURE models.  

 

The system of three equations is a model like (2.2.1), as shown below: 

   (5.1) i i i= +Y X β ε 1,2,3i =i ,   

 where, what the symbols in the model stand for are described as follows. The vector  is a 

 vector of observations on the dependent variable representing the natural logarithm of 

the yearly earnings of the individuals of the ith generation. The matrix  is an  matrix 

of presumed non-stochastic explanatory variables representing each of intercept, age, square 

of age, dummy variables for each of civil status, living in metropoles, living in northern part 

of Sweden and an ordinal variable indicating the level of educational attainments. The vector 

 is a  vector of unknown parameters in the model. The vector  is an T  vector of 

random error term with . The symbol T stands for the number of observations per 

equation. Since the sample size is 647 then T

iY

1T ×

iβ

iX

iε

iT k×

1×1ik ×

( )iE =ε 0

647= . Finally,  is the number of columns 

(number of explanatory variables with intercept) of , for 

ik

1,2,iX 3i = . In this example, all the 

equations have the same number of explanatory variables, i.e., k 7 , for . i 1,= 2,3i =
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If we expand upon each equation of the proposed model, we will have the following 

regression equations. 
2

1 2 3ln( )i io i i i i iearnings Age Age CivilStausβ β β β= + + + i

i

 

4 5 6i i i i iLiveInMetropoles LiveInNorth Educationβ β β+ + + ,  

    (5.2)    for 1,2,3i =

 

We used the bootstrap method, based on 2000 times of resampling of observations (and not of 

estimated errors), to compute the standard error of the estimated parameters of SUMRE and 

SURE methods. At each time of resampling, feasible SURE parameters are estimated, using 

the equations (2.2.8), (2.2.9) and (2.2.10), and the parameters of the SUMRE method are 

estimated using the equation (2.3.7). 

 
In Table 5.1, we see that the correlation coefficients, which are computed using the formula 

(3.2.6), are rather low, particularly between the first and the third generation immigrants and 

between the second and the third generation immigrants. 

 
Table 5.1. Correlation Coefficients of the Cross-Equation Errors 

Generations First Generation Second Generation Third Generation 
First Generation 1 0.1600 -0.0151 

Second Generation  1 0.0660 
Third Generation   1 

 

Using the formula (3.2.7), Table 5.2 shows that the distribution of the logarithm of yearly 

earnings for the first generation immigrants is not very skewed, whereas for the second and 

the third generation immigrants it is highly skewed to the left.  

 

Table 5.2. Coefficients of Skewness of Errors 

Generation First Generation Second Generation Third Generation 
Skewness -0.6464 -2.9863 -2.4189 

 

 

As it appears from Table 5.3, the differences between SURE and SUMRE estimates are not 

considerable in the first equation, due to the reason of very low skewness of the errors in the 

first equation (see Table 5.2), whereas the differences are remarkable in the second and third 

equations for the opposite reason. A similar argument holds for the standard errors. But which 

estimates are more efficient?  
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Table 5.3. SURE & SUMRE Parameter Estimators and Standard Deviations of Estimators 

Parameter Estimator Standard Deviation Equation Variables (of) SURE SUMRE SURE SUMRE 
Age -0.0379 -0.0922 * 0.0391 0.0445 

Age Squared 0.0004 0.0009 * 0.0004 0.0004 
Civil Status 0.3177 * 0.2420 * 0.0911 0.1071 

First Living in Metropoles 0.1155 0.1463 * 0.0602 0.0611 Generation 
Living in North -0.1873 * -0.1019 0.0624 0.0655 

Education 0.1782 * 0.1808 * 0.0238 0.0241 
Constant 4.8909 * 6.3040 * 0.9063 0.9516 

Age 0.0848 0.0472 0.0448 0.0296 
Age Squared -0.0010 -0.0005 0.0007 0.0004 
Civil Status 0.0750 0.0659 * 0.0421 0.0221 

Second 
Generation Living in Metropoles 0.0358 0.0530 0.0435 0.0305 

Living in North -0.0852 -0.0265 0.0562 0.0292 
Education 0.0276 * 0.0321 * 0.0074 0.0062 
Constant 4.5550 * 5.2396 * 0.7318 0.4899 

Age 0.3495 * 0.1819 * 0.0931 0.0516 
Age Squared -0.0046 * -0.0024 * 0.0015 0.0008 
Civil Status 0.2505 * 0.0835 * 0.0930 0.0408 

Third Living in Metropoles 0.2634 * 0.1499 * 0.0806 0.0477 Generation 
Living in North -0.2000 -0.1122 * 0.1106 0.0524 

Education 0.0188 0.0380 * 0.0201 0.0114 
Constant 0.8626 4.0287 * 1.5280 0.8886 

(.)* means that the estimate is significant at 5% level. 

 

However, the SUMRE estimates are more efficient at the presence of skewness, due to the 

fact that their standard errors are lower than the standard errors of their matching SURE 

estimates. This argument is consistent with the results of the Monte Carlo simulation 

experiment.  

 

As we previously mentioned, we are only interested in explaining the benefits that we gain 

from using our SUMRE method, under specific conditions. However, if we delve into the 

results that we have obtained, and thence look at the parameter estimator of SUMRE method 

separately or compare them with the parameter estimators of SURE method, we can realize 

more interesting benefits from using our SUMRE method. Therefore, giving a brief 

explanation of the results from this empirical exercise might be necessary. 
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Taking the theory of economics into account, we realize some odd results in the Table 5.3. In 

a quadratic functional relationship between the natural logarithm of earnings and the age, a 

negative coefficient for age squared and a positive coefficient for age are obtained, as it is the 

case with the corresponding parameter estimates of the second and the third generations. The 

opposite is obtained for the first generation, i.e., the relationship between the natural 

logarithm of earnings and the age for the first generation is negative. 

 

 
Table 5.4. Summary Statistics of Age and Education 

Case 
Summaries 

Generation’s Age Generation’s Education 
First Second Third First Second Third 

Mean 50.3 32.6 30.2 7.2 10.7 12.4 
Median 51 31 29 7 11 12 
Minimum 31 25 25 7 7 7 
Maximum 64 47 47 12 18 18 
Std. Deviation 7.75 5.42 4.52 0.89 2.76 1.89 

 

An obvious reason for that is the age interval taken into the sample for each group of 

immigrants, as shown in Table 5.4 and Figure 5.1. Individuals of the first generation 

immigrants are relatively much older (and also less educated) than the individuals of the 
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Figure 5.1 Quadratic fit of ln(earnings) vs. Age 
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second and third generations. Consequently, for the first generation immigrants the age was 

not beneficial to their earnings while the opposite is true for the second and especially the 

third generation immigrants, since most of the individuals of these two groups taken into the 

sample are of an age less than 40. Therefore, the quadratic fit lines for each generation will be 

different, especially for the third generation, which is a sharp quadratic line having a very low 

intercept (see Table 5.4 and Figure 5.1). 

 

If we look at the SUMRE results for the first generation male immigrants, we find that the 

variable age has an unexpected negative sign for its estimated coefficient (although non 

significant) while the age-square has a  positive estimate for its coefficient. The variables civil 

(married) and metro (big cities) have positive significant effects while northern has a negative 

effect. The number of years of education (school) has also shown to have positive effect 

(although non significant). Since the skewness is small in this equation, these results are fairly 

similar to those of the SURE model. 

 

Another fascinating result of applying the SUMRE method in this exercise is the significance 

of almost all of SUMRE estimators while many of their corresponding SURE estimators are 

not significant at the 5% level of significance, as indicated in Table 5.3. 

 

On the other hand, since the skewnesses are higher in the equations of the second and the 

third generations, we find that the results from the SUMRE differ from those of the SURE. 

This implies that results from the SUMRE are more accurate and representative than those 

from the SURE. The estimated parameters of the independent variables in these two equations 

have the expected signs. 

 

Another fact that could be abstracted from the results of Table 5.3 is the relative efficiency of 

SUMRE estimators in the first and second generation equations, where the data of these two 

generations are highly skewed. This could be evaluated through the smaller standard error of 

the estimated parameters. But, on the other hand, for the first generation equation, the SURE 

estimators are more efficient due to the very low level of skewness of the data in that group. 

This agrees with the results that we obtained from the Monte Carlo simulation experiment, 

which indicate that in the presence of skewness of the data, the SUMRE estimators are more 

efficient than SURE estimators.  
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6. Summary and Conclusions 
 

In this paper, we generalize the median regression method and make it applicable to systems 

of regression equations. Given the existence of proper systemwise medians of the errors from 

different equations, we apply the weighted median regression with the weights obtained from 

the covariance matrix of errors from different equations calculated by the ordinary SURE 

method. The SURE method is considered to be one of the most successful and efficient 

methods for estimating seemingly unrelated regressions with the assumption of symmetric 

regression errors of each equation. The benefit of SURE models in our case is that the SURE 

estimators utilise the information present in the correlations of the cross equations errors and 

hence are more efficient than other estimation methods like the OLS method. The Seemingly 

Unrelated Median Regression Equations (SUMRE) Models produce results that are more 

robust than the usual SURE or single equations OLS estimation when the distributions of the 

dependent variables are not symmetric. Moreover, the results are also more efficient than for 

the cases of single equations median regressions whose cross equations errors are correlated. 

More precisely, the aim of our SUMRE method is to produce a harmony of existing skewness 

and correlations of errors in systems of regression equations. A theorem is derived and 

indicates that even with the lack of statistically significant correlations between the equations, 

using SUMRE method instead of SURE method will not damage the estimation of 

parameters. 

 

A Monte Carlo experiment with 2000 replications has been conducted to investigate the 

properties of the SUMRE method in situations where the number of equations in the system, 

number of observations, strength of the correlations of cross equations errors, and the 

departure from the normality distribution of the errors, have been varied. The results have 

shown that, when the cross equations correlations are medium or high and the level of 

skewness of the errors of the equations are also medium or high, the SUMRE methods 

produces estimators that are more efficient and less biased than the ordinary SURE GLS 

estimators. Moreover, the results are also more efficient and less biased than in the cases 

where OLS or single equation median regressions are applied.  

 

Our results from the empirical application are in accordance with what we discovered from 

the simulation study, with respect to the relative gain in efficiency of SUMRE estimators 

compared to SURE estimators, in the presence of Skewness of error terms. 
 40
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Appendix  
 
 

Table 1: Determinant Ratio (3 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 5.09e+02 2.17e-15 6.54e-67 1.81e+03 2.31e-04 6.50e-31 1.88e+04 2.14e-14 6.50e-58 

Separate 
Median 
Regression 

50 
8.01e-01 6.60e-01 1.53e-02 2.63e-03 1.88e-06 3.80e-06 2.94e-23 5.51e-35 1.57e-21 

SURE GLS 4.53e+02 4.91e-21 7.68e-98 1.44e+03 1.02e-07 6.33e-42 1.42e+04 4.70e-19 5.75e-86 

250 Separate 
Median 
Regression 

8.77e-01 8.20e-01 2.76e-01 4.15e-03 1.26e-06 2.00e-05 1.63e-24 4.27e-35 5.21e-26 

SURE GLS 4.27e+02 4.24e-22 1.63e-106 2.37e+03 2.60e-09 7.89e-45 1.25e+04 8.59e-20 4.68e-91 

1000 Separate 
Median 
Regression 

8.35e-01 8.94e-01 3.98e-01 5.72e-03 1.83e-06 6.44e-05 2.95e-24 2.70e-36 2.59e-27 
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Table 2: Determinant Ratio (5 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 
Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 5.06e+04 1.03e-22 7.90e-66 3.19e+05 6.94e-10 1.74e-68 1.08e+06 2.44e-15 1.36e-94 

Separate 
Median 

Regression 

50 
1.45e+00 3.57e-01 4.66e-02 2.87e-10 8.88e-11 7.34e-12 5.09e-34 5.36e-29 2.70e-30 

SURE GLS 4.95e+04 2.07e-34 7.49e-92 2.59e+05 4.19e-16 5.60e-93 7.23e+05 1.90e-23 4.24e-156 

Separate 
Median 

Regression 

250 
1.47e+00 4.12e-01 1.94e-01 3.08e-10 5.52e-10 4.35e-10 5.12e-34 2.09e-30 9.08e-40 

SURE GLS 4.20e+04 8.07e-39 6.03e-99 2.62e+05 3.57e-19 1.09e-99 7.17e+05 9.40e-26 5.57e-166 

Separate 
Median 

Regression 

1000 
1.26e+00 3.93e-01 2.32e-01 3.43e-10 2.72e-09 2.64e-09 8.68e-34 7.50e-30 1.10e-39 
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Table 3: Trace Ratio (3 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.54e+00 1.13e-01 5.24e-05 1.60e+00 5.55e-01 1.23e-02 1.62e+00 8.30e-02 1.68e-04 

Separate 
Median 

Regression 

50 
1.00e+00 1.01e+00 8.34e-01 6.16e-01 5.78e-01 8.47e-01 2.27e-02 4.46e-03 6.52e-02 

SURE GLS 1.51e+00 4.82e-02 3.24e-07 1.57e+00 2.84e-01 1.81e-03 1.34e+00 3.84e-02 1.70e-06 

Separate 
Median 

Regression 

250 
1.03e+00 1.04e+00 1.05e+00 6.55e-01 7.36e-01 1.19e+00 1.58e-02 3.99e-03 2.60e-02 

SURE GLS 1.44e+00 3.98e-02 7.28e-08 1.62e+00 2.19e-01 1.06e-03 1.38e+00 3.34e-02 6.84e-07 

Separate 
Median 

Regression 

1000 
1.00e+00 1.04e+00 1.05e+00 6.71e-01 8.68e-01 1.39e+00 1.48e-02 2.54e-03 1.85e-02 
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Table 4: Trace Ratio (5 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.55e+00 1.37e-01 3.26e-03 1.58e+00 4.87e-01 3.26e-03 1.51e+00 2.68e-01 1.88e-04 

Separate 
Median 

Regression 

50 
1.02e+00 1.04e+00 1.00e+00 3.77e-01 7.06e-01 8.63e-01 3.45e-02 1.03e-01 1.06e-01 

SURE GLS 1.55e+00 4.30e-02 2.24e-04 1.58e+00 2.52e-01 2.84e-04 1.46e+00 1.45e-01 7.36e-07 

Separate 
Median 

Regression 

250 
1.01e+00 1.07e+00 1.09e+00 3.88e-01 1.05e+00 1.40e+00 3.27e-02 1.02e-01 5.79e-02 

SURE GLS 1.52e+00 2.64e-02 1.02e-04 1.55e+00 1.86e-01 1.38e-04 1.48e+00 1.12e-01 2.78e-07 

Separate 
Median 

Regression 

1000 
1.01e+00 1.07e+00 1.14e+00 3.97e-01 1.21e+00 1.62e+00 3.21e-02 1.15e-01 5.63e-02 
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Table 5: Squared Bias Ratio (3 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.95e-01 2.86e-02 4.68e-05 5.38e-01 9.53e-02 1.24e-02 6.41e+00 1.07e-01 5.07e-05 

Separate 
Median 

Regression 

50 
4.07e-01 6.18e-01 1.69e+00 1.18e-01 2.26e-01 1.33e+01 3.33e-02 9.28e-02 4.96e-02 

SURE GLS 2.73e-02 1.02e-02 7.43e-07 1.16e+00 4.88e-02 2.30e-04 1.15e+00 1.10e+00 1.91e-05 

Separate 
Median 

Regression 

250 
3.20e-01 2.17e-01 1.37e+00 6.71e-01 3.62e-02 5.07e-01 6.48e-02 7.35e-02 1.58e-02 

SURE GLS 4.61e-02 2.64e-02 8.19e-08 1.06e+01 2.51e-01 1.02e-04 1.08e+00 1.83e+00 1.39e-04 

Separate 
Median 

Regression 

1000 
5.43e-01 3.24e-01 9.72e-01 2.19e-01 8.49e-02 2.00e-01 4.92e-02 1.07e-01 3.47e-02 
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Table 6: Squared Bias Ratio (5 Equations) 

 
Correlation 
Low Medium High 

Sa
m

pl
e 

Si
ze

 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.33e+00 3.81e-03 1.20e-04 3.16e-01 1.08e-02 4.09e-03 7.01e-01 8.58e-03 6.51e-08 

Separate 
Median 
Regression 

50 
8.89e-01 1.45e+00 5.47e+00 4.58e-01 4.28e-01 1.20e+01 4.04e-01 7.91e-02 4.31e-03 

SURE GLS 1.72e+00 2.54e-04 8.79e-06 1.64e-01 1.97e-02 7.83e-06 6.74e-01 8.05e-03 1.32e-08 

Separate 
Median 
Regression 

250 
1.42e+00 5.48e-01 2.67e+00 2.15e-01 5.26e+00 3.66e+00 1.16e-01 5.02e-02 2.30e-03 

SURE GLS 1.06e+00 2.99e-04 7.08e-07 2.56e-01 2.21e-02 1.43e-06 6.06e-01 1.02e-02 5.15e-09 

Separate 
Median 
Regression 

1000 
9.29e-01 1.05e+00 1.92e+00 8.91e-02 6.98e+00 1.67e+00 6.86e-02 1.73e-01 6.24e-04 

 
 
 
 
 
 
 
 
 
 
 

Table 7: MSE Ratio (3 Equations) 
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Correlation 

Sa
m

pl
e 

Si
ze

 
Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.36e+00 7.55e-01 1.86e-04 1.61e+00 9.78e-01 3.08e-03 1.61e+00 5.82e-01 7.55e-04 

Separate 
Median 

Regression 

50 
1.00e+00 1.02e+00 1.10e+00 6.30e-01 6.87e-01 8.68e-01 1.44e-01 2.04e-01 1.27e-01 

SURE GLS 1.32e+00 5.91e-01 3.02e-06 1.62e+00 8.62e-01 4.89e-04 1.56e+00 5.53e-01 1.29e-04 

Separate 
Median 

Regression 

250 
1.01e+00 1.04e+00 1.05e+00 6.44e-01 6.74e-01 1.21e+00 1.25e-01 2.10e-01 1.66e-01 

SURE GLS 1.21e+00 5.44e-01 1.05e-06 1.54e+00 8.44e-01 3.01e-04 1.55e+00 6.25e-01 1.23e-04 

Separate 
Median 

Regression 

1000 
1.01e+00 1.05e+00 1.08e+00 6.38e-01 5.24e-01 1.14e+00 1.14e-01 1.75e-01 1.44e-01 
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Table 8: MSE Ratio (5 Equations) 
 

Correlation 
Sa

m
pl

e 
Si

ze
 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.55e+00 1.19e-01 2.74e-03 1.51e+00 3.86e-01 3.32e-03 1.35e+00 1.23e-01 3.51e-05 

Separate 
Median 

Regression 

50 
1.02e+00 1.04e+00 1.01e+00 3.77e-01 7.03e-01 9.35e-01 3.82e-02 1.02e-01 1.03e-01 

SURE GLS 1.55e+00 3.82e-02 1.91e-04 1.47e+00 1.61e-01 2.01e-04 1.34e+00 8.74e-02 4.52e-07 

Separate 
Median 

Regression 

250 
1.01e+00 1.07e+00 1.09e+00 3.85e-01 1.09e+00 1.41e+00 3.46e-02 9.81e-02 4.53e-02 

SURE GLS 1.52e+00 2.26e-02 8.17e-05 1.44e+00 1.21e-01 8.08e-05 1.33e+00 6.69e-02 2.29e-07 

Separate 
Median 

Regression 

1000 
1.01e+00 1.07e+00 1.14e+00 3.77e-01 1.29e+00 1.62e+00 3.35e-02 1.18e-01 4.14e-02 
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Table 9: Squared Bias (3 Equations) 
 

Correlation
Sa

m
pl

e 
Si

ze
  

Low Medium High 
Skewness Skewness Skewness   

Low Medium High Low Medium High Low Medium High 

SURE GLS 2.22e+01 2.66e+03 1.26e+10 7.20e+02 5.70e+03 1.10e+07 6.89e+01 5.73e+04 2.32e+09 

Separate 
Median 

Regression 
1.06e+01 1.24e+02 3.47e+05 3.28e+03 2.41e+03 1.02e+04 1.33e+04 6.60e+04 2.37e+06 50 

SUMRE 4.34e+00 7.63e+01 5.89e+05 3.87e+02 5.43e+02 1.36e+05 4.42e+02 6.12e+03 1.18e+05 

SURE GLS 7.38e+01 4.80e+02 1.99e+09 1.18e+02 1.58e+03 4.16e+06 3.59e+01 3.35e+03 1.75e+08 

Separate 
Median 

Regression 
6.29e+00 2.26e+01 1.08e+03 2.04e+02 2.13e+03 1.89e+03 6.38e+02 5.00e+04 2.12e+05 250 

SUMRE 2.01e+00 4.90e+00 1.48e+03 1.37e+02 7.70e+01 9.58e+02 4.13e+01 3.67e+03 3.34e+03 

SURE GLS 8.85e+01 2.66e+02 1.83e+09 2.45e+00 6.88e+02 3.65e+06 1.72e+01 2.32e+03 2.67e+07 

Separate 
Median 

Regression 
7.52e+00 2.17e+01 1.54e+02 1.19e+02 2.04e+03 1.86e+03 3.77e+02 3.95e+04 1.07e+05 1000 

SUMRE 4.08e+00 7.03e+00 1.50e+02 2.61e+01 1.73e+02 3.71e+02 1.85e+01 4.23e+03 3.72e+03 

 
 
 
 
 
 
 
 

 

- 50 -



 
Table 10: Squared Bias (5 Equations) 

 
Correlation

Sa
m

pl
e 

Si
ze

 
 

Low Medium High 
Skewness Skewness Skewness   

Low Medium High Low Medium High Low Medium High 

SURE GLS 9.19e-02 5.86e+05 3.92e+08 7.39e+02 2.57e+04 5.60e+07 4.95e+03 3.87e+05 1.20e+12 

Separate 
Median 

Regression 
1.38e-01 1.54e+03 8.62e+03 5.10e+02 6.47e+02 1.90e+04 8.58e+03 4.19e+04 1.81e+07 50 

SUMRE 1.23e-01 2.23e+03 4.72e+04 2.34e+02 2.77e+02 2.29e+05 3.47e+03 3.32e+03 7.82e+04 

SURE GLS 6.75e-03 9.27e+04 8.14e+07 2.35e+02 1.39e+04 6.65e+07 6.99e+02 4.50e+04 7.42e+10 

Separate 
Median 

Regression 
8.21e-03 4.31e+01 2.68e+02 1.79e+02 5.21e+01 1.42e+02 4.07e+03 7.21e+03 4.26e+05 250 

SUMRE 1.16e-02 2.36e+01 7.15e+02 3.85e+01 2.74e+02 5.21e+02 4.71e+02 3.62e+02 9.77e+02 

SURE GLS 6.12e-03 3.31e+04 3.04e+07 6.27e+01 3.88e+03 3.31e+07 1.92e+02 1.39e+04 7.70e+09 

Separate 
Median 

Regression 
6.96e-03 9.42e+00 1.12e+01 1.81e+02 1.23e+01 2.84e+01 1.69e+03 8.24e+02 6.36e+04 1000 

SUMRE 6.46e-03 9.90e+00 2.15e+01 1.61e+01 8.59e+01 4.73e+01 1.16e+02 1.42e+02 3.97e+01 
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Table 11: MSE (3 Equations) 
 

Correlation 

Sa
m

pl
e 

Si
ze

 

Low Medium High 
Skewness Skewness Skewness   

Low Medium High Low Medium High Low Medium High 

SURE GLS 1.76e+04 5.17e+04 1.68e+11 4.86e+05 5.50e+04 5.15e+08 2.09e+05 4.32e+05 5.22e+09 

Separate 
Median 

Regression 
2.40e+04 3.84e+04 2.84e+07 1.24e+06 7.83e+04 1.83e+06 2.33e+06 1.23e+06 3.12e+07 50 

SUMRE 2.41e+04 3.90e+04 3.13e+07 7.81e+05 5.38e+04 1.59e+06 3.36e+05 2.52e+05 3.94e+06 

SURE GLS 3.31e+03 1.01e+04 3.26e+10 9.01e+04 1.09e+04 9.67e+07 3.72e+04 7.89e+04 8.23e+08 

Separate 
Median 

Regression 
4.34e+03 5.78e+03 9.42e+04 2.27e+05 1.39e+04 3.91e+04 4.64e+05 2.08e+05 6.43e+05 250 

SUMRE 4.37e+03 5.99e+03 9.86e+04 1.46e+05 9.38e+03 4.73e+04 5.81e+04 4.37e+04 1.06e+05 

SURE GLS 8.69e+02 2.62e+03 1.05e+10 2.31e+04 3.00e+03 2.96e+07 8.87e+03 2.20e+04 2.08e+08 

Separate 
Median 

Regression 
1000 1.05e+03 1.36e+03 1.02e+04 5.57e+04 4.84e+03 7.84e+03 1.20e+05 7.84e+04 1.77e+05 

SUMRE 1.05e+03 1.43e+03 1.10e+04 3.56e+04 2.53e+03 8.91e+03 1.37e+04 1.37e+04 2.55e+04 
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Table 12: MSE (5 Equations) 
 

Sa
m

pl
e 

Si
ze

 Correlation 

Low Medium High 
Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

50 

SURE GLS 8.72e+01 4.33e+06 2.36e+09 1.50e+04 1.22e+05 8.34e+08 2.47e+04 6.91e+05 1.48e+12 
Separate 
Median 

Regression 
1.32e+02 4.96e+05 6.39e+06 6.01e+04 6.70e+04 2.96e+06 8.75e+05 8.36e+05 5.04e+08 

SUMRE 1.35e+02 5.16e+05 6.46e+06 2.27e+04 4.71e+04 2.77e+06 3.34e+04 8.50e+04 5.18e+07 

250 

SURE GLS 1.61e+01 8.23e+05 5.32e+08 2.93e+03 3.55e+04 2.20e+08 4.50e+03 1.07e+05 1.89e+11 
Separate 
Median 

Regression 
2.47e+01 2.93e+04 9.30e+04 1.12e+04 5.23e+03 3.13e+04 1.74e+05 9.53e+04 1.88e+06 

SUMRE 2.50e+01 3.14e+04 1.02e+05 4.31e+03 5.72e+03 4.42e+04 6.03e+03 9.35e+03 8.54e+04 

1000 

SURE GLS 3.99e+00 2.26e+05 1.51e+08 7.39e+02 9.81e+03 7.93e+07 1.11e+03 3.13e+04 4.30e+10 
Separate 
Median 

Regression 
6.02e+00 4.78e+03 1.08e+04 2.82e+03 9.20e+02 3.97e+03 4.41e+04 1.77e+04 2.38e+05 

SUMRE 6.06e+00 5.10e+03 1.23e+04 1.06e+03 1.19e+03 6.41e+03 1.47e+03 2.09e+03 9.86e+03 
 
 
 

* * * 
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