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Abstract 

In this paper, we propose a Nonlinear Dickey-Fuller F test for unit root against first order Logistic 
Smooth Transition Autoregressive LSTAR (1) model with time as the transition variable. The 
Nonlinear Dickey-Fuller F test statistic is established under the null hypothesis of random walk 
without drift and the alternative model is a nonlinear LSTAR (1) model. The asymptotic distribution 
of the test is analytically derived while the small sample distributions are investigated by Monte Carlo 
experiment. The size and power properties of the test have been investigated using Monte Carlo 
experiment. The results have shown that there is a serious size distortion for the Nonlinear Dickey-
Fuller F test when GARCH errors appear in the Data Generating Process (DGP), which lead to an 
over-rejection of the unit root null hypothesis. To solve this problem, we use the Wavelet technique to 
count off the GARCH distortion and to improve the size property of the test under GARCH error. We 
also discuss the asymptotic distributions of the test statistics in GARCH and wavelet environments. 
Finally, an empirical example is used to compare our test with the traditional Dickey-Fuller F test.  
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I. Introduction 
Empirical studies show that many economic variables display nonlinear features, such as the 

business cycles of production, investment and unemployment rates, where the economic 

behaviors change when certain variables lie in different regions (see Granger and Teräsvirta, 

1993). To capture such nonlinear features, several nonlinear models have been introduced. 

Haggan, Heravi and Priestley (1984) were the first to present a family of “state dependent” 

models, including threshold autoregressive (TAR), exponential autoregressive (EAR) and 

smooth transition autoregressive (STAR) models, (see also Simon, 1999). Among them, 

STAR models allow nonlinear structures between the data regimes to be described with a 

smooth regime transition function. They are of particular interest in macroeconomics which 

always contains mass of economic agents, where even if the decisions are made discretely, 

the aggregated behaviors will show smooth regime changes (see Teräsvirta, 1994). There are 

two main STAR models: logistic STAR (LSTAR) and exponential STAR (ESTAR); the 

former contains TAR as a limit case. These models have wide applications; see for example, 

Teräsvirta and Anderson (1992), who applied the models to industrial production for 13 

OECD countries and Europe. Hall, Skalin and Teräsvirta (2001) used nonlinear LSTAR to 

describe the most turbulent period in El Niño event. Arango and Gonzalez (2001) found 

evidence of STAR representations in annual inflation in Colombia.  

 

However, before applying nonlinear models, testing linearity against nonlinearity is essential, 

especially for the forecast analysis (see Teräsvirta, 1994; Teräsvirta, Dijk, and Medeiros, 

2003; and Wahlström, 2004). Among the tests, unit root tests against nonlinear model need 

cautious consideration; we know that the unit root tests in linear models, such as Dickey-

Fuller (1979), Phillips-Perron (1998) lack power when the alternative model shows non-

linearity. In nonlinear cases, Enders, Walter and Granger (1998), Berben and Dijk (1999), 

Caner and Hansen (2001) performed tests for unit root against TAR, and showed that several 

series are better described by the TAR models. Kapetanios, Shin, and Snell (2003) proposed a 

unit root test against ESTAR model; Eklund (2003) proposed tests against LSTAR with 

transition variables being the lagged dependent variables. Later, He and Sandberg (2006) 

proposed the nonlinear Dickey-Fuller ρ  and t  test statistics with time as the transition 

variable. In this paper we first derive Nonlinear Dickey-Fuller F test of unit root against 

LSTAR models with time as the transition variable, we also investigate the size and power 

property of the test under independent normal distributed ( . . .n i d ) error.  



 

- 4 -

 

We next investigate the size property of the Nonlinear Dickey-Fuller F test when the error in 

the DGP shows conditional heteroskedasticity. The conditional heteroskedasticity was first 

mentioned in Engle (1982), who observed that many financial time series show apparent 

clustering in volatility although the overall series are stationary. ARCH models were 

designed to model this volatility and future variance forecast. As ARCH models require large 

order of lags when modeling persistence shocks, Bolleslev (1986) proposed GARCH models 

that can be represented by ARCH (∞). To estimate the parameters of ARCH/GARCH 

models, the Least Squares Estimate (LSE) and Maximum Likelihood Estimate (MLE) are 

used; the latter is more efficient under certain moment conditions, (see Li, Ling and McAleer, 

2002). 

 

However, Li, Ling and McAleer (2002) mentioned that ARCH/GARCH models are mainly 

employed to model the conditional variance without paying enough attention to the 

specification of the conditional mean, and any misspecification may lead to inconsistent 

estimates. Thus it is important to specify the conditional mean function at the outset. 

Specification tests are needed and the unit root test under ARCH/GARCH error has attracted 

much attention. Although Pantula (1988), Ling and Li (1997b) showed that the Dickey-Fuller 

tests could still be employed with ARCH/GARCH errors, Peter and Veloce (1988), Kim and 

Schmidt (1993) showed that they are generally not robust in the near integrated situation in 

GARCH error. Cook (2006) extended the study to the modified Dickey-Fuller unit root tests 

and showed that over-sizing was observed especially when the GARCH process exhibits a 

high degree of volatility.  

 

Therefore, to improve the test property, numerous studies pay attention to deriving unit root 

test based on Maximum Likelihood Estimation (MLE), which jointly estimates the 

parameters of unit root model and the GARCH error model. Among them, Seo (1999) 

derived a t -statistic under the 8th order moment condition. The distribution is a mixture of 

the Dickey-Fuller t distribution and the standard normal. Ling and Li (1998) derived unit 

root tests by MLE with GARCH error under the 4th order moment condition, and later the 2nd 

order moment condition in Ling and Li (2003).Those distributions are function of bivariate 

Brownian motion. Sjölander (2007) also presented an ADF-Best test by estimating GARCH 

error and model parameters before the unit root test.   
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However, the MLE is not a perfect solution to the GARCH error problem. Charles and Darné 

(2008) pointed out that when using MLE, Seo’s (1999) conclusion is based on the ARCH 

parameter α  being superior to GARCH parameter β  in 8 of the 10 GARCH (1, 1) processes. 

As van Dijk, Franses and Lucas (1999); Poon and Granger (2003) showed that the estimated 

GARCH (1,1) models are mostly in a situation where β >α  (The definition of β  and α  

please refer to Section IV.), Charles and Darné (2008) re-examined Seo’s Monte Carlo 

experiments with 0.8<α β+ < 1 and β >α , and they showed that the empirical size and 

power of the Dickey-Fuller test is generally better than Seo’s test. Moreover, in our LSTAR 

model, if we use MLE method, the estimated dimensional parameter space is larger than the 

linear case and it will be numerically quite complicated to obtain. Thus in this paper, we 

consider an alternative to MLE method to improve the unit root test under GARCH error.  

 

We apply the wavelet method, which has been widely used after its theoretic foundation in 

1980s (see Grossmann and Morelet, 1984 and Mallat, 1989), such as in signal smoothing and 

spectrum analysis where Chiann and Morettin (1998) showed how wavelet capture signals in 

different scales by wavelet spectrum decomposition. In economics, Schleicher (2002) found 

that since economic behaviors take place at different frequencies, the wavelet method can 

catch landscape characteristics in addition to the microscopic detail in economic areas. In this 

paper, we use the wavelet method to count off the finest local behavior of the series in the 

form of conditional heteroskedasticity in GARCH errors, whose information is caught by the 

highest scale in wavelet coefficients. The same logic can be found in Schleicher (2002), who 

pointed out that lower scales hold most of the energy of the unit root process and that non-

lasting disturbances are captured by the higher scale coefficients. This logic is also reflected 

in Fan and Gençay (2006), who stated that the spectrum of a unit root process is infinite at 

frequency 0. They proposed a unit root test on the perspective of the frequency domain as the 

test is the ratio of the energy of the low frequency scale to the total energy of the time series.  

 

Here our Nonlinear Dickey-Fuller F test statistic is in a time domain where we use the scaling 

coefficient directly in the test statistics; in this way, the asymptotic distribution of the test 

statistics will not be influenced under the wavelet environment.  We use Maximal Overlap 

Discrete Wavelet Transform (MODWT) as it has no restriction on the sample size and LA (8) 

wavelet filter as it has better band pass character. For more information about the MODWT 
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methods and LA filter, we refer to Vidakovic (1998), Percival and Walden (2000), and to 

Gençay Selcuk and Whicher (2001b).  

 

The paper is organized as follows. Section II presents the LSTAR model, the procedure for 

testing unit root against the LSTAR alternatives, the asymptotic properties of the test 

statistics and the finite sample distribution of the test. Section III investigates the size and 

power property of the test, and offers an empirical example. Section IV shows the size 

distortion of the test statistics under GARCH (1, 1) error. Section V presents the wavelet size 

improvement of the small samples and the asymptotical distribution. Section VI presents 

another empirical example to illustrate the wavelet improvement of over-rejection in the 

linear case. Concluding remarks can be found in the final section. All proofs of theorems in 

this paper are given in the Appendix. 

 

II. Model, Test procedure, The Nonlinear Dickey-Fuller F test    
 

In STAR models, the main difference between LSTAR and ESTAR models is that the 

LSTAR model can catch the asymmetric feature of a process in two extreme states: when the 

economic contractions are always more violent, and when expansions are more stationary and 

persistent. We only consider the nonlinear LSTAR models in two cases; the first case does 

not contain a drift term and the second case does. 

 

Case 1: 11 1 21 1 ( , , )t t t ty y y F t c uπ π γ− −= + + .   

      (1) 

Case 2: 10 11 1 20 21 1( ) ( , , )t t t ty y y F t c uπ π π π γ− −= + + + + .   

    (2) 

 

The transition function ( , , )F t cγ  in (1) and (2) is defined as follows:  

1 1( ; , ) .
(1 exp{ ( )}) 2

F t c
t c

γ
γ

= −
+ − −

 

 

The transition function here differs from that of the LSTAR model presented in Teräsvirta 

(1994), where the transition variable is defined as the lag values. The model in Teräsvirta 
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(1994) depicts the situation in which regime change depends on the deviation of the lagged 

observations while our model, as the same situation in He and Sandberg (2006), implies that 

the equilibrium regimes switch as the time evolves. In the transition function, γ  determines 

the speed of transition from one extreme regime to another at time c , the larger the γ  is, the 

steeper the transition function will be, leading to a faster transition speed. In Figure 1, we set c  

fixed as halfway time in three cases where γ = 20, 10, 5. Then the smooth transition function 

Y  is a bounded continuous non-decreasing transition function in t  and t  is from 1 to 44. 

0 10 20 30 40

-0
.4

-0
.2

0.
0

0.
2

0.
4

t

y

 
Figure 1. Logistic smooth transition functions:γ =20 (dashed-dotted line), γ =10 (dotted line), γ =5 (solid line) 

 

Meanwhile, set c  fixed, as γ →∞ , the function turns into a step function of t  and the model 

becomes a two regimes threshold autoregressive model (TAR). When setting t  and c  fixed, 

the situation when 0γ →  leads the resulting model to be linear. Therefore, the linear hypothesis 

is equivalent to the hypothesis that 0γ = . 

 

Our goal is to test the null hypothesis of a random walk without drift against the nonlinear 

LSTAR (1) model. The null hypothesis can be expressed as the following parameter 

restrictions: 

 

Case1: *
0 11: 0, 1H γ π= = . 

Case2: 0 10 11: 0, 0, 1H γ π π= = = . 

 

Since γ =0 will lead to an identification problem under the null hypotheses (see Teräsvirta, 

1994), we follow the approach used by Luukkonen, Saikkonen and Teräsvirta (1988), also He 
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and Sandberg (2006), by applying a Taylor expansion of the ( , , )F t cγ  with γ  around. 

However, we should keep in mind that the first-order expansion will lead to low power if the 

transition takes place only in the drift (see Luukkonen, Saikkonen and Teräsvirta (1988)). 

Therefore, the third-order Taylor expansion is more robust in power. The first- and third-

order Taylor expansions are as follows: 

 

1
( )( ; , ) ( ).

4
t cF t c oγγ γ−

= +         

      

  (3)  
3 3

3
3

( ) ( )( ; , ) ( ).
4 48

t c t cF t c oγ γγ γ− −
= + +      

       (4) 

Substituting equations (3) and (4) into the models in equations (1) and (2), after merging the 

terms, we obtain the following auxiliary regressions:  

 
' *

1 1 1 1
' *

1 3 3 3
' '
1 1 1 1 1 1

' '
3 3 1 3 3 3

1& 1: ( ) .

1& 3: ( ) .

2 & 1: ( ) .

2 & 3: ( ) .

t t t t

t t t t

t t t t t

t t t t t

Case Order y y s u

Case Order y y s u

Case Order y s y s u

Case Order y s y s u

ϕ

ϕ

λ ϕ

λ ϕ

−

−

−

−

= +

= +

= + +

= + +

 

The parameters are defined as follows: 

10 10
1 1 1

11 11

1
, ,ts

t
λ ϕ

λ ϕ
λ ϕ
⎛ ⎞ ⎛ ⎞⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

; 

30 30

31 31
3 3 32

32 32
3

33 33

1

, ,t

t
s

t
t

λ ϕ
λ ϕ

λ ϕ
λ ϕ
λ ϕ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

For details of the merging procedure, please refer to the Appendix. Note that the unit root test 

in the nonlinear time series model is a joint test of both unit root and linearity. The 

corresponding auxiliary null hypotheses are: 

 
*
0 0

0 0

: 1, 0, 1; 1,3.

: 0, ; 1, 0, 1; 1,3.
m m mj

m mi m mj

H j m

H i j m

ϕ ϕ

λ ϕ ϕ

= = ≥ =

= ∀ = = ≥ =
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We should keep in mind that under the null hypothesis, *
mtu  and mtu  are equal to 

tu with 1,3m = . 

 

Following the above auxiliary regressions and null hypothesis, we now derive the unit root 

test statistics and investigate their distribution properties. Here we assume that the error terms 

in equations (1) and (2) are independent identically distributed ( . . .i i d ). In the distribution 

form, the ( ).W  represents a standard Brownian motion on [0, 1]. 

 

Assumption 1: Let { }tu is . . .i i d with 2( ) 0, ( ) ,t t uE u Var u σ= = and 4( )tE u <∞ . 

 

Under Assumption 1, we derive two theorems that will be used to deduce the Nonlinear 

Dickey-Fuller F test statistic distribution. We first consider the case that does not contain 

intercept. 

 

Theorem1: Assume that the following models  ' *
1( )t t mt m mty y s uϕ−= +  hold, and assume that 

*
1( )mt tu ∞
=  fulfills Assumption 1. Then for 1,3m = , we have the following: 

* * * * * * 1 * * 2 * * * ' 1 * 2 * 1ˆ ˆ0, ( ) ( ) , ( ) ( ( ) ) ( ) .
m m m m

p L L

m m m m m m mt mt ms x xψ ψ ψ ψ σ− − −− → ϒ − → Ψ Π ϒ ϒ → Ψ∑ With 

parameter restrictions as follows:  
* * * 2
1 1 1{ }, [ ]diag T T T Tϒ = = , 

* * * 2 3 4
3 3 3{ }, [ ],diag T T T T T Tϒ = =  *ˆmψ ˆ( ),mϕ=  * ( )m mψ ϕ= , 

[ ]* * 2 *
1 , , ,mt t mt m u m m mx y s C Eσ−= Ψ = Π =  

( 1)*( 1)
,m ij m m

C c
+ +

⎡ ⎤= ⎣ ⎦  
1 2 2

0
( ) ,i j

ijc r W r dr+ −= ∫  

[ ]( 1)*1
,m i m

E e
+

=  
( )12 2 2

0
(1) ( 1) ( ) 1/

.
2

i

i

W i r W r dr i
e

−− − −
=

∫
 

Based on Theorem1, under the null hypothesis * * *0 : m m mH R rψ =  we have the following 

Nonlinear Dickey-Fuller F test statistic:  
* * * ' *' * 2 * * *' 1 *' 1 * * *ˆ ˆ( ) {( ) [ ] } ( ) / 2m m m m m m mt mt m m m mF R s R x x R Rψ ψ ψ ψ− −= − −∑   

   * * ' *' * * 2 * * * *' 1 *' * 1 * * * *ˆ ˆ( ) *{( ) [ ] } * ( ) / 2m m m m m m m mt mt m m m m m mR s R x x R Rψ ψ ψ ψ− −= − ϒ ϒ ϒ ϒ −∑  

* 1 * ' 2 * 1 1 * 1 * * ' * 1 * 2[( ) ] [ ( ) ] [( ) ] / 2 ( ) ( ) / 2 .L
m m u m m m m m m uσ σ− − − − −⎯⎯→ Ψ Π Ψ Ψ Π = Π Ψ Π  
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Where: *
1m mR I += , * '

1( )r =  [1 0],  * '
3( )r =  [1 0 0 0].  

For proof of Theorem 1 we refer to the Appendix. 

 

The following Theorem 2 is for the second case that contains a smooth transition function 

both in drift and dynamics.  

 

Theorem2: Assume that the following models ' '
1( )t mt m t mt m mty s y s uλ ϕ−= + +  hold, and 

assume that 1( )mt tu ∞
=  fulfills Assumption 1, then for 1,3m = , we have the following: 

ˆ 0,
p

m mψ ψ− →    1ˆ( ) ,
m

L

m m m mψ ψ −ϒ − →Ψ Π    2 ' 1 2 1( ) .
m m m

L

mt mt u ms x x σ− −ϒ ϒ → Ψ∑  

Where the parameters are defined as follows: 
1/ 2 3/ 2 2

1 1 1{ }, [ ]diag T T T T T Tϒ = = ,  

1/ 2 3/ 2 5/ 2 7 / 2 2 3 4
3 3 3{ }, [ ]diag T T T T T T T T T Tϒ = = , 

ˆ
ˆ

ˆ
m

m
m

λ
ψ

ϕ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, m
m

m

λ
ψ

ϕ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 
1

,mt
mt

t mt

s
x

y s−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 ' 2 2
, ,m u m u m

m m
u m u m u m

A B D
B C E

σ σ
σ σ σ

⎤ ⎡ ⎤⎡
Ψ = Π =⎥ ⎢ ⎥⎢

⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

[ ] [ ]( 1)*1 ( 1)*1( 1)*( 1) ( 1)*( 1) ( 1)*( 1)
, , , , ,m ij m ij m ij m i m im mm m m m m m

A a B b C c D d E e
+ ++ + + + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( 1) 2

1
,

T
i j i j

ij
t

a T t− + − + −

=

= ∑  
1 2

0
( ) ,i j

ijb r W r dr+ −= ∫  
1 2 2

0
( ) ,i j

ijc r W r dr+ −= ∫  

1 2

0
(1) ( 1) ( ) ,i

id W i r W r dr−= − − ∫  
( )12 2 2

0
(1) ( 1) ( ) 1/

.
2

i

i

W i r W r dr i
e

−− − −
=

∫
 

Based on Theorem 2, under the null hypothesis 0 : m m mH R rψ = , we have the Nonlinear 

Dickey-Fuller F test statistic as follows:  
' ' 2 ' 1 ' 1ˆ ˆ( ) { ( ) } ( ) / 2m m m m m m mt mt m m m mF R s R x x R Rψ ψ ψ ψ− −= − −∑    

' ' 2 ' 1 ' 1ˆ ˆ( ) *{ ( ) } * ( ) / 2
m m m mm m m m m mt mt m m m mR s R x x R Rψ ψ ψ ψ− −= − ϒ ϒ ϒ ϒ −∑  

1 ' 2 1 1 1 ' 1 2( ) { } ( ) / 2 / 2 .L
m m u m m m m m m uσ σ− − − − −⎯⎯→ Ψ Π Ψ Ψ Π =Π Ψ Π  

Where: 2*( 1)m mR I += , '
1r = [0 0 1 0],  '

3r =[0 0 0 0 1 0 0 0 ]. 

For proof of Theorem 2 we refer to the Appendix. 
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To find out the finite-sample distributions of the test, we generate data from the model 

1t t ty y u−= + where ~ . . .(0,1)u n i d  with desired sample sizes. To get the asymptotic 

distributions for the Nonlinear Dickey-Fuller F test, we let T=100,000 simulate a Brownian 

motion ( )W r , and the number of Monte Carlo replication is 10000. Here we only report the 

critical value table of the model: Case 2 and Order 1, as we only use this table in the 

following part of the paper.  

 

 

Table 1. Critical values for the Nonlinear D-F F test; Case 2 and Order 1 
T 99% 97.5% 95% 90% 10% 5% 2.5% 1% 

25 1.0155 1.2389 1.4778 1.8214 6.2068 7.1836 8.0585 9.2705 

50 1.1417 1.4198 1.6750 2.0125 6.7796 7.7654 8.5874 9.8294 

100 1.2223 1.4928 1.7714 2.1522 6.8958 7.9696 8.8991 10.2894 

250 1.3098 1.5791 1.8621 2.2335 7.2886 8.3162 9.3327 10.6171 

500 1.2647 1.5526 1.8212 2.2124 7.3014 8.4495 9.4674 10.7152 

∞ 1.6440 1.8515 2.0155 2.3750 7.5639 8.2807 8.5646 8.6974 

 

 

Size and power property of the test, Empirical Example 
 

We again use the Monte Carlo method to investigate the size and power properties of our test 

statistics. We choose Case 2 and Order 1 as the alternative model since we want to take into 

account the dynamics in drift and to avoid high parameter dimension which shows in third-

order Taylor expansion. The investigation of size has been carried out when DGP follows a 

unit root process with ~ . . .(0,1)tu n i d , with 5% nominal size (the critical value is from Table 

1). For sample sizes T=25, 50, 100, 250, 500. The estimated sizes are presented in the 

following table. 
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Table 2. Size property for the Nonlinear D-F F test; Case 2 & Order 1 

T    25  50 100 250 500 

Size (T) 0.049 0.049 0.057 0.050 0.047 

 

To judge the reasonability of the results, the estimated size of the test should lay between the 

approximate 95% confidence intervals of the actual size 5%. With replication number equal 

to 10000, the approximate 95% confidence interval for the estimated size is: 

0.05(1 0.05)0.05 1.96 (0.0457,0.0543)
10000

−
± = .  

 

Table 2 shows that at the 95% confidence level, the Nonlinear Dickey-Fuller F  test has 

almost an unbiased size, while when T = 100 the test tends to have a slight over-rejection. 

 

In what follows we examine the power property of the Nonlinear Dicey-Fuller F test, with the 

LSTAR model being Case 2 and Order 1. As we are more interested in the variation of the 

dynamic parameters, we set the drift parameter stable with 10π =0, 20π =1. We also set the 

transition speed parameter γ =1, which is thought to be a reasonable starting value for the 

iterative nonlinear least squares estimation in Wahlström (2004). We set the transition time c  

as / 2T . Thus the changing parameters are sample sizeT , dynamical parameters 11,π 21π . We 

also impose the Lagrange stability condition 11 21 (0,1)π π+ ∈  with 11 21 0.9π π+ =  to ensure 

the stable trajectories (see He and Sandberg (2005), Tong (1990)). To observe the power 

changes with the seriousness of the nonlinear dynamics impact which is measured by 21π , we 

set 21π  six different values from 0.8 to 0.1. The designated values for the changing 

parameters are as follows: 

 

11 21(25,50,100,250,500), (0.1,0.3,0.4,0.5,0.6,0.8), (0.8,0.6,0.5,0.4,0.3,0.1)T π π∈ ∈ ∈  
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Table 3. Power property for the Nonlinear D-F F test; Case 2 and Order 1 

 

T 
11π =0.

8 

21π =0.

1 

11π =0.

6 

21π =0.

3 

11π =0.

5 

21π =0.

4 

11π =0.

4 

21π =0.

5 

11π =0.

3 

21π =0.

6 

11π =0.

1 

21π =0.

8 
25 0.123 0.247 0.321 0.45 0.592 0.836 

50 0.15 0.396 0.636 0.773 0.921 0.994 

100 0.154 0.816 0.972 0.998 1 1 

250 0.727 0.94 1 1 1 1 

500 0.97 1 1 1 1 1 

 

The power properties with some parameter combinations are presented in Table 3. The table 

shows that for small sample 25, 50, 100, the power depends mainly on the proportions of the 

linear and nonlinear parts; the higher the nonlinear part, the better power it is. This can be 

explained in the form of the Taylor expansion, where with the decrease of 11π follows 

increase of 21π , which lead to the decrease of the proportion of 1ty − . Moreover, with the 

increases in the sample size and the nonlinear proportion, the test shows better power 

property as well.  

 

We now show an empirical example to compare our Nonlinear Dickey-Fuller F test to the 

traditional Dickey-Fuller F test. We use unemployment rates in 10 OECD counties1 from 

1955 to 1999 for empirical illustration. We do not apply any data transformation before the 

test (such as log transform or seasonal adjust); Maraca (2005) has already observed that most 

data transformations will result in a loss of nonlinearity. By using the Dickey-Fuller F test, 

we find that unit root hypothesis was rejected only in 1 series: UK, while using the Nonlinear 

Dickey-Fuller F test, the unit root hypothesis was rejected in 4 series: Germany, Japan, 

France and UK, which shows that the traditional Dickey-Fuller F test have less power when 

the variables shows nonlinearity. For detailed procedure, we use the data below from France 

as an example: 

 

                                                 
1 Austria, Denmark, Finland, France, Germany, Japan, Netherland, Norway, Sweden, UK 
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Figure 2. France’s unemployment rate, 1955- 1999 

 

In Figure 2, we can see that the time series shows an obvious data break around 1975, and the 

whole series is divided into two data periods smoothly. Thus we suppose that a STAR model, 

which contains a smooth transition function, should be a good choice. However, although we 

suppose the time series shows nonlinearity, we fit the data with an order one autoregressive 

model and test its unit root with traditional Dickey-Fuller F test first. We take this step into 

consideration because we will compare the result to the result we obtain by using our 

Nonlinear Dickey-Fuller F test in the latter case.  

 

In the first step, a linear AR (1) process is built by OLS regression, and time t  is from 1956 

to 1999: 10.2274 0.9971t t ty y u−= + + with sum of residue squares 15.04. 

The traditional Dickey-Fuller F test statistic is: 

 
' ' 2 ' 1 ' 1( ) { ( ) } ( ) / 2T T T T t t T T TF b s x x bβ β− −= − ϒ ϒ ϒ ϒ −∑  

Where: 
0.4710
0.9353Tb ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
0
1

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1/ 2 0

0T
T

T
⎡ ⎤

ϒ = ⎢ ⎥
⎦⎣

, 1'
2

1 1

t
t t

t t

yT
x x

y y
−

− −

⎤⎡
= ⎥⎢

⎥⎢⎣ ⎦

∑∑ ∑ ∑
 

 

The calculated F statistic is 2.7538, after we compare it to the critical value 4.86 in Table B.7 

in Hamilton, J.D. (1994), the null hypothesis of a unit root is not rejected at the 5% level 

which means the data can be viewed as random walk without drift. However, from the graph 

we can see that for the unemployment rate data, the series are initially at an equilibrium state 

but after around 1975 there shows another state, and the whole series shows a nonlinear 
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2

4

6

8

10

12

France's unemployment rate, 1955-1999

Yea
r

Rate



 

- 15 -

structure. Therefore, the Dickey-Fuller F test may be not valid with its linearity assumption. 

We need to test the data’s linearity. Chow test is used to test the series linearity against a 

single break. The first period is from 1955 to 1975, the second period is from 1976 to 1999 

and we obtain the ChowF statistic: ChowF =0.2369. At the 20% critical value, we reject the null 

hypothesis and accept that there is a data break around 1975. Therefore we test the unit root 

by our Nonlinear Dickey-Fuller F test and we use the auxiliary regression model Case 2 & 

Order 1. By OLS regression, take t  from 2 to 45 (correspond to year 1956 to year 1999), we 

arrive at the following model: 

 

1 10.5518 0.0595 0.0834 0.06t t t ty t y ty u− −= − + + − + . 

 

With sum of residue squares is 11.584, the Nonlinear Dickey-Fuller F test statistic value for 

this specification is: 

 
' ' 2 ' 1 ' 1ˆ ˆ( ) { ( ) } ( ) / 2NL t tF R s R x x R Rψ ψ ψ ψ− −= − −∑  

 

The calculated NLF statistic is 9.3687, after we compare it to 7.7654 in Table 1, the null 

hypothesis of a unit root process for the series is rejected at the 5% level.  

Then we consider building a LSTAR model: 

 

10 11 1 20 21 1( ) ( ; , )t t t ty y y F t cπ π π π γ μ− −= + + + + . 

 

Then by Nonlinear Least Square (NLS) regression, we get the following model, and t  is from 

2 to 45 (correspond to the year from 1956 to 1999) 

1 1
1 12.3243 0.3797 (2.5870 0.6153 )[ ]

(1 exp{ 0.3408( 20.6567)}) 2t t t ty y y u
t− −= + + + − +

+ − −
Her

e we notice that the estimation of c  is 20.6567, which shows data that the break occurs 

around year 1975. The economical explanation for this break may related to the OPEC 

energy price rising in 1975 when the oil price raised 10% , which brought a huge shock to the 

economic field, including the job market. Therefore there are two different states of the 

unemployment rates: before and after the oil price change. 
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Teräsvirta (1994) pointed out it is not easy to get an accurate estimate of γ . When the true 

parameter is relatively large, we need huge observation in the neighbourhood of c . To solve 

the problem, Teräsvirta (1994) advised rescaling and here we set the starting values of γ  as 

1, which Wahlström (2004) has found reasonable. Anyway, here we accept the estimated γ  

and the sum of residual squares for LSTAR model is 9.535904, which is the lowest of the 

three models. Thus the LSTAR model best fits the nonlinear character of the unemployment 

rate in France.  

 

From the above example, we can see that the Nonlinear Dickey-Fuller F test has better power 

property as it rejects the unit root hypothesis when the traditional Dickey-Fuller F test does 

not. In the following part we will concentrate on the size property of the test statistics when 

the data is influenced by GARCH (1, 1) error.  

 

Size property under GARCH (1, 1) error 
We turn here to the question of how the size property will be affected when GARCH errors 

appear. In the linear case, unit root tests such as Dickey-Fuller (1979), Phillips-Perron (1998) 

have asymptotical distribution which is invariant to heteroskedasticity. Furthermore, Pantula 

(1988), Ling and Li (1997b) both derived the asymptotic distribution by LSE of the unit root 

with ARCH/GARCH errors, and they noticed that the Dickey-Fuller test can still be used. 

Our nonlinear Dickey-Fuller test is based on LSE, and we assume the asymptotic distribution 

will be invariant to GARCH. Therefore we concentrate on the small sample property of the 

test under the GARCH error. 

 

The GARCH (1, 1) is the most frequently used process due to its simplicity and robustness in 

measuring volatility (Engle, 2001). Actually, higher order of GARCH (p, q) models tends to 

overcomplicate the model and to be inconvenient to use. Thus in this paper, we only 

concentrate on how the test property will be influenced when the error of the DGP exhibits 

GARCH (1, 1). The model is as follows: 

 

1

2
1 1

,

, ; ~ . . .(0,1), 1 .
t t t

t t t t t t t

y y u

u h h w u h i i d wη α β η α β
−

− −

= +

= = + + = − −
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For the unit root based on the LSE in the linear case, Cook (2006) observed that size 

distortions of GARCH error are mainly caused by the volatility parameterα , rather than the 

persistence parametersα β+ . Hence, our experiment design in the nonlinear case will 

include both the cases where α β≥  and α β<  in the following three situations: weak 

GARCH effect: α β+ = 0.3; medium GARCH effect: α β+ =0.75; high GARCH effect: 

α β+ =0.95. We first check if there is a size distortion when the GARCH (1, 1) error is 

weak. The size property is as follows: 
 
Table 4. Size property for the Nonlinear D-F F test under GARCH (1, 1) with α β+ =  

0.3; Case 2 and Order 1 
 

T 

α =0 

β =0.3 

α =0.05 

β =0.25 

α =0.1 

β =0.2 

α =0.15 

β =0.15 

α =0.2 

β =0.1 

α =0.25 

β =0.05 

25 0.0463 0.0548 0.0622 0.0742 0.0795 0.0815 

50 0.0473 0.054 0.0586 0.0616 0.0704 0.0799 

100 0.0504 0.0507 0.0539 0.0516 0.0603 0.0624 

250 0.0503 0.0508 0.0534 0.056 0.06 0.0598 

500 0.0522 0.0529 0.0524 0.0525 0.0522 0.0558 

 

Table 4 shows that the size distortion is not serious in most of the cases. Especially in the 

larger samples, most of the size lies within the 95% confidence interval: (0.0457,0.0543).  For 

sample sizes of 25, 50, 100, there is still some size distortions, and we can see that this over-

rejection problem becomes more serious with the increase of the volatility parameterα , 

which is the same conclusion in Cook (2006). Thus from Table 4, we can see that when 

α β+  is low, the Nonlinear Dickey-Fuller F test is mostly robust to the GARCH (1, 1) in 

large samples such as 250 and 500. Now, we consider the size property under the situation of 

medium GARCH effect with α β+ = 0.75. The results based on Monte Carlo experiment are 

presented in the following table: 
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Table 5. Size property for the Nonlinear D-F F test under GARCH (1, 1) with  
α β+ =0.75; Case 2 and Order 1 

 

T 

α =0.25 

β =0.5 

α =0.3 

β =0.45 

α =0.35 

β =0.4 

α =0.4 

β =0.35 

α =0.45 

β =0.3 

α =0.5 

β =0.25 

25 0.0839 0.0889 0.0958 0.0964 0.1135 0.1036 

50 0.0795 0.0881 0.094 0.0998 0.1143 0.1134 

100 0.0766 0.0803 0.0895 0.1027 0.1065 0.1039 

250 0.0746 0.0782 0.0831 0.0909 0.0967 0.1014 

500 0.0629 0.0707 0.0786 0.0831 0.0893 0.0937 

 

Table 5 shows that when α β+ = 0.75, there exists much more serious size distortion than in 

Table 4. However we can still notice the existence of two common characteristics in both 

tables: the size distortion is more serious as α  increases and less serious in larger samples. 

This can be interpreted as follows: when GARCH effect is not high, the size distortion is 

mainly due to the volatility parameterα . Now, we investigate the size property in the 

situation of high GARCH effect where α β+ = 0.95. The results are in the following Table 6. 

The shows a serious over-rejection problem. However, in contrast to Tables 4 and 5, we see 

that when α β+ = 0.95, the size distortion is more severe when the sample size increases and 

the seriousness of size distortion does not have an obvious relationship with the increase 

ofα , which is a common characteristic when α β+  is equal to 0.3 and 0.75. As Table 5 and 

Table 6 show serious size distortion, we will try to solve this over-rejection problem in our 

wavelet environment in the next section. 
 

Table 6. Size property for the Nonlinear D-F F test under GARCH (1, 1) with  
α β+ =0.95; Case 2 and Order 1 

 

T 

α =0.35 

β =0.6 

α =0.4 

β =0.55 

α =0.45 

β =0.5 

α =0.5 

β =0.45 

α =0.55 

β =0.4 

α =0.6 

β =0.35 

25 0.0663 0.0701 0.0733 0.0743 0.0718 0.0799 

50 0.0793 0.0806 0.0758 0.0795 0.0791 0.0781 

100 0.0871 0.0884 0.0869 0.087 0.0829 0.0845 

250 0.1029 0.1005 0.1003 0.0999 0.092 0.091 

500 0.1077 0.1138 0.1013 0.0933 0.0975 0.0938 
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Wavelet improvement of size distortion under GARCH error 
In this section we use the wavelet method to solve the problem of over-rejection under 

GARCH error. The process is simple: first we generate a new table of critical values where 

the DGP is the first level boundary wavelet scale coefficients get by Maximal Overlap 

Discrete Wavelet Transform (MODWT). Next, we apply the test using these scale 

coefficients instead of the original series. The logic behind this method is that, after wavelet 

decomposition, the wavelet’s high frequency coefficients which contain short time volatility 

information brought by GARCH (1, 1) error are counted off. Those scale coefficients contain 

all the non stationary information when the original time series follows a unit root process, 

while the scale coefficients are still stationary when the original time series is stationary. 

Thus when conducting the unit root test, we use the scale coefficients 
1

mod
0

L

t l t l T
l

V g y
−

−
=

=∑  

instead of the original data, while lg  is the scaling filter satisfying: 

2
2*1, 1/ 2, 0l l l l nl l l

g g g g += = =∑ ∑ ∑  

 

Assumption 2: { }tw  is a linear process which can be defined as follows: 

0
( ) , (1) 0t t j t j

j
w L u uψ ψ ψ

∞

−
=

= = ≠∑ , and 
0

j
j

jψ
∞

=

< ∞∑ . 

Theorem 3: Under Assumptions 1 and 2, the asymptotical distributions of the Nonlinear 

Dickey-Fuller F test statistics will not be influenced when we use wavelet scale coefficients 
1

mod
0

L

t l t l T
l

V g y
−

−
=

=∑  instead of original series ty with 1t t ty y u−= + , where tu  fulfills Assumption 

1.  

 

For a detailed proof of Theorem 3, please see the Appendix. 
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For small sample distributions, the Monte Carlo experiment gives a new critical value table 

as follows: 
 

Table 7. Critical values for the wavelet improved Nonlinear D-F F test; Case 2 and Order 1. 
T 99% 97.5% 95% 90% 10% 5% 2.5% 1% 

25 0.1370 0.2244 0.3300 0.4931 3.8075 4.6933 5.5415 6.5950 

50 0.1728 0.2685 0.3906 0.5634 3.9543 4.7773 5.6739 6.9212 

100 0.2752 0.4195 0.5906 0.8380 4.5434 5.3926 6.2244 7.3566 

250 0.5901 0.8151 1.0061 1.3096 5.3819 6.2949 7.1325 8.2737 

500 0.9199 1.1309 1.3491 1.6709 5.8924 6.8326 7.8232 8.9899 

 

We can see that as the sample size increase, the critical values will approach the one we 

obtain from Table 1, which also implies that the distribution will not be influenced 

asymptotically. We now investigate the size property of wavelet improved test when the 

nominal size is 5%, with ~ . . .(0,1)tu n i d .The result is: 

 

Table 8. Size property for the wavelet improved Nonlinear  
D-F F test; Case 2 and Order 1 

T    25  50 100 250 500 

Size (T) 0.0464 0.0492 0.0525 0.0468 0.0496 

 

Table 8 shows, at 95% confidence level, that the wavelet improved Nonlinear Dickey- 

Fuller F test is unbiased when error term ~ . . .(0,1).tu n i d Next we investigate the size property 

of the wavelet improved test when the original DGP suffered from GARCH (1, 1) error. As 

Section IV shows that the distortion is not serious when α β+ = 0.3, we study the situations 

when α β+ = 0.75 and 0.95.  
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Table 9. Size property for Nonlinear D-F F test in wavelet under GARCH (1, 1)  
withα β+ =0.75; Case 2 and Order 1. 

 

T 

α =0.25 

β =0.5 

α =0.3 

β =0.45 

α =0.35 

β =0.4 

α =0.4 

β =0.35 

α =0.45 

β =0.3 

α =0.5 

β =0.25 

25 0.0499 0.0588 0.0548 0.0619 0.0604 0.0569 

50 0.054 0.0624 0.0644 0.0618 0.063 0.0669 

100 0.0635 00.0672 0.0724 0.0738 0.0729 0.0762 

250 0.0632 0.0712 0.0688 0.0722 0.0705 0.0763 

500 0.0539 0.0588 0.0619 0.0634 0.0684 0.067 

 

We compare Table 9 to Table 5; where no wavelet method is applied, we see that although 

there are only a few unbiased size results in Table 9, the over-rejection problem get improved 

in each grid. Moreover, the size property of the wavelet improved test under GARCH (1, 1) 

error with α β+ =0.95 is as follows: 

 

Table 10. Size property for Nonlinear D-F F test in wavelet under GARCH (1, 1)  
withα β+ =0.95; Case 2 and Order 1 

 

T 

α =0.35 

β =0.6 

α =0.4 

β =0.55 

α =0.45 

β =0.5 

α =0.5 

β =0.45 

α =0.55 

β =0.4 

α =0.6 

β =0.35 

25 0.0463 0.438 0.0452 0.0453 0.0484 0.0494 

50 0.0524 0.0533 0.0529 0.0467 0.0516 0.0472 

100 0.0513 0.0532 0.054 0.053 0.0491 0.058 

250 0.0582 0.0608 0.0594 0.0604 0.0574 0.0562 

500 0.0738 0.0719 0.0743 0.0639 0.0637 0.0603 

 

The over-rejection problem of the size is obviously improved when Table 10 is compared to 

Table 6, especially when the sample size is small, and where the wavelet improved size is 

almost unbiased and lies between the 95% confidence interval. However, when the sample 

size increases, there is still some size distortion, which may due to the aggregate influence of 

the GARCH effect in large sample sizes.  
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Conclusions 
In this paper we first propose a nonlinear Dickey-Fuller F test against LSTAR (1) model with 

time as the transition variable. The asymptotic distribution of the Nonlinear Dickey-

Fuller F test statistic is derived while distributions of finite samples are obtained by Monte 

Carlo simulations. The size of the test statistics is unbiased and the power shows good 

property in larger samples. We also use an empirical example to compare the nonlinear 

Dickey-Fuller F with traditional Dickey-Fuller F test. 

 

Technically speaking, the Nonlinear Dickey-Fuller F test is not very innovative as it is mainly 

an addition of the nonlinear Dickey-Fuller ρ  and t  test proposed by He and Sandberg 

(2006). The main point of this paper is to show that our test suffered from serious size 

distortion under medium and high GARCH (1, 1) error. To resolve the problem, we use 

wavelet method as the wavelet scale coefficient can maintain the unit root information while 

count the GARCH effort off. We show that by using the wavelet method, the asymptotic 

distribution is not influenced, while the over-rejection problem in small sample size is 

improved. 
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Appendix 
Merging procedure to get the auxiliary regressions 
Here we only illustrate the procedure in Case and & Order 1, as the other cases calculate in 
the same way.  For Case 2 the original LSTAR(1) model with drift is: 
Case 2: 10 11 1 20 21 1( ) ( , , )t t t ty y y F t c uπ π π π γ− −= + + + + .   
    (2) 
The order 1 Taylor expansion of the transition function is: 

1
( )( ; , ) ( ).

4
t cF t c oγγ γ−

= +                                                 (3)  

Thus substitute equation (3) to (2), we have: 
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− −

− − −

− −

−
= + + + + +

= + + + − − + +

= − + + − + + +

⇓ ⇓ ⇓ ⇓

                

 
 
Proofs of Theorems  
To prove Theorem 2, we use Lemma A1 given below: 
Lemma A1. If 1{ }t tu ∞

=  satisfy Assumption1, 1{ }t tν ∞
=  satisfy Assumtpin2, and 1t t tuξ ξ −= +  with 

0( 0) 1,P ξ = =  then as T→∞ 
1( 1)

2
1 0

1

( )
q Tp dp q q p q

t
t

T t r W r drξ λ
− + +

−
=

⎯⎯→∑ ∫
 

1
.( 1)

0 1

L
a sp p h

t t h
l

T t v v
p
γ−

− +
−

=

⎯⎯→
+∑  

1( 1/ 2) 1

0
0

(1) ( )
T

dp p p
t h

t

T t v W p r W r drλ λ− + −
−

=

⎯⎯→ −∑ ∫  

1 1( ) 12
0

1
(1) ( )

Tv dv v
t u u

t
T t u W v r W r drσ σ

− + −

=

⎯⎯→ −∑ ∫
 

12 1 2

0
( 1)

1
1

1(1) ( )
1

2

p
uT

dp p
t t

t

W p r W r dr
p

T t u
λσ

ξ

−

− +
−

=

⎛ ⎞
− −⎜ ⎟+⎝ ⎠⎯⎯→
∫

∑
 

12 2 2 1 2 0
0

( 1)
1 112 2 2 1 2 01

0
0

(1) ( )
1( ) : , 0

2

(1) ( )
1( ) : , 0

2 1

p

T
dp p

t t h h
pt

s
s

W p r W r dr
pa h

T t v
W p r W r dr

pb h
p

γλ λ

ξ
γλ λ γ

−

− +
− − −

−=

=

⎧ − −⎪ + =⎪
⎪⎯⎯→⎨
⎪ − −

+⎪ + >⎪ +⎩

∫

∑
∑∫

 



 

- 27 -

21
( 1/ 2) 0

0
(0, ), 0

1

L
dp p u

t t h
l

T t u v N h
p
γ σ−

− +
−

=

⎯⎯→ >
+∑  

Proof of Lemma A1 please refer to He and Sandberg (2006) 
 
Proof of Theorem 2 
 
From OLS, we have 
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(From Lemma A1 where 2, 1, up i j q λ σ= + − = = ) 
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From the above equations, we can prove that  
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From the above equations, we can prove that  
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From the above, we prove that  
1

1 ' 1 1 1

1 1

ˆ( )
m m m m

T T d

m m mt mt mt mt m m
t t

x x x uψ ψ
−

− − − −

= =

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ϒ − = ϒ ϒ ϒ →Ψ Π⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
∑ ∑

 
It is also easy to show that 2 2
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Then Theorem 2 is proved 
 
As Theorem 1, we can combine the character of partitioned matrices and it is easy to get 
proved    
 
Proof of Theorem 3 

The wavelet scale coefficient after MODWT transform of original DGP is 
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As From Lemma A1, we have 1 2 1
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distribution of iθ . 
Therefore Theorem 3 is proven.                                                      
 
 
 

 


