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Abstract 
This paper presents alternative specifications of the production functions of a large 
panel of Swedish firms for the period 1992-2000. The period can be characterized as a 
transition when long-run productivity growth in the Swedish economy improved from 
being among the weakest to one of the strongest within the OECD. In order to present a 
detailed exploration of this dramatic change, the time trend and general index models 
are applied to estimate total factor productivity (TFP) growth, rate of technical change 
and returns to scale. The models are extended to allow for firm-specific as well as 
time-varying technical change. The parametric TFP measures are also compared with 
the non-parametric Solow residual, and several hypotheses are tested to explain the 
growth patterns in the Swedish economy. It is found that the improved growth rate, 
initially starting in large exporting manufacturing firms, after a deep economic crisis at 
the beginning of the 1990s, spilled over to the rest of the economy, both manufacturing 
and services.  

Keywords: Technical change, total factor productivity growth, manufacturing, service, 
enterprise panel data. 
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1.  Introduction 
Since the beginning of the 1990s, growth in labor productivity in the Swedish 
manufacturing sector has been among the highest within the OECD.1 Sweden is also 
considered as a leading innovative country according to the European Innovation 
Scoreboard (Hollanders and van Cruysen, 2008). The performance of the Swedish 
economy in recent years is in sharp contrast to the period of stagnation of 1960-1990. 
From the beginning of the 1960s to the end of the 1980s the average annual growth rate 
in labor productivity of the manufacturing sector decreased from a high level of 6-7% 
to a low level of 1-2%. It is undeniable that  falling trend in labor productivity growth 
was an international phenomenon during the 70s and 80s. But Sweden represents an 
extreme case.  

It is well known that sustainable improvement in supply of factors plays an important 
role in increasing total factor productivity (TFP). The increase in TFP growth yields a 
high long-run growth of an economy. The supply factors include product and process 
technology, skill and innovativeness. The gradually deteriorating productivity of the 
Swedish economy reflects failure in this respect. It also influences the demand side. 
Notable is that 1/5 of Sweden’s international market share was lost between 1977 and 
1992 despite a 50% depreciation of the Swedish krona against the currencies of other 
key industrialized countries. 

This paper examines productivity growth of an Swedish economy during the period 
between 1992 and 2000. This period constitutes a dramatic change in the Swedish 
long-run productivity performance and a turning point that coincides with the 
international recession of 1990-1993. During this three-year period, the average GDP in 
OECD-Europe grew by only 1.5%. The corresponding figure for Sweden, however, 
was a 5% contraction. It was not until 1995 that the Swedish GDP passed the 
pre-recession 1990-level. Between 1990 and 1993, gross fixed capital formation and 
employment declined by 27% and 13%, respectively. 

The 1990-crisis started with a dramatic fall in industrial production and many exporting 
companies faced serious financial problems. However, there were obvious potentials to 
overcoming the crisis, which includes new technologies, development and 
implementation of innovations, outsourcing and offshoring available to firms. The 
recovery in productivity growth started in 1993 and two years later the total 
manufacturing production was more than 10% larger despite the substantial reduction 
in the workforce.2 

The initial productivity improvement was closely linked to increased demand from the 
foreign markets and firms’ export intensity. Like many other countries, Swedish 
exports are highly concentrated to a small fraction of firms. Thus, the 20 largest firms 
account for more than one third of the total export value and multinational firms for 
90% of the exports. Small manufacturing and service firms supplying only on the 

                                                 
1 Annual percentage labor productivity growth in manufacturing 1990-2007: Korea 9.1, Sweden 6.1, 
Taiwan 5.7, U.S. 4.8, Singapore 4.6, France 3.8, Germany 3.7, Japan 3.5, The Netherlands 3.4, U.K. 3.3,  
Belgium 2.9, Canada 2.6, Denmark 2.4, Australia 2.2, Spain 2.0, Norway 1.7 and Italy 1.5. Source: U.S. 
Department of Labor. 
2 Within a couple of years employment in the manufacturing sector decreased by 20%.  
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home-market faced hard conditions because the demand from the home-market 
contracted by 8% for the period between 1991 and 1994.  

Based on the above historical overview on the Swedish economy two hyphotheses can 
be made. One hypothesis to be tested is that large corporations led the productivity 
improvements in an economy during the period between 1992 and 2000, which yields 
gradual spillover to other firms and sectors. A second hypothesis is that the potential to 
increase productivity growth was larger in high technology manufacturing than in low 
technology firms and services. High technology firms are characterized by extensive 
R&D-investments, innovative products, skilled and global labour markets.  

Methodologically, we employed a parametric production function approach to examine 
the TFP growth and its decomposed sources. By decomposing the TFP growth we 
obtained the rates of technical change, returns to scale and input biases among others. 
The data consists of 5,893 unique manufacturing and service firms observed during 
1992-2000 and the total number of observations is almost 38,000. 

We used various setting-ups in expressing technical change in our models. As a starting 
point we employed a simple time trend (TT) model in investigating technical change. 
Since the time trend model has been criticized that a time-trend expression of technical 
change only represent our ignorance, we also employed the general index (GI) model 
of Baltagi and Griffin (1988). The two basic models are extended to allow for 
firm-specific as well as time-varying technical change,each of which yields two 
extended models. The parametric TFP measures are also compared with the 
non-parametric Solow residual serving as a benchmark. 

The empirical results show that improvements in productivity growth in the Swedish 
economy were not restricted to large exporting firms.3 The positive and high growth 
rate spilled over to a broad network of manufacturing and service firms irrespective of 
their size, R&D and technology intensity. We also investigate determinants of TFP 
growth as well as the scale properties of the observed firms regarding input elasticities, 
returns to scale, and input and scale biases calculated from competing models.  

The rest of the paper is organized as follows. The theory of productivity analysis is 
outlined in Section 2. Data on the Swedish manufacturing and service industries are 
described in Section 3. Section 4 provides the theoretical framework for modelling TFP 
growth, technical change, input elasticities, returns to scale, and input and scale biases. 
Section 5 discusses the estimation methods and Section 6 presents the specification 
tests and empirical results along with a comparison of the performance in the different 
model specifications. Finally, Section 7 concludes briefly.  

 

2. The Theory of Productivity Analysis 
It has long been recognized that modeling of production functions plays an important 
role in analyzing returns to scale, technical change and the rate of total factor 
productivity (TFP) growth. Attempts in the modelling has been one of the interesting 

                                                 
3 In a previous study on the micro and small Swedish firms, Heshmati (2001) and Johansson (2005) 
estimate relevant growth measures based on a large firm-level data sets. See also Monte and Pagagni 
(2003) for for analysis of R&D and the growth of firms in Italy.  
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research topics in both theoretical and applied research. Moreover, a rich set of panel 
data in the field of empirical industrial economics enables sophisticated specifications 
in modelling production functions.  

Due to the great efforts recently devoted to quantifying the rate of TFP growth, 
technical change and their relevant components, the following four main strands have 
been built up: (i) econometric estimation of production functions, (ii) the Divisia index, 
(iii) exact index numbers and (iv) non-parametric methods using linear programming 
(Diewert, 1981). This section briefly reviews the last three methods. The econometric 
estimation will be discussed in the next section.   

Solow (1957) specifies a general index of technical change as a residual of production 
activities, in which output is produced by input factors and disembodied technology. In 
measuring the rate of technical change, three restrictive assumptions are required: 
constant returns-to-scale, Hicks-neutral technical change and perfect competition. 
Under these conditions, the rate of technical change is equivalent to the percentage 
growth in total factor productivity (TFP). The growth rate of TFP can be calculated as 
the difference in the percentage growth in outputs less the percentage change in a 
Divisia index of inputs.  

Although the Solow residual approach has long been regarded as a pioneering tool for 
measuring technical change and TFP growth, its assumptions are considered  too 
restrictive. For example, if an economy exhibits increasing returns to scale, the growth 
in TFP may be attributable to movements along the production function rather than 
upward shifts in production. The Hicks-neutrality and perfect competition are also 
considered too restrictive, as discussed in Hulten (2000). Diewert (1976) shows that 
there exists a class of superlative index numbers which corresponds to various 
production technologies based on second-order approximation, and that the Tornquivist 
index, offering a discrete approximation to the Divisia index, is based on a translog 
technology. By using the translog cost function, it is shown that the percentage change 
in costs depends on the share-weighted change in input prices. In his approach, 
increasing, constant and decreasing returns to scale can be assumed. Moreover, the 
condition of perfect competition can also be relaxed by allowing imperfect competition 
in input factor markets.  

In sum, the Tornqvist index not only provides a very convenient mechanism for 
measuring technical change without estimating the production function, but also 
requires fewer assumptions than the Divisia index approach. As indicated by Denny 
and Fuss (1983), however, the exact index number approach can yield a biased measure 
for technical change if employed in analyzing industries with increasing returns to scale. 
They also claim that if the technology is not translog or if the second-order translog 
parameters differ across firms, the Tornqvist index can result in substantial distortion. 
When encountering these situations, econometric estimation needs to be employed.   

Caves, Christensen, and Diewert (CCD, 1982) provide a non-parametric method using 
linear programming as an alternative for measuring technical change and TFP growth. 
By measuring deviations between the benchmarking frontier and decision making units 
(DMUs), the methods can yield TFP growth rates and their decomposed sources such 
as efficiency change and technical change. Färe, Grosskopf, Norris and Chang (1994) 
analyze the TFP growth and technical change of OECD countries for the period 
between 1979 and 1988, and show that Japan has caught up with the world frontier 
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technology and that the US has innovated the world frontier technology. For this, they 
use the Malmquist productivity index by extending and augmenting the methods of 
CCD and Nishimizu and Page (1982).  

Despite its wide use in measuring TFP growth and its decomposed components, the 
non-parametric approch also has been criticized for the following reasons: (i) It is not 
free from outlier problems. Since constructing a benchmarking frontier is highly 
affected by even a single outlier, TFP and decomposition can be biased. (ii) As Hulten 
and Isaksson (2007) argue, it suffers from a form of simultaneous equation bias implicit 
in the endogeneity of capital. A shift in the production function at a given 
capital-labour ratio leads to an increase in output per worker and some of this extra 
output is saved, leading to more output, more saving and so on. 

 

3. The Data 
We used the firm-level panel data, covering the period 1992-2000. The initial data set 
consists of 39,301 observations on manufacturing and service firms in Sweden. The 
data is stratified with the sampling conditions based on the representative target 
population for a national Swedish Innovation Survey conducted in 1999. We have 
removed the outliers from our data set in order to obtain robust estimation results. The 
criterion of the truncation is a growth rate of 80%±  of value added. After this 
truncation, the final data set consists of 37,838 observations for unique 5,893 firms.4  

Several variables are used in the empirical investigation of the production functions and 
computation of TFP growth. The value-added of each firm is used as a measure of 
output (Y ). Capital stock and labour ( K  and L ) are used as input variables. Capital 
stock has been computed by the perpetual inventory method, 1(1 )t t tK K Iδ −= − + , 
where sK  and sI  are capital stock and amount of investment in time period s , 
respectively. The depreciation rate, δ , is assumed to be constant over the whole period 
and set at 0.10. Capital stock in the first year, 1K , is set to be equivalent to the amount 
of fixed assets. As a measure of labor input ( L ), we use the number of workers. 
Value-added and capital stock are deflated by the consumer price index. All the 
variables are transformed to logarithmic form when estimating the production 
functions.  

The firms are categorized into several groups based on their size and technological 
levels to investigate the productivity growth patterns stemmed from these firm 
characteristics. We group them into five size classes by the number of employees: less 
than 10 (micro), 10-50 (small), 50-100 (small-medium), 100-300 (medium), and over 
300 (large) employees. The criteria for the technological levels are obtained from 

                                                 
4 Even though there is no a generally accepted and precise definition of the outlier, it is often referred to 
as an observation which is inconsistent with the remainder of the set of data (Barnett and Lewis, 1995). 
Among the reasons for being an outlier, errors when compiling the data set are considered the most likely 
source. Hence, a robustness can be obtained by removing those errors (or outliers). Quite strict rules for 
detecting and removing outliers exist in the field of frontier analysis studies, since they play an important 
role in estimating the models. The approaches of Simar (2003) and Fox, Hill and Diewert (2004) are 
good examples. The calculation result of TFP growth without the outlier removal can be retrieved from 
the authors on request.  
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OECD (2003). The manufacturing firms are categorized into four technological levels: 
high tech, high-medium tech, medium-low tech and low tech.  

Table 1 provides summary statistics of the data for the input and output variables used 
in this study. The fact that all variables have mean values larger than the median 
indicates that the distributions of all the variables are skewed to the right. This implies 
that a large number of firms have operated with small inputs and small output levels 
and only a few firms have operated with large inputs and large output levels. The 
skewness of value added, capital stock and labour are 29.1, 28.7 and 26.8, respectively.  

The first part of Table 2 gives the descriptive statistics of variables by size. Value 
added, capital and labour increase as firm size increases. For all the three variables, 
large discrepancies can be found between large and smaller firms. The average value 
added of large firms is at least six times larger than that of smaller counterparts. The 
capital stock and labour of large firms are somewhat larger than those of smaller firms. 
Although around three quarters of our sample are categorized as small and medium 
firms, their shares in output labour of the totals are only 32.1% and 35.4%, 
respectively.  

The second part of Table 2 shows the descriptive statistics of variables by sector and 
technological level. Nearly 2/3 of the observed firms operate in the manufacturing 
sector. As expected, the average output of the high-technology manufacturing sector is 
larger compared to the medium- and low- technology manufacturing sectors.  

Table 3 provides descriptive statistics of the variables over time. The mean value added 
fluctuates and the highest values are attributed to 2000 (93.3) and 1994 (90.9). There is 
no positive relationship between the level of the mean and its dispersion. The 
dispersion around the mean value is increasing and highest around 1998-2000. Capital 
stock also varies over time and reaches its highest values in 1999 and 2000. The 
dispersion of capital formation around the mean value is similar to that of value added. 
The change in employment size shows declining pattern. The dispersion in employment 
is largest during the period 1994-1995 and it reaches its lowest level in 1999.  

 

4. The Empirical Models 
We used a parametric translog production function to measure the rate of TFP growth 
and its components. Two specifications, the time trend (TT) and the general index (GI) 
models, are used as the starting point of the specification of technical change. Despite 
frequent use of TT and GI models, they still have a drawback in that they do not 
provide firm-specific measures under  the following conditions: (i) If technical change 
is neutral, (ii) the firms face the same input and output prices. Thus, firm-specific 
effects in the two models play no role in TFP growth and its decomposition if one of 
the above conditions arises. The other drawback of the basic TT and GI models is that 
only intercepts are firm-specific with these specifications. This might not be enough to 
capture the economically meaningful firm-specific heterogeneity. Hence, implicit 
restrictions need to be alleviated in order to obtain more flexible modelling of 
production technology. We alleviated the restrictions imposed on the TT and GI models 
through their gradual extensions. These extensions generate rates of technical change 
and TFP growth which are not only time-variant but also input- and firm-specific. The 
parametric growth measures are further compared with the non-parametric Solow 
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residual, which serves as a benchmark.  

 

4.1 Productivity and technical change 
We assume that production in manufacturing and service industries is specified as the 
following production function:  

(1)  ( )Y f X t= ,  

where Y  is a scalar output, X  is a vector of inputs ( 1 )j J= , ," , and t  is the time 
trend variable. Here producers are assumed to maximize output given the inputs and 
technology available. Taking the total differential of equation (1) gives us the following 
equation:  

(2)  j j t t
j jj

j

f X f fY X XY Y Y
ε= + = +∑∑� � �  

where the “dot” over a variable represents its growth rate, jf  is a marginal product of 

the thj  input, and jε  is the corresponding input elasticity.  

Under the assumptions that the firms minimize cost and the input markets are 
competitive, the relationship in equation (2) can be rewritten as follows:  

(3) ( 1)t
j jj j

j j

fY S RTS SX XY
− = + −∑ ∑� � �  

where jS  is the cost share of input j , and jj
RTS ε=∑  is the returns to scale. The 

left-hand side of equation (3) is referred to as the Divisia index of total factor 
productivity growth ( )TFP , expressed as  

(4)  DIV jj
j

Y STFP X= −∑� �  

If price data are available, the above TFP growth can be calculated without an 
econometric estimation. If not, econometric estimation of a production function is 
necessary.  

The main advantage of using a parametric approach over the non-parametric approach 
of the Divisia index is that one can avoid the strong assumption of constant returns to 
scale and can decompose TFP growth into technical change ( )tf Y/  and scale 
(( 1) )jjj

RTS S X− ∑ �  components as indicated in equation (3).  

 

4.2 Time Trend (TT) and General Index (GI) Models 

For illustration of the basic models and their generalizations we assume the following 
standard specification of a production model with panel data:  

(5)  0it it ity uβ β= + +x  
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where ity  is the log output of the producer i  ( 1 )i N= , ,"  at time t  ( 1 )t T= , ," , 

itx  is the corresponding matrix of J  inputs and β  is 1J ×  vector of unknown 
parameters to be estimated. In this study the error term, itu , is specified as a two-way 
error component model written as:  

(6)  it i t itu vμ λ= + +  

where iμ , tλ  and itv  represent firm-specific effects, time-specific effects and 
statistical noise, respectively. Effects such as advantages or disadvantages in the 
location of the firm, access to (skilled) labour, measurement errors in the dependent 
variables and left-out explanatory variables, which cannot be controlled by the 
producers, are captured by the error term, itv . We assume that this error term is 
independently and identically normally distributed with zero mean and constant 
variance, 2

vσ . The firm-specific effect, iμ , is a factor representing producer efficiency, 
and the time-specific effect, tλ , is a factor representing the exogenous rate of technical 
change (Heshmati, 2002). In order to avoid over-parameterization of the model the 
individual firm-specific effects, iμ , are replaced by industry-specific effects, dη . This 
accounts for between-industry-specific variations, which are important from a policy 
perspective. Also, we assume a translog form of the production since it provides a good 
second-order approximation to a broad class of functions (Kneller and Stevens, 2003).  

In the time trend (TT) model, the trend variable is used as a regressor along with the x  
input variables. The time-specific effect is specified as a linear function of time trend, 
t . Hence, the basic time trend (TT1) model can be written as:  

(7)  2
0

1 1
2 2it t tt j jit jk jit kit jt jit d it

j j k j

y t t x x x x t vβ β β β β β η= + + + + + + +∑ ∑∑ ∑  

where y  and x  are defined as above, and t  is a single time trend representing the 
exogenous rate of technical change. The dη  is fixed industry-specific effects to be 
estimated. We named the model in equation (7) the TT1 model. Our TT1 model is 
assumed to satisfy the symmetry and convexity conditions.  

In the general index (GI) model of Baltagi and Griffin (1998), the trend variable t  is 
replaced by ( )A t , where ( ) ( 1 )A t t T= , ,"  is a vector of time-effects parameters to be 
estimated. Hence, the corresponding production function assuming the general index 
representation of technical change is given by:  

(8)  0
1( ) ( )
2it j jit jk jit kit jt jit d it

j j k j

y x A t x x x A t vβ β β β η= + + + + + +∑ ∑∑ ∑  

where the time trend and its square terms are replaced by 1T −  fixed time-specific 
effects ( )A t . We name the model in equation (8) the GI1 model. The GI1 model is 
also assumed to satisfy the symmetry and convexity conditions.  

Since technical change is defined as the log derivative of output with respect to time 
( )y t∂ /∂ , the rate of technical change (TC) in the TT1 model is given by:  
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(9)  TT1TC t tt jt j
j

t xβ β β= + + .∑  

The corresponding rate of technical change in the alternative GI1 model specification is 
given by:  

(10)  GI1 { ( ) ( 1)} 1TC jt j
j

A t A t xβ
⎧ ⎫

= − − + .⎨ ⎬
⎩ ⎭

∑  

Technical change expressed in equations (9) and (10) can be decomposed into 
components associated with pure time-variables (neutral) and input-variables 
(non-neutral). These components in the TT1 model are t tttβ β+ , and jt jj

xβ∑ , 

respectively. In the GI modelthese components are { ( ) ( 1)}A t A t− −  and 
{ ( ) ( 1)} jt jj

A t A t xβ− − ∑ , respectively. It is worth noting that there are some problems 

inherent in the nature of technical change in the TT1 model. First, the rate of technical 
change either indefinitely increases ( 0)ttβ >  or decreases ( 0)ttβ <  linearly as a 
function of time. Second, with unbalanced panel data, it is not clear whether the trend 
variable, t , for a firm entering in period τ  (1 )Tτ< <  should start from τ  or be 
replaced with unity. Third, in the case when the time span is relatively narrow, a time 
trend model might not appropriately represent the exogenous rate of technical change. 
Finally, the two neutral and non-neutral components of technical change are modelled 
independently. All of these problems are avoided in the GI1 model by estimating one 
parameter for each time period in ( )A t .  

Technical change can be biased towards a particular input. This can also be measured. 
For input j , bias ( )jB  in technical change is measured by j jB S t= ∂ /∂ . A positive 
(negative) value of jB  implies that technical change is relatively j th input-using 
(saving). A zero value of jB  indicates that technical change is not biased towards any 
particular input, i.e., technical change is neutral (Kumbhakar and Hjalmarsson, 1993, 
and Kumbhakar and Heshmati, 1996). In the TT1 model, TT1 j jtB β, =  which is a 
constant over time, and its sign is simply determined by the sign of jtβ . Hence, input 
bias in technical change derived from the TT1 model is firm- and time-invariant. In the 
GI1 model, however, input bias varies over time since GI1 [ ( ) ( 1)]j jtB A t A tβ, = − − . This 
implies that the sign of GI1 jB ,  in the GI1 model is determined by the sign of jtβ  and 

( ) ( 1)A t A t− − .  

Like the input bias, scale bias in technical change can also be derived from 
SB RTS t= ∂ /∂ , where jj

RTS ε=∑ . In the TT1 model, the scale bias is given by 

1TT jtj
SB β=∑ , while in the GI1 model the scale bias is given by 

1 [ ( ) ( 1)]GI jtj
SB A t A t β= − − ∑ . The scale bias in the TT1 model is firm- and 

time-invariant, while in the GI1 model it is time-varying.  
Using equations (3) and (9), total factor productivity growth in the TT1 model can be 
calculated as follows:  
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(11) TT1 TT1 TT1( 1)TC RTSTFP jj
j

xε= + − ,∑ �  

where j j j jk k jtk
y x x tε β β β= ∂ /∂ = + +∑ , and jj

RTS ε=∑ . If RTS  is greater than 

(equal to or less than) one, then there are increasing (constant or decreasing) returns to 
scale. Similarly, TFP growth in the GI1 model can be expressed as follows:  

(12) GI1 GI1 GI1( 1)TC RTSTFP jj
j

xε= + − ,∑ �  

where ( )j j j jk k jtk
y x x A tε β β β= ∂ /∂ = + +∑ , and jj

RTS ε=∑ .  

In the above two TFP growth rate measures, the only difference between TFP growth 
and technical change is RTS . If the production technology exhibits constant returns to 
scale, then TFP growth rate is identical to the rate of technical change. It should be 
noted that, if cost shares are available, then TFP growth rate can be obtained using a 
non-parametric Divisia approach under the assumption of constant RTS.  

 

4.3 Extensions of Time Trend Model 

Although technical change in the TT1 model ( TT1TC ) is firm- and time-specific 
because input variables vary across firms, technical change is not firm-specific when 
the components related to input variables are all zero. It is important to obtain 
firm-specific neutral components. In this sense, The restrictive feature can be removed 
by extending the TT1 model in much more flexible ways. . Using the model proposed 
by Cornwell, Schmidt and Sickles (1990), the extended time trend model (hereafter, 
TT2 model) can be specified as:  

(13) 1
2it dt j jit jk jit kit jt jit it

j j k j

y x x x x t vβ β β β= + + + + ,∑ ∑∑ ∑  

where dtβ  denotes industry- and time-specific intercepts. By replacing dtβ  with a 
flexible parametric function of time, the TT2 model considers the industry-specific 
effects inherient in technical change. The model for the intercept ( dtβ ) given in this 
study is specified as follows:  

(14) 2
1 2 31 2dt d d dt tβ η η η= + + / ,  

where 1dη , 2dη  and 3dη  are unknown industry-variant parameters to be estimated. 
Hence, in the above specification dtβ  is a quadratic function of time trend and varies 
across industries. The temporal pattern of dtβ  is flexible and no further assumption is 
required. Technical change in the TT2 model is expressed as follows:  

(15) TT2 2 3TT d d jt j
j

t xη η β= + + .∑  

Thus, 2TTTC  is industry-specific and it also changes over time even when all input 
variables are zero. The pure component of technical change 2 3d dtη η+  is both 
industry-specific and time variant. However, the industry-specific effects are not 
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incorporated in the non-neutral technical change component, jt jj
xβ∑ . In the same 

way as before, total factor productivity growth of the TT2 model can be obtained from:  

(16) TT2 TT2 TT2( 1)TC RTSTFP jj
j

xε= + − ,∑ �  

where TT2RTS  and jε  are returns to scale and elasticity of input j , respectively.  

Although the TT2 model is successful in making the pure component of technical 
change industry-specific, non-neutral technical change is still restrictive as in the TT1 
model. Now, we consider another extension of the TT2 model, the TT3 model, which 
allows industry-specific non-neutral technical change. The production function in the 
TT3 model is expressed as:  

(17) 
1
2it dt j jit jk jit kit jd jit it

j j k j
y x x x x t vβ β β ζ= + + + + ,∑ ∑∑ ∑  

where dtβ  is the same as in the TT2 model, jdζ  ( 1 )j J= , ,"  are industry-specific 
unknown parameters to be estimated.  

Technical change from the TT3 model is given by:  

(18) TT2 2 3TT d d jd j
j

t xη η ζ= + + .∑  

TFP growth of the TT3 model is the same as in equation (16) except that the subscript 
2TT  is replaced with 3TT .  

Input bias and scale bias in the TT2 model are the same as in the TT1 model. Input bias 
and scale bias in the TT3 model, however, are industry-specific. For input j , 

TT3 j jdB ζ, = . Its sign is simply determined by the sign of jdζ . Scale bias is expressed 

as 3TT jdj
SB η=∑ .  

 

4.4 Extensions of General Index Model 
Under the specification of the GI1 model an implicit restriction on the temporal pattern 
of technical change across industries is imposed. This means that technical change 
varies over time but it is the same across different industries if the components related 
to the input variables are all zero. This undesirable feature of invariant technical change 
across industries can be removed in such a way that the rate of technical change is 
industry-,time- and firm-specific. We have eliminated the restriction in two ways. In 
the first extended model, GI2, following Lee and Schmidt (1993), we make pure 
technical change industry-specific by specifying the production function as follows:  

(19) 1( ) ( )
2it d j jit jk jit kit jt jit

j j k j

y A t x x x x A tη β β β= + + + ,∑ ∑∑ ∑  

where dη  denotes industry-specific parameters. In equation (19) two vectors, dη  
and ( )A t , are unknown parameters to be estimated. Thus, technical change in the GI2 
model is expressed as:  
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(20) GI2 [ ( ) ( 1)] [ ( ) ( 1)]TC d jt j
j

A t A t x A t A tη β= − − + − − .∑  

In equation (20), the industry specific effect is inherent in the pure component of 
technical change, [ ( ) ( 1)]d A t A tη − − . The non-neutral component of technical change 
is [ ( ) ( 1)]jt jj

x A t A tβ − −∑ . Note that industry-specific effects are not incorporated in 

the non-neutral component of technical change of the GI2 model. However, the two 
components are not independent, implying that no non-neutral technical change can 
take place without attaining a pure rate first. Also note that, unlike the extensions of 
time trend models, no functional form of technical change is assumed, which is useful 
and reasonable when the time span of panel data is narrow.  

The GI2 model can be further extended when every ( )A t  in equation (8) is replaced 
by industry-specific general indexes. The production function in the GI3 model is 
expressed as  

(21) 
1( ) ( )
2it d j jit jk jit kit jit jd

j j k j
y A t x x x x A tη β β ζ= + + + ,∑ ∑∑ ∑  

where jdζ  denotes unknown parameters to be estimated. The rate of technical change 
in the GI3 model is obtained as:  

(22) GI3 [ ( ) ( 1)] [ ( ) ( 1)]TC d j jd
j

A t A t x A t A tη ζ= − − + − − .∑  

The GI3 model is much more flexible than the GI1 or GI2 models in that the 
industry-specific effects are inherent in both the pure component and the non-neutral 
component of technical change.  

Input bias and scale bias in the GI2 model are the same as in the GI1 model. In the GI3 
model, however, input bias and scale bias are industry- and time-specific. These 
measures are obtained as:  

(23) 
TT3

TT3

[ ( ) ( 1)]

[ ( ) ( 1)]
j jd

jd
j

B A t A t

BS A t A t

ζ

ζ
, = − −

= − − .∑  

 

4.5 The Non-parametric Approach 

This sub-section provides a traditional measure of the TFP growth rate, the Solow 
residual approach. We begin with the following production function:  

(24) ( )Y Af K L= , ,  

where A  is a Hicks neutral technology index, which allows for shifts of the 
production function. By totally differentiating equation (24) and dividing it by Y , we 
have the following growth equation:  

(25) k lY Y K K L L A Aε ε/ = / + / + / ,�� � �  

where kε  and lε  represent elasticities of output with respect to capital and labour. By 
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assuming constant returns to scale, lε  can be replaced with 1 kε−  and equation (25) 
can be expressed as follows:  

(26) (1 )k kSR Y Y L L K Kε ε= / − − / − / ,� � �  

where the Solow residual SR  is equivalent to the estimate of TFP growth, represented 
by ( )A A/� . It is often considered as a benchmark in empirical studies.  

5. Estimation Methods 
In panel data literature, the estimation processes of error component models shown in 
equations (7), (13), (17), (8), (19) and (21) have been developed in different directions. 
Applying a static formulation, as in our case, the models are mainly estimated using 
fixed and random effects. The fixed effects (FE) model assumes that iμ  and tλ  are 
fixed and correlated with the explanatory variables, while in the random effects (RE) 
model both error terms are assumed to be purely random. Efficiency, unbiasedness and 
consistency are the properties affecting the choice of FE and RE models.  

We employ the following steps for choosing an appropriate estimation process: (a) in 
TT1 and GI1 models, the industry-specific intercepts, dη , are substituted by 
firm-specific intercepts, iη , (b) the least-squares dummy variables (LSDV) method 
and the maximum likelihood estimation (MLE) method are employed in estimating the 
two models with FE and RE, respectively, (c) The Hausman test is applied to choose an 
appropriate estimation process for both of the model specifications, and (d) the chosen 
estimation processis  assumed to be applicable to the extended models. 

The assumption in (d) above is necessarily imposed due to the fact that (i) with many 
observations in our data set, it is quite a time consuming task if firm-specific intercepts, 

iη , are incorporated in the non-linear model specifications such as the GI2 and GI3 
models, and (ii) with our large data set, observing fixed effects of individual firms is 
not meaningful. The above strategy reduces the excessive number of firm-specific 
unique parameters and is employed in estimating all the six models. One loss is the 
within-industry variation, but it maintains the between-industry variations. The amount 
of information loss is reduced by appropriate classification of industries such that it is 
useful for policy analysis.  

Results of the Hausman test signify that the FE model captures the nature of our data 
set better than the RE model. Hence, we use only the FE-type models when calculating 
the components of TFP growth and reporting the results. The TT1, TT2, TT3 and GI1 
models are linear and estimated using LSDV methods, while GI2 and GI3 models are 
nonlinear and estimated by MLE methods. In each model, we assume that 

2(0 )it vv i i dN σ. . ,∼ ,independent of the explanatory variables.  

As discussed above, industry dummy variables are included to capture industry-specific 
features of TFP growth and rate of technical change. Fifteen industry dummy variables 
are used for this purpose, eleven of which are manufacturing sectors and four of which 
are service sectors. The classification follows the international industrial classification 
system, which is listed in the Appendix.  
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6. Empirical Results 
6.1 Specification Tests and Model Selection 

The six model specifications (TT1, TT2, TT3, GI1, GI2 and GI3) presented in Section 
5 are used to estimate the productivity growth and its decomposed components of 
Swedish firms for the period 1992-2000. In all the models the null hypothesis of 
constant returns to scale is rejected in favour of variable returns to scale at the 1% level 
of significance. It suggests that a parametric approach to TFP measurement is to be 
preferred to the Solow residual approach. The 2R  values are quite high, around 0.9, in 
all the models. Due to the large size of parameters estimated and rejection of some 
models by a model selection procedure described below, the estimates of the 
parameters of the models are omitted from this paper in order to save space5.  

Although different assumptions of behaviour of technical change are inherent in each 
of our six models, it is essential to take into consideration which of these six competing 
models are appropriate for our data set and whether the corresponding results from such 
models are reasonable or not. One main obstacle to choosing appropriate models is that 
our six models are not nested in a single super model. The TT1 is nested in the TT2 and 
TT3, and the TT2 is nested in the TT3. The GI1 is not nested in the GI2 or GI3, 
whereas the GI2 is nested in the GI3. Furthermore, the TT models are not nested in the 
GI models, and vice versa. Because of this, we perform two non-nested tests (J test and 
Cox test) to examine the appropriateness of different non-nested models. For the nested 
models, we use a log-likelihood ratio test (LR test) for choosing appropriate models.  

The result of the LR test on the TT1 and TT2 models  rejects the TT1 at the 1% level 
of significance in favour of the TT2. The results of the LR test on the TT2 and TT3 
models reject the TT2 in favour of the TT3. Thus, the test results give us conclusive 
evidence that the TT3 is the best model among time trend model specifications.  

As discussed above, the GI1 is not nested with the GI2. The results of J test and Cox 
test show that the GI1 is preferred to the GI2, and the GI2 is not preferred to the GI1. 
However, the J test and the Cox test on the GI1 and GI3 models show that neither of 
the models is preferred. This is quite a well known problem with the J test and the Cox 
test and is not necessarily associated with our model specification or data set. The LR 
test on the GI2 and GI3 models shows that the GI2 is rejected at the 1% level of 
significance in favour of the GI3 model. Hence, among the GI models, the GI1 and GI3 
are chosen as being the best models for describing our data.  

In a final step, we test the preferred time trend model, TT3, against the two GI models, 
GI1 and GI3. The J test and the Cox test on these model selections are inconclusive. 
Then, we test each of the two GI models against the TT3 model, the results of which 
also yield inconclusiveness. Thus, these tests do not help us to choose the single best 
model among the TT3, GI1 and GI3 models.  

Although the above statistical methodologies does not enable us to select a better model 
between the two GI models, the rationale extending the basic GI model (GI1) to the 
GI2 and then to the GI3 helps us to choose an appropriate model in a heuristic manner. 
Since the industry-specific technical change is included in the GI2 and the GI3 models 

                                                 
5Interested readers can obtain the estimation results of the six models from the authors. 
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and the GI3 produces a better fit than the GI2, we conjecture that the GI3 is more 
appropriate than the GI1. In the following our presentation is mainly focused on the 
results of the TT3 and GI3 models. The complete estimates can be obtained from the 
authors.  

 

6.2 Input Elasticities and Returns to Scale 

The elasticities of output with respect to each of the inputs of capital and labour, jε , 
are calculated from j jy xε = ∂ /∂ , which measures the percentage changes in output in 
response to the percentage changes in inputs. The returns to scale (RTS), measuring 
changes in output in response to proportional changes in all inputs, are calculated from 
the sum of the two input elasticities. These input elasticities and returns to scale vary 
over time and across firms.  

In Table 4 we report elasticities and RTS with respect to year of observation, industrial 
sector, firm size, and technology classification for the whole sample. Since the 
t-statistics based on the estimated elasticities and their standard errors are over 2, the 
hypotheses of zero input elasticities are rejected for inputs in both models. 

The capital elasticities of the TT3 and GI3 models are 0.197 and 0.193, respectively. 
The corresponding labour elasticities are 0.816 and 0.821, respectively. The fact that 
the labour elasticity is larger than the capital elasticity reflects the fact that the increase 
of labour is more effective than the increase of capital in producing more output. 
However, both models show that the capital intensity increased somewhat between 
1992 and 2000. Returns to scale of the two models are almost identical, indicating that 
the production technology exhibits increasing returns to scale. Returns to scale of the 
two models are almost identical, 1.010 and 1.011 for TT3 and GI3, respectively. The 
fact that RTSs of the two models are larger than unity signifies that the production 
technology exhibits increasing returns to scale. On average, Swedish firms in our 
sample are found to be of sub-optimal size.  

In the upper part of Table 4, both models reveal a tendency for the capital elasticity to 
increase over time, while the trend is the opposite for labor elasticity. The mild 
downturn in the business cycle in the mid 1990s is reflected in a temporary decrease of 
RTS in the TT and the GI models. Notable is that the time trend model reports a 
growing RTS during the observed period. This trend cannot be found in the GI model.   

Looking at the elasticities and RTS by industries, it is found that the input elasticities 
differ considerably across models but are mostly of reasonable sizes.6 Compared to 
services, manufacturing firms generally have higher capital elasticity, lower labour 
elasticity and higher returns to scale.  

The relationships between the sizes and elasticities are also presented in Table 4. A 
priori, one would expect the degree of capital utilization to increase as the size of a 
firm increases. This is confirmed by the empirical results. By contrast, labour 
elasticities decrease as the size of a firm increases. These trends suggest that it is 
relatively more efficient for smaller firms to exploit the labour force rather than the 

                                                 
6Acronyms of industries are provided in the Appendix. 
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capital stock, and vice versa for larger firms. Another interesting finding is that the 
returns to scale correlate positively with firm size. Only small firms operate close to 
their technically optimal size.  Both models indicate that micro firms operate below 
their optimal scale of production while small-medium, medium or large firms have the 
potential to increase their efficiency by adjusting their scale downwards.   

The average capital elasticity among firms belonging to the R&D and 
human-capital-intensive high technology is lower than for other firms and the labour 
elasticity is higher. This result, shown in both models, indicates the particular 
importance of well-educated, well-trained and skilled workers for value added activities 
in knowledge intensive firms. In firms characterized by standardized production it is 
more efficient to substitute workers with machines.   

 

6.3 Rate of Technical Change 
Technical change is reflected in a neutral shift in production function as a result of 
technological advancement for given input utilization. A positive rate indicates 
technical progress like improvement of production processes and learning by doing, 
while a negative rate of technical change indicates technical regress. Table 5 reports 
results for the TT3 and the GI3 models.  

The average rates of technical change in all the models are positive, indicating 
technical progress. The overall mean rate of technical change is almost the same for all 
the models, around 2% per year increase in the level of output for given level of inputs 
used in production. Although figures are not tabularzed in this paper, it is found that 
there is a systematic difference between all the TT models and the GI models. all the 
TT models have a downward trend, explained by a reduced growth rate of the pure 
technical change. No corresponding pattern can be found among the GI models.  

In the TT3 model, the overall mean rate of technical change decreased during the study 
period. Since the pure technical change continuously decreased and the non-neutral 
technical change is negligible the decreasing trend of technical change is mainly 
influenced by the pure technical change. In the GI3 model, instead of showing a 
smooth uniform pattern, the rate of technical change fluctuates during the study period. 
Although the rate of technical change was decreasing in 1996 influenced by the a mild 
cyclical downturn, it rapidly began to regain a favourable rate of growth. An obvious 
pattern cannot be found in the relationship between the pure technical change and the 
non-neutral technical change components. 

The rates of technical change averaged by each of industrial branches are also listed in 
Table 5. The extent of technical change varies somewhat across industries, ranging 
from close to zero percent in the food industry to above 3% in machinery and 
equipment. However, the majority of industries (11 in the TT-model and 14 in the 
GI-model) have a growth rate above 1%. Contrary to our expectation, no systematic 
link is found between firms belonging to an export-oriented industry and technological 
change.  

Turning now to the technical change relating to the size, if one ignores the fact that the 
estimates for micro firms are somewhat deviating (1.3) in the GI3 model, the results are 
very close (1.8-2.1) for small, small-medium, medium and large firms. The rate of 
technical change is almost identical for all size classifications in the TT3 model. Hence, 
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we find no evidence supporting the hypothesis of superior technological advancement 
in large firms.  

This paper also studies the relationship between the rate of technical change and 
technology classification. Looking first at manufacturing versus services, the rates of 
technical change are almost the same in the TT3 model, while the GI reports 2.1% for 
manufacturing and 1.6% for services.  

Consider then manufacturing firms were classified into four different classifications 
according to technology intensity defined by R&D and human capital. A priori one 
would expect the positive relationship between the technology intensity and technical 
change since technological advancement is mainly led by technology-intensive 
industries. This is partly confirmed by the results. The TT3 model shows that the 
magnitude of the technological change is lower in low and medium-low tech firms than 
in high tech and high-medium tech firms. However, in the GI3 model no difference can 
be found among the high, medium-low and low technology industries. The annual 
growth rate of these industries is about 2%. The corresponding figure for the typical 
high-medium technological firms is 2.6%. 

 

6.4 Technological Bias Effects 

Technological change can be biased towards certain inputs or have different impacts on 
different factors such as the wages of labour of different skills. Such change will induce 
changes in the proportion of inputs used in production. A negative sign indicates 
input-saving, while a positive sign indicates input-using technological change. The sum 
of the input biases is labelled as scale bias. Unlike returns to scale, which are the sum 
of expected positive input elasticities, the scale bias might turn out to be zero as a result 
of different input biases with opposite signs cancelling out each other when summed. 

The overall capital and labour biases for all six models are presented in Table 6. Note 
that the standard deviation of input and scale biases of the TT1 and TT2 models are 
constant for all firms over time (See the first and second rows) This is due to the 
inflexible way they are specified. 

In general, the results are very much model-dependent. The patterns of factor 
using/saving biases are similar for five of the models except for the GI2 model. These 
five models show capital saving and labour using patterns. Compared to the TT3 model, 
the factor biases in the general index models vary widely across models.  

The mean scale bias is also listed in Table 6. Note that the standard deviation of scale 
bias is zero by definition in the TT1 and TT2 models. Like the average input biases, the 
average rate of scale bias vary substantially among the competing models. The GI2 
model has quite large scale bias, while the other models yield similar figures that are 
significantly different from zero (around 2%). It needs to be noted that although the 
magnitudes of the scale bias are comparably small in the other five models, due to 
cancellation effects, they are not necessarily irrelevant to the productivity growth.  

 

6.5 Total Factor Productivity Growth 

Table 7 presents the rate of total factor productivity (TFP) growth for all six models. 
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The Solow residual approach is also presented in the table for comparison purposes.  

The TFP growth over time, and by industrial branch, firm size, and technological levels 
are reported as sample means. See the bottom part of the table. The rate of TFP growth 
is almost identical in the GI models (around 2% per year). The corresponding figures 
for the TT models and the Solow residual are 1.3-1.5%. The result for all models shows 
a considerable improvement in TFP-growth compared to the period before the 
economic crisis in Sweden in the beginning of the 1990s. Comparing the result of the 
technical change with the TFP growth, it can be found that patterns of the rate of TFP 
growth in all the six models are very much similar to those of the technical change 
component. This implies that the main mechanism for the change in productivity 
growth is technical change.  

Looking at the TFP growth by year, the upper part of Table 7 reports a systematic 
difference between the time trend models and the other two models. The TT models 
yield decreasing trends in the rate of TFP growth, whereas the rate of TFP growth of GI 
models does not show any trend pattern. The result of the Solow residual is similar to 
those of GI models. Both of the GI models and Solow residual reveal a slower growth 
rate in the middle of the observed period, coinciding with a cyclical downturn in the 
economy.  

Interestingly, the results of the TT, GI and Solow residual of the productivity equations 
by industry suggest a common feature of relatively high growth rate in the Swedish 
economy during the 1990s. This finding coincides with the rate of technical change, 
discussed above. Though the growth rates differ among the specifications, our two 
preferred models, TT3 and GI3, show conflicting results only for a few industries. The 
TFP growth for the 15 different industries are mainly explained by technical change in 
both the time trend and the general index models.  

The hypothesis that R&D investments are particularly important for high and 
sustainable growth in productivity has been suggested at a theoretical level by many 
authors, arguing that there is close linkage among R&D activities, technical change, 
innovation, competitiveness, market size and productivity. Since large manufacturing 
firms and high technology firms are considerably more R&D-intense than other firms, 
one would expect a systematic difference in TFP growth in our sample. Looking at the 
relationship between productivity growth and firms’ size, the hypothesis is confirmed 
by the non-proffered TT and GImodels. However, the TT3 model reports high growth 
rates for micro (1.6%), small (1.3%), small-medium (1.6%) medium (1.8%) and large 
firms (2.1%). The correlation between size and productivity growth is even more 
narrow in the GI3 model; the range between micro and large firms is 1.8%-2.2%. No 
systematic relationship at all between these variables is shown in the Solow residual 
approach. We also see that the link between a manufacturing firm’s technology 
intensity and TFP growth is non-existent. Moreover, our expected difference in TFP 
growth between manufacturing firms and services is not strongly supported by the 
results. Only the GI3 model and the Solow residual report larger growth rates for 
manufacturing firms.   
 
6.6 Determinants of TFP Growth  

We now identify different growth determinants of TFP growth and estimate their 
importance. The information aims to increase our understanding of conditions for 
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firms’ survival, profitability and growth. A total of six indicators are identified and 
used in the regression analysis. These are: capital intensity (CAPINT), market 
competitiveness (MKTCOM), human capital (HMNCAP), growth in human capital 
(HMNGRT), capital structure (CAPSTR) and wage growth (WGGRTH).   

Firms with a higher level of capital intensity, where capital intensity is considered as a 
measure of the firm-specific knowledge embodied in the machinery and equipment in 
production, are expected to have high asset specificity and thereby potentially more 
variability in capital utilization. The possibility of increase in the rental cost of unused 
capital encourages firms to use their production resources efficiently (Jung, 1991). 
However, empirical studies show a somewhat mixed strand of the results for this 
hypothesis. For example, Lim (1980) and Sheehan (1997) give support to the positive 
relationship between the level of capital intensity and the firms’ performance, whereas 
Ferrier, Klinedinst and Linvill (1998) and Mahadevan and Kalirajan (2000) report a 
negative effect of capital intensity on production. We measure the capital intensity of a 
firm by the ratio of capital to the number of employees and its growth rate is used as 
one of the determinants of productivity growth.  

Regarding the relationship between the performance and the competitive condition of a 
market, two different points of view exist in the literature. Neoclassical economists 
support a positive association between the two measures arguing that the elimination of 
slacks promotes performance. In contrast, Schumpeterians and others assert a negative 
relationship, pointing out that monopoly rents induce entrepreneurs to invest in R&D 
activities and thus promote dynamic performance. In empirical tests, Nickell (1996), 
Aghion, Harris, Howitt and Vickers (2001) and Boone (2001) find some support for the 
view that competition improves performance, whilst Dasgupta and Stiglitz (1980) 
support the Schumpeterian view. In this paper, competition is measured by the 
Herfindahl index, 2

ii
s∑ , where is  is the market share of thi  firm. It should be noted 

that a Herfindahl index close to unity indicates a less competitive market condition.  

Human capital is widely recognized as an important source of economic growth. 
Modern growth theories such as those of Romer (1986) and Lucas (1988) emphasize 
how human capital can stimulate economic growth through technological development, 
uptaking and imitation of new technologies, invention and innovation. Yet, adequately 
measuring its stock at various levels of aggregation remains controversial. Three 
general approaches to human capital measurement are education-based, cost-based and 
income-based (For a literature review, see Le, Gibson and Oxley, 2005). Following the 
empirical neo-Schumpeterian, we use formal education as a proxy for human capital. 
Our observed measure is the number of employees who have at least a bachelor’s 
degree in engineering or science studies, and we distinguish between level and growth 
rate of human capital. There is a vast empirical literature verifying a positive and 
statistically significant relationship between human capital and productivity and 
between R&D and productivity as well. Since the definition of human capital in this 
paper also includes R&D personnel, a positive correlation across firms can be expected. 
Klette and Kortum (2004) report, however, that the longitudinal (within firm, and 
across time) relationship between firm-level differences in R&D and productivity 
growth is often low and insignificant.  

Corporate governance defines the ways in which the supplier of finance to corporations 
is assured of getting a return on investment in a firm. Various stakeholders such as debt 
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holders, equity holders and their representatives define the firm’s rules, incentives and 
goals. Capital and resources are efficiently allocated by these activities (Kim, 2006). 
Hence, the structure of corporate governance is often closely linked to the growth of a 
firm and productivity. In our case, the corporate governance is to be captured by the 
capital structure of firms, which is defined as the ratio of debt to total.  

We also examined the relationship between wage costs and TFP growth. Considering 
that firms’ labour demand is mainly determined by labour productivity, it is likely that 
wages will increase if an employee is more productive. We therefore expect a positive 
correlation between the wage growth and the growth of TFP.   

In order to isolate the relationships between the above six variables and TFP growth, it 
is essential to control for other factors that are likely to affect TFP growth. This is 
important for dealing with the heterogeneity of the firms in our sample. Among the 
various firm-specific attributes that are shared by firms in our sample, we have chosen 
the following control variables: firm size dummy, year dummy and industry dummy 
variables.  

Table 8 presents the fixed effects parameter estimates of the determinants of TFP 
growth. Somewhat surprisingly, all six models show a negative relationship between 
capital intensity and TFP-growth. One possible explanation is that a considerable 
fraction of the capital stock became obsolete during the 1990s, a period characterized 
by rapid technological change due to ICT and other new technologies.  

Regarding the market competition, signs as well as significant levels differ across 
model specifications. Only the results of the time trend models support the hypothesis 
that higher competition increases the TFP growth.  

Our expression of human capital as university educated employment is positively and 
highly significantly related with TFP growth at the level dimension in all six models. 
However, we find the link between growth in education and growth in TFP to be fragile. 
Only the GI3 model indicates that TFP is influenced by both the stock and flow of 
human capital.  

The capital structure variable displays a positive coefficient in the TT1, TT2, TT3, GI1 
and GI2 models, while the GI3 model yields a negative coefficient. None of the 
coefficients, however, are statistically different from zero. 

Finally, we can observe a positive and statistically significant relation between wage 
growth and TFP growth among all the model specifications. Since we control for level 
of education, the growth of wages reflect the fact that the average employee has 
become more productive due to factors such as learning by doing, more efficient 
methods of organizing the work, outsourcing and downsizing of less productive 
activities. 
 
7. Summary and Conclusions 
This paper presents a detailed exploration of technical change and total factor 
productivity (TFP) growth of a large panel of Swedish manufacturing and service firms 
over the period 1992-2000. The period is characterized as a transitional one in which 
the long-run productivity growth in Swedish manufacturing improved from being 
among the weakest to one of the strongest within the OECD. 
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One hypothesis tested is that the initial productivity improvements in manufacturing 
industries dominated by large multinational corporations are gradually spilled over to 
other firms and sectors through supply links and other forms of networking, new 
technology, development and implementation of innovations and outsourcing. 

A second hypothesis is that R&D investment is particularly important for high and 
sustainable productivity growth due to its impact on technological change, innovation, 
competitiveness and market size. Since large manufacturing firms and high technology 
firms are considerably more R&D-intense than other firms, we expect a systematic 
difference in TFP growth in our sample.  

Methodologically, we employed a parametric production function approach.  We 
analyzed the TFP growth and investigated the decomposed components such as the 
rates of technical change, returns to scale and different input biases. The time trend and 
general index models were extended to allow for firm-specific as well as time-varying 
technical change. The results were compared with the non-parametric Solow residual. 

The results of model selection tests are somewhat mixed. However, the heuristic 
inherent in extending the basic models and the results of comparing with the 
non-parametric Solow residual approach help us to choose the best model among the 
six models. Amoht the six models, the GI3 model were chosen as the best model in 
describing our sample data. 

The empirical results show that improvements in long-run productivity growth in the 
Swedish economy are not restricted to large exporting manufacturing firms and high 
technology firms. The positive and high growth rate is spilled over to a broad network 
of manufacturing and services firms irrespective of their size and technology intensity. 
Hence, the transition process towards an increased rate of productivity growth is a 
phenomenon that permeated the whole Swedish economy during the 1990s. The main 
mechanism for development was the increased rate of technical change.  
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Appendix 
A.1. Acronym of Industrial sectors 
Table A. 1. Acronym of industrial sectors 
Acronym   Explanation   2-digits SNI    
FOOD   Food products beverages and tobacco   15-16         
TXTL   Textile and textile products, leather products   17-19         
WOOD   Wood and wood products  20            
PULP   Pulp, paper, paper products; publishing and printing   21-22         
COKE   Coke, refined petroleum products, chemicals, rubber and plastic 

products  
 23-25         

NMTL   Non-metallic mineral products   26            
METL   Basic metals and fabricated metal products   27-28         
MCHN   Machinery and equipment n.e.c  29            
ELEC   Electrical and optical equipment   30-33         
TRAN   Transport equipment   34-35         
MNEC   Manufacturing n.e.c   36-37         
EGWS   Electricity, gas and water supply   40-41         
WHOL   Wholesale and retail trade; repair of motor vehicles, motorcycles and 

personal and household goods 
 50-52         

TSCO   Transport, storage and communication   60-64         
ESTT   Renting and business activities   71-74 
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List of Tables 
 
Table 1. Descriptive statistics of variables used in this study 
  Mean Std.Dev  Median  Minimum Maximum    
        Y (unit in data /1000) 78.8 462.4 17.7 0 27790.5 
        K (unit in data /1000) 83.8 664.7 9.2 0 35641.2 
        L  159.3 729.9 44 1 41398 
CAPINT 1.23e-01 3.36e-01 6.50e-02 -5.24e+00 7.38e+00 
MKTCOM 3.23e-06 7.98e-05 8.99e-09 0.00e+00 9.07e-03 
HMNCAP 1.08e+01 5.44e+01 2.00e+00 1.00e+00 2.16e+03 
HMNGRT -1.14e-01 6.58e-01 0.00e+00 -7.68e+00 5.27e+00 
CAPSTR 6.41e+00 1.03e+02 1.74e+00 9.31e-04 1.52e+04 
WGGRTH 8.97e-02 1.88e+00 6.98e-02 -1.00e+02 1.00e+02 
Note: Y (value-added), K (capital stock), L (number of employees), CAPINT (capital intensity growth rate), 
MKTCOM (market competition index calculated by Herfindhal index), HMNCAP (number of employees who have 
at least bachelor’s degree in science or engineering studies), HMNGRT (growth rate of HMNCAP), CAPSTR 
(captial structure calculated by the ratio of equity to total assets), WGGRTH (wage growth rate) 
 
 
Table 2. Descriptive statistics by size and technology level 
 Y K L Number Percent 

(%) 
Cum Per. 

(%)  Mean S.D. Mean S.D. Mean S.D. 
A. By size                           
  Micro  12 1562.5 40.3 526.1 5.5 1539.7 373 0.99 0.99 
  Small  13.1 534.7 13.7 574.2 29.6 826.7 20643 54.56 55.54 
  Small-medium  29.9 164 27.2 161.2 69.9 332.9 7504 19.83 75.37 
  Medium  77.8 214.4 72.5 316.9 168.7 369.7 5903 15.60 90.97 
  Large  592.6 557.6 655.4 996 1140.1 948.3 3415 9.03 100.00 
B. By Sector                                                
  Manufacturing sector  77.9 401.4 69.7 378.2 162.1 5.8 24538 64.85 - 
      High tech  334.3 1562.5 162.9 526.1 556.3 1539.7 546 1.45 - 
      High-medium tech  117.6 534.7 96.8 574.2 230.6 826.7 6752 17.85 - 
      Medium-low tech  43.8 164 36.5 161.2 108 332.9 8288 21.91 - 
      Low tech  63.9 214.4 74.2 316.9 136.5 369.7 8952 23.66 - 
  Service sector  80.5 557.6 109.7 996 154.1 948.3 13300 35.15 - 

 
 
Table 3. Descriptive statistics of variables used in this study by year 

 Value added Capital Labor 
 Mean S.D. Mean S.D. Mean S.D. 

1992 71.9 268.7 84.8 766.9 189.2 631 
1993 72.2 288.1 82.9 681.7 171.4 559.7 
1994 90.9 470.3 86.2 655.6 195.2 1034.9 
1995 90 439.3 84.7 620.4 185.7 945.6 
1996 63.6 402.2 68.4 568.8 139.8 815.3 
1997 71.3 430.5 79.2 629.1 141.7 650.5 
1998 76.9 438.3 85.1 659 147.1 621.6 
1999 82.4 512.1 89.8 677.8 149.7 607.1 
2000 93.3 665.6 94.8 749.8 156.2 664.7 
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Table 4. Elasticity and returns to scale: TT3 and GI3 
 TT3 GI3 
 Capital Labor RTS Capital Labor RTS 
A. By year                         

1993 0.195  0.813 1.005 0.190 0.832 1.017  
1994 0.194  0.815 1.007 0.190 0.832 1.018  
1995 0.196  0.816 1.009 0.191 0.828 1.016  
1996 0.185  0.826 1.006 0.180 0.830 1.006  
1997 0.194  0.818 1.009 0.191 0.821 1.009  
1998 0.199  0.815 1.012 0.194 0.816 1.008  
1999 0.205  0.812 1.014 0.201 0.811 1.010  
2000 0.210  0.809 1.017 0.208 0.806 1.012  

B. By industry                         
  FOOD  0.262  0.751 1.013 0.268 0.735 1.003  
  TXTL  0.200  0.800 1.000 0.186 0.818 1.003  
  WOOD  0.206  0.832 1.038 0.221 0.843 1.064  
  PULP  0.167  0.857 1.022 0.155 0.877 1.030  
  COKE  0.245  0.784 1.029 0.245 0.776 1.020  
  NMTL  0.245  0.776 1.019 0.239 0.763 1.000  
  METL  0.220  0.774 0.993 0.195 0.811 1.004  
  MCHN  0.127  0.904 1.026 0.116 0.910 1.022  
  ELEC  0.190  0.843 1.032 0.172 0.850 1.021  
  TRAN  0.166  0.851 1.014 0.160 0.854 1.011  
  MNEC  0.194  0.822 1.015 0.176 0.847 1.022  
  EGWS  0.346  0.669 1.016 0.366 0.647 1.013  
  WHOL  0.112  0.905 1.010 0.101 0.914 1.005  
  TSCO  0.201  0.815 1.011 0.214 0.802 1.013  
  ESTT  0.183  0.794 0.973 0.184 0.792 0.974  
C. By size                          
  Micro  0.196  0.814 0.994 0.197 0.812 0.992  
  Small  0.187  0.822 1.006 0.183 0.828 1.007  
  Small-medium  0.196  0.817 1.011 0.192 0.823 1.013  
  Medium  0.210  0.806 1.014 0.205 0.813 1.016  
  Large  0.235  0.788 1.021 0.229 0.795 1.023  
D. By sector 
  Manufacturing industry  

 
0.193  

 
0.842 

 
1.030 

 
0.177 

 
0.849 

 
1.022  

    By technology                         
     High tech  0.170  0.859 1.026 0.160 0.863 1.020  
     High-medium tech  0.218  0.788 1.005 0.201 0.810 1.009  
     Medium-low tech  0.204  0.818 1.022 0.204 0.827 1.029  
     Low tech  0.193  0.808 0.996 0.198 0.802 0.996  
  Service industry  0.170  0.859 1.026 0.160 0.863 1.020  
E. By sample 
  Average  

 
0.197  

 
0.816 

 
1.010 

 
0.193 

 
0.821 

 
1.011  

Standard deviation  0.078  0.078 0.023 0.078 0.079 0.025  
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Table 5. Rate of technical change and its components: TT3 and GI3 
 TT3 GI3 

Pure Non-neutral TCH Pure Non-neutral TCH 
A. By Year       

1993 0.025  0.001 0.026 0.003 0.021 0.025  
1994 0.023  0.000 0.023 0.083 -0.001 0.082  
1995 0.020  0.000 0.020 0.031 -0.016 0.016  
1996 0.018  0.000 0.018 0.002 -0.023 -0.021  
1997 0.015  0.000 0.015 -0.002 0.015 0.014  
1998 0.013  0.000 0.013 0.044 -0.025 0.019  
1999 0.011  0.000 0.010 0.008 0.008 0.015  
2000 0.008  0.000 0.008 0.019 0.011 0.030  

B. By industry                         
  FOOD  -0.048  0.052 0.003 0.021 -0.015 0.006  
  TXTL  -0.008  0.022 0.014 0.022 -0.005 0.017  
  WOOD  0.019  -0.015 0.004 0.021 -0.005 0.017  
  PULP  0.053  -0.035 0.018 0.023 0.007 0.031  
  COKE  -0.015  0.026 0.011 0.022 -0.007 0.015  
  NMTL  -0.025  0.043 0.018 0.021 -0.009 0.013  
  METL  0.007  0.011 0.018 0.021 -0.002 0.019  
  MCHN  0.075  -0.044 0.031 0.024 0.010 0.034  
  ELEC  -0.017  0.032 0.015 0.022 -0.004 0.018  
  TRAN  0.049  -0.022 0.026 0.023 0.003 0.026  
  MNEC  0.006  0.008 0.014 0.022 -0.001 0.021  
  EGWS  0.040  -0.032 0.009 0.023 -0.008 0.015  
  WHOL  0.064  -0.039 0.025 0.021 0.005 0.026  
  TSCO  0.011  -0.003 0.008 0.019 -0.005 0.014  
  ESTT  0.005  0.018 0.023 0.019 -0.004 0.015  
C. By size                         
  Micro  0.016  0.005 0.020 0.017 -0.004 0.013  
  Small  0.015  -0.001 0.015 0.020 -0.002 0.018  
  Small-medium  0.017  -0.001 0.017 0.022 -0.002 0.020  
  Medium  0.018  0.001 0.019 0.023 -0.002 0.021  
  Large  0.018  0.004 0.021 0.023 -0.002 0.021  
D.By sector 
  Manufacturing industry  

 
0.015  

 
0.002 

 
0.016 

 
0.022 

 
-0.001 

 
0.021  

    By technology                         
      High tech  -0.009  0.028 0.020 0.022 -0.003 0.019  
      High-medium tech  0.035  -0.012 0.024 0.023 0.003 0.026  
      Medium-low tech  0.001  0.015 0.016 0.021 -0.003 0.018  
      Low tech  0.013  -0.002 0.011 0.022 -0.003 0.019  
  Service industry  0.020  -0.003 0.017 0.020 -0.003 0.016  
E. By sample 
  Average  

 
0.016  

 
0.000 

 
0.017 

 
0.021 

 
-0.002 

 
0.019  

Standard deviation  0.035  0.029 0.018 0.025 0.033 0.038  
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Table 6. Overall input bias and scale bias 
 Capital Labor Scale 

Mean S.D. Mean S.D. Mean S.D. 
        TT1  -0.200  0.000  0.350 0.000 0.140 0.000 
        TT2  -0.200  0.000  0.480 0.000 0.280 0.000 
        TT3  -0.110  0.670  0.280 0.880 0.160 0.290 
        GI1  -0.160  1.050  0.320 1.090 0.160 1.100 
        GI2  0.980  1.040  0.990 1.320 1.970 0.670 
        GI3  -0.030  0.750  0.010 1.720 -0.020 1.090 
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Table 7. Mean rate of TFP growth: TT1, TT2, TT3, GI1, GI2, GI3 and Solow Residual (SR) 
 TT1 TT2 TT3 GI1 GI2 GI3 SR 
A. Measure by year                            

1993 0.024 0.026 0.026 0.029 0.030 0.026  0.006  
1994 0.022 0.022 0.023 0.083 0.083 0.083  0.067  
1995 0.020 0.019 0.021 0.014 0.014 0.016  0.013  
1996 0.017 0.015 0.018 -0.030 -0.030 -0.025  -0.021  
1997 0.015 0.013 0.015 0.014 0.014 0.014  0.005  
1998 0.013 0.010 0.013 0.017 0.017 0.019  0.010  
1999 0.010 0.007 0.010 0.015 0.015 0.015  0.017  
2000 0.008 0.004 0.008 0.031 0.031 0.030  0.025  

B. Measure by industry                            
  FOOD  0.015 0.010 0.007 0.020 0.020 0.007  0.005  
  TXTL  0.016 0.011 0.011 0.019 0.018 0.017  0.012  
  WOOD  0.014 0.002 0.003 0.019 0.018 0.020  0.019  
  PULP  0.015 0.010 0.018 0.020 0.020 0.031  0.013  
  COKE  0.015 0.008 0.010 0.020 0.020 0.016  0.023  
  NMTL  0.016 0.019 0.020 0.021 0.021 0.013  0.023  
  METL  0.015 0.018 0.014 0.018 0.018 0.019  0.019  
  MCHN  0.016 0.018 0.025 0.020 0.020 0.035  0.022  
  ELEC  0.016 0.010 0.015 0.019 0.020 0.020  0.012  
  TRAN  0.016 0.015 0.024 0.020 0.020 0.026  0.022  
  MNEC  0.015 0.016 0.016 0.019 0.019 0.022  0.021  
  EGWS  0.010 0.003 0.010 0.017 0.018 0.016  0.009  
  WHOL  0.014 0.006 0.018 0.018 0.019 0.026  -0.002  
  TSCO  0.014 0.009 0.010 0.017 0.017 0.016  0.006  
  ESTT  0.015 0.022 0.023 0.019 0.020 0.012  0.011  
C. Measure by size                            
  Micro  0.002 -0.009 0.016 0.011 0.011 0.018  0.249  
  Small  0.013 0.010 0.013 0.017 0.017 0.019  0.016  
  Small-medium  0.015 0.013 0.016 0.020 0.020 0.020  0.001  
  Medium  0.017 0.016 0.018 0.022 0.022 0.021  0.014  
  Large  0.019 0.020 0.021 0.025 0.025 0.022  0.020  
D. Measure by sector        
  Manufacturing industry 0.015 0.012 0.015 0.019 0.019 0.022  0.017  
    High tech  0.017 0.013 0.020 0.021 0.021 0.021  0.014  
    High-medium tech  0.016 0.014 0.020 0.020 0.020 0.027  0.020  
    Medium-low tech  0.015 0.016 0.014 0.019 0.019 0.019  0.020  
    Low tech  0.015 0.008 0.011 0.019 0.019 0.021  0.013  
  Service industry  0.014 0.013 0.016 0.018 0.019 0.016  0.007  
E. Sample 
  Average  

 
0.015 

 
0.013 

 
0.015 

 
0.019 

 
0.019 

 
0.020  

 
0.014  

  Standard deviation  0.007 0.017 0.017 0.031 0.032 0.038  0.236  
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Table 8. Results of second regression on TFP (n = 31505) 
 
 Expected sign TT1 TT2 TT3 GI1 GI2 GI3 
Intercept   1.32e-02***  2.31e-03*  1.77e-02***  2.43e-02***  2.37e-02***  1.33e-02*** 
CAPINT (+/-)  -1.02e-03***  -3.08e-03*** -1.13E-04  -3.63e-03***  -3.70e-03*** -3.73E-04 
MKTCOM (+/-)  1.32e+00*** 1.21E+00  3.09e+00***  -4.40e+00***  -3.98e+00*** 1.55E+00 
HMNCAP (+)  8.70e-05***  1.15e-03***  1.01e-03***  2.01e-03***  1.72e-03***  5.30e-04*** 
HMNGRT (+) -2.31E-05 1.02E-04 1.67E-04 7.50E-05 1.09E-04 4.12e-04* 
CAPSTR (+) 6.22E-08 4.61E-07 9.76E-07 6.54E-07 6.65E-07 -8.30E-07 
WGGRTH (+)  1.59e-04***  2.85e-04***  2.01e-04***  2.30e-04***  2.24e-04***  2.55e-04*** 
Size dummy included  Yes Yes Yes Yes Yes Yes 
Year dummy included  Yes Yes Yes Yes Yes Yes 
Industry dummy included  Yes Yes Yes Yes Yes Yes
R2  0.645 0.341 0.273 0.695 0.672 0.654 
Adjusted R2  0.645 0.34 0.273 0.695 0.672 0.652 
Note: 1. The dependent variable of each regression model is the rate of TFP growth for each model specification. 
 


