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Abstract 

This paper compares the performance of using an information criterion, such as the Akaike 

information criterion or the Schwarz (Bayesian) information criterion,  rather than hypothesis 

testing in consideration of the presence of a unit root for a variable and, if unknown, the 

presence of a trend in that variable. The investigation is performed through Monte Carlo 

simulations. Properties considered are frequency of choosing the unit root status correctly, 

predictive performance, and frequency of choosing an appropriate subsequent action on the 

examined variable (first differencing, detrending, or doing nothing). Relative performance is 

considered in a minimax regret framework. The results indicate that use of an information 

criterion for determining unit root status and (if necessary) trend status of a variable can be 

competitive to alternative hypothesis testing strategies. 
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1 Introduction
One of the central issues in applied research using time series data is to determine whether 

the underlying variables are stationary or contain unit roots. Applied researchers in 

economics are sometimes interested in the presence or not of the unit root itself due to its 

economic implications, for example in consideration of purchasing power parity or the 

efficient markets hypothesis. Unit root testing is also often a first step in time series analysis 

of economic variables. If the variables in a regression contain unit roots then there is risk for 

the regression to result in spurious regression relations as was pointed out by Granger and 

Newbold (1974) through Monte Carlo simulations and later proved analytically by Phillips 

(1986). 

 

The earliest and one of the simplest unit root tests used is the Dickey and Fuller (1979) test. 

The general equation for Dickey-Fuller unit-root testing for a variable y is 

 

ttt ctbyay ε+++=Δ −1      (1) 

 

where t is the time-period variable, Δ is the first difference operator, εt is white noise, and a, 

b, and c are constant coefficients.2 Stationary processes are those for which . For a 

nonoscillatory y, a unit root is present if b = 0, so testing under such circumstances is focused 

on whether or not that hypothesis can be rejected, with b < 0 being the alternative hypothesis. 

Such testing, however, is very sensitive to whether nonzero values exist for a and c. There are 

in fact three different Dickey-Fuller tests for unit roots one can do with estimates of equation 

(1) based on three possible prior restriction situations: 

02 <<− b

i) no prior restrictions on a or c, 

                                                 
1 I thank Professor Abdulnasser Hatemi-J for his commentary on the structure and content of this paper, and Pär 
Sjölander for discussions about unit root testing strategies. 
2 Note that if εt is autocorrelated then the model should be augmented by lags of Δy according to Said and 
Dickey (1984). 
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ii) c = 0, 

iii) a = 0 and c = 0. 

The distribution of the unit-root test statistic (the conventionally computed t-statistic 

associated with b) does not follow any standard distribution when b = 0, and it is affected by 

which of the above situations match the true model. Fortunately critical values for this test 

statistic have been provided by Dickey and Fuller (1979), and MacKinnon (1991) has 

produced a formula and tables to calculate more comprehensive critical values, covering 

more sample sizes. As applied researchers are often not sure about which of the three 

scenarios is appropriate for testing, various authors such as Enders (2004), Dolado, Jekinson, 

and Sosvilla-Rivero (1990), and Ayat and Burridge (2000) have suggested sequential testing 

strategies for determining which scenario should be used for the unit root test.3 In such 

sequential testing strategies, possible repeated testing of the unit root is done based on the 

parameter restriction situations (i), (ii), (iii), in sequence, continuing as long as the associated 

parameter restrictions are justified by the data (through other tests) and until the unit root is 

rejected or further parameter restriction is impossible. Various additional tests for the unit 

root at different points in this sequence may also be included in such a strategy.4 

 

Repeated testing of the unit root can lead to serious mass significance problems, as 

demonstrated in simulations by Hacker and Hatemi-J (2008) of the Enders (2004) sequential 

testing strategy. Elder and Kennedy (2001) suggest an alternative approach to this sequential 

testing strategy in which unrealistic outcomes are removed as possibilities and prior 

knowledge about the trend status of y is used if available. Their approach has testing for the 

                                                 
3 Similar suggestions have been made by Perron (1988), Holden and Perman (1994), and Ayat and Burridge 
(2000), as noted in Elder and Kennedy (2001). 
4 A sequential testing strategy for unit roots can include augmentation of the regression equation (1) with 
various lags of Δy included as necessary to deal with possible error-term autocorrelation. For simplicity, this 
paper does not include these augmentations, and does not deal with the autocorrelation issue.   
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unit root done only once, resulting in the mass significance problem vanishing for unit-root 

determination.  

 

An interesting aspect of these various strategies is that they are closely associated with model 

selection. One may consider that there are six models possible in this Dickey-Fuller 

environment, given that in correspondence with the prior knowledge situations (i), (ii), and 

(iii) there are three possible equations, each of which having two unit root statuses (there is a 

unit root or there is not). The sequential testing strategies go down the path of selection 

among these six models, although incompletely in some circumstances (e.g. if a unit root is 

rejected when using equation (1) with no parameter restrictions, then no effort may be made 

to determine whether a = 0 or c = 0). The Elder and Kennedy (2001) strategy when there is 

no knowledge about whether y has a trend reduces the choice to be from among four models 

rather than six on the basis that the excluded two models are unlikely or unrealistic in most 

applications.  

 

This paper investigates the relative performance of using formal model selection techniques, 

in the form of information criterion minimization, rather than hypothesis testing for choosing 

among the four models of Elder and Kennedy (2001). Such techniques provide some 

optimization of the trade-off between bias and inefficiency in considering inclusion of 

explanatory variables. Using a formal model-selection technique rather than hypothesis 

testing has a weakness of losing control over the probability of making the error of rejecting a 

model with parameter restrictions when that model is true (type I error in hypothesis testing). 

In unit root testing this may be a relevant issue if the rejection of one model has stronger 

consequences than non-rejection of it. If the researcher considers erroneous rejection of no 

unit root just as bad as erroneous rejection of the unit root, then a formal model selection 

technique may very well be more desirable to use. 
 - 5 -



 

Performance in this paper is based on the following criteria: (1) correct choice of unit root 

status, (2) predictive capability of chosen model, and (3) the induced action based on model 

choice (taking a first difference, detrend, or do nothing with respect to the variable 

examined). Simulations are performed to consider which procedure minimizes the maximum 

regret over various possible true parameter permutations, with regret based upon how badly a 

strategy performs according to one of the above-mention criteria in comparison to another 

strategy. 

 

The rest of this paper is organised in the following way. The next section describes the six 

models in the Dickey-Fuller environment. It also explains the Elder and Kennedy strategy for 

choosing from among four of the six models when no prior knowledge about the trend status 

of y is available, or from two of the six models when such prior knowledge does exist. That 

section furthermore describes the information criteria considered in this paper. Section 3 

presents some examples of performance of the various methods as the parameter b varies. 

Section 4 examines the minimax regret properties of using information criteria or hypothesis 

testing in this environment. Section 5 provides the conclusion. 

 

I.  Models, the Elder and Kennedy strategy, and information criteria 

Table 1 presents the six different models associated with all of the permutations of the 

models implied by the prior-restriction situations (i), (ii), and (iii) mentioned in the 

introduction and two possibilities for b (b = 0 and b < 0).   Due to model (5)’s explosiveness 

and model (2)’s unlikeliness with a stationary process around an exactly-zero equilibrium, 

Elder and Kennedy (2001) suggest these two models be removed as selectable models, so that 

only models (1), (3), (4), and (6) be allowed as possible choices. There are two possible trend 
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statuses for y: no trend as in models (1) and (4) and a trend as in models (3) and (6). The 

trend arising in model (6) is referred to as a deterministic trend, since it arises from the 

nonzero c term, whereas the trend arising in model (3) is referred to as a stochastic trend, 

since it arises from the nonzero drift term a.  

 

ttt ctbyay ε+++=Δ −1  Table 1. Definitions of models using the general equation  

a = 0, b = 0, c = 0 Model (1) Unit root, no trend 

Model (2) a= 0, b < 0, c = 0 Stationary around zero equilibrium 

a≠ 0, b = 0, c = 0 Model (3) Unit root with drift 

Model (4) a≠ 0, b < 0, c = 0 Stationary around constant nonzero equilibrium 

a ≠ 0, b = 0, c ≠ 0 Model (5) Unit root around a deterministic time trend 

Model (6) a ≠ 0, b < 0, c ≠ 0 Trend stationary 

 

 

The Elder and Kennedy strategy starts by further limiting the allowable models based on a 

priori knowledge about the trend status of y if possible. If there is known to be no trend in y, 

then only models (1) and (4) are allowable, and otherwise if there is known to be a trend in y, 

then only models (3) and (6) are allowable. Under these circumstances of a priori knowledge 

of the trend status for y, the choice between the resulting two models is then determined by a 

Dickey-fuller unit root test. The use of a priori information in this way improves the 

likelihood of choosing the correct model and, if there is known to be no trend in y, improves 

the power of the unit root test.5 If instead no a piori information on the trend status of y is 

available, then the Elder and Kennedy strategy consists of two tests, the first to determine 

whether are not y has a unit root, and the second to determine whether or not a trend in y is 

involved. The Elder and Kennedy strategy is displayed in detail in Figure 1. 

                                                 
5 These claimed improvements are particularly true if the prior knowledge of trend status is based on theoretical 
grounds, but if instead the prior knowledge of trend is based on what the data or prior similar data looks like, 
then it is arguable that this prior knowledge has been gained through an informal “eyeball test” that could affect 
the size of subsequent testing. 
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How to proceed with hypothesis testing in this environment when the trend status is unknown 

is a controversial subject. The strength of the Elder and Kennedy  (2001) strategy under these 

circumstances is that it forces the size of the unit root test to be the nominal size when the 

true model is model (1) or (3), and due to its simplicity and wide dissemination of its tests in 

econometrics textbooks and software, it is possibly closer to what many practitioners do than 

other strategies that use tests that are not as widely disseminated in textbooks or software. 

Some may argue that performing first a trend status test that is robust to the unit root status 

(as in Vogelsang, 1998, and Bunzel and Vogelsang, 2005), and then doing the unit root test 

contingent upon the trend status found in the first step is more appropriate. Of course the 

pretesting for the trend can still affect the size of a subsequent unit root test. Others may 

argue for a sequential testing strategy for the unit root, as noted in the introduction, to 

increase the likelihood of choosing stationarity given the unit root test tends to have low 

power (the probability of not accepting the alternative hypothesis of stationarity when it is 

true is low). However this strategy also affects the size of the unit root test.6  

 

 

                                                 
6 Interested readers may wish to read Hacker and Hatemi-J (2008) for a comparison of performance between the 
Elder and Kennedy strategy and the sequential testing strategies presented in the Enders (2004) textbook.                             
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Figure 1. The Elder and Kennedy Strategy 
 

Despite the difficulties of these alternative hypothesis testing strategies, they may have 

superior model-selection qualities compared to the strategy suggested by Elder and Kennedy. 

The simulation results presented later comparing the performance of information criterion 

strategies to that of the Elder and Kennedy strategy under these circumstances naturally 

cannot be generalized to how information criterion strategies perform relative to all 

hypothesis testing strategies. Readers who dislike the Elder and Kennedy strategy when there 
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is no a priori knowledge of the trend status may nevertheless be still interested in the 

simulations later in this paper that assume a priori knowledge of trend status. 

 

With the data being used to choose between two models or among four models, and with 

some of these models being non-nested, there becomes a consideration of whether the use of 

a formal model selection technique, such as the Akaike information criterion or the Schwarz 

information criterion, could be useful in deciding which of the models is best supported by 

the data. Each information criterion has its own goals in optimizing the trade-off between 

bias (by inappropriately omitting a variable) and inefficiency (by including an irrelevant 

variable). Considered for analysis in this paper are four information criteria usable with 

regression equations in which the error terms are assumed to be normally distributed with 

constant variance. First is the Akaike (1973, 1974) information criterion AIC, defined as  

 

)1(2lnAIC ++⎟
⎠
⎞

⎜
⎝
⎛= k

T
RSST ,   (2) 

 

where RSS is the residual sum of squares, T is the number of observations, and k is the 

number of coefficients to estimate in the regression equation including the intercept term      

(k +1 is the number of parameters to be estimated including the error’s variance). Second is 

the corrected Akaike information criterion, AICc, defined as  

 

2
)1(2lnAICc

−−
+

+⎟
⎠
⎞

⎜
⎝
⎛=

kT
kT

T
RSST .   (3) 

 

The corrected Akaike information criterion was introduced by Sugiura (1978) and Hurvich 

and Tsai (1989) and is meant to correct for some small-sample overfitting problems that the 

original AIC has, but it is constructed such that it is asymptotically equivalent to AIC 
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(McQuarrie and Tsai, 1998). Third is the corrected Akaike information criterion using an 

unbiased variance estimate, AICu: 

 

2
)1(2lnAICu

−−
+

+⎟
⎠
⎞

⎜
⎝
⎛

−
=

kT
kT

kT
RSST .   (4) 

 

This information criterion was suggested by McQuarrie, Shumway, and Tsai (1997) to deal 

further with the overfitting problems of AIC and AICc asymptotically, but in doing so it loses 

asymptotic equivalence with those other two criteria. The fourth criterion considered is the 

Schwarz (Bayesian) information criterion, SIC, defined as 

( )kT
T

RSST lnlnSIC +⎟
⎠
⎞

⎜
⎝
⎛= ,   (5) 

which was introduced by Schwarz (1978) and an equivalent criterion was introduced by 

Akaike (1978).  

 

The aim of AIC, AICc and AICu is optimal predictive performance in the original sample’s 

domain. The original Akaike information criterion benefits from asymptotically efficiency  

(Shibata, 1980), in the sense that it gives a consistent estimator of predictive accuracy 

(Forster, 2001). Since AICc is asymptotically equivalent to AIC, AICc shares this property, 

but AICu does not due to its lack of asymptotic equivalence to these other two measures. The 

Schwarz information criterion instead is consistent in finding the true model if it is included 

in the set of choosable models, and in its Bayesian construction it is meant maximize the 

posterior probability of selecting the true model if that model is available to be chosen. 

 

As noted earlier, with standard Dickey-Fuller unit root testing, there has often been a concern 

about the power of the test. Standard hypothesis testing in the frequentist tradition naturally 

can lead to low power, as only the probability of erroneously rejecting the null hypothesis is 
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controlled for. Kwiatkowski, Phillips, Schmidt, and Shin (1992) introduced the KPSS test 

that reverses the unit root test so that stationarity is the null hypothesis and the unit root is the 

alternative hypothesis. Some have suggested doing unit-root testing both ways on the variable 

under investigation to build confidence about its unit-root status. Of course, doing so may 

also result in the tests indicating different hypotheses as being most appropriate, e.g. it may 

be the case that the Dickey-Fuller test does not reject the unit root while the KPSS test does 

not reject stationarity. 

 

Minimizing an information criterion to decide whether or not there is a unit root avoids such 

conflict, but at the possible cost of losing information about confidence of one’s finding. If 

the Dickey-Fuller test rejects the unit root at the 5% significance level for example, then 

when choosing stationarity the user can feel reasonably confident that he or she has not 

rejected the unit root wrongly. Choosing whether or not there is a unit root based on 

minimizing an information criterion cannot lead to such strong confidence in one’s choice, 

but instead it may be considered in some ways as choosing the most likely model (unit root or 

not) given the evidence.7 The “most likely” model, however, may be only slightly more 

likely. Whereas the legal analogy for hypothesis testing is determining whether somebody is 

guilty “beyond a reasonable doubt” (see Leamer, 1978), the legal analogy for model selection 

based on minimizing information criterion is determining whether somebody is guilty or not 

based on a “preponderance of the evidence”.  

 

                                                 
7 Here the phrase “most likely” needs to be interpreted loosely, as a model with b < 0 is actually a composite of 
an infinite number models, each with a different b less than zero, and probabilistic statements about the 
likelihood of the composite model become difficult. However, if one considers the “most likely” model to be the 
one that will most likely give good predictions or is more likely to be good in some other way, then the phrasing 
seems acceptable. Also making a model choice determination using information criterion does not necessarily 
mean that the degree of confidence in the choice must be absent. A possible measure of the strength of evidence 
of one model versus another using an information criterion may be based on the difference between the 
information criterion value for a particular model and that for which the information criterion is minimized. See 
for example Akaike (1978, 1983) and Burnham and Anderson (2002). 
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II. Examples of relative performance 

This section presents some simulation results on the relative performance of using an 

information criterion rather than hypothesis testing when choosing among the four selectable 

models of Elder and Kennedy (2001). All the simulations are performed using GAUSS and 

are based on the results from 10,000 simulations on 50 observations with the variance of the 

error term in equation (1) drawn from a standard normal distribution. The small-sample 

situation of 50 observations is investigated as it may be considered reflective of a typical 

environment facing a macroeconomist dealing with yearly or quarterly data. 

 

To avoid start-up values having a strong influence, there are also 50 unused observations on 

the variable y generated as prior observations to each used set of 50 observations. The first 

observation for the lagged y in the unused observations is 0, and the first observation on 

lagged y in the used observations is the last y in the unused prior observations on that 

variable. The deterministic time trend t moves in increments of one from one observation to 

the next. 

 

First presented, in Figure 2, are some response curves representing the frequency of choosing 

the b < 0 hypothesis (stationarity) in various scenarios, comparing use of four information 

criteria (AIC, AICc, AICu, and SIC) and the Elder and Kennedy strategy in which each 

hypothesis test—the unit root test and, if necessary, the test for a trend—is done at the same 

significance level of 10% (referred to as EK10) or at the same significance level of 5% 

(referred to as EK05). The data generating process in Figure 2 is ttt byy ε+=Δ −1 with b 

varying between -0.5 and 0.8 The figure has two parts: part (a) shows what happens when it is 

known that there is no trend in y (so the selectable models are only models (1) and (4)), and 

                                                 
8 Even though b < 0 results in a true model (model (2)) that is not among those selectable, this figure is useful in 
considering unit root performance when a is sufficiently close to zero. 
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part (b) shows what happens when the trend status is unknown (so models (1), (3), (4), and 

(6) are selectable). For EK10 and EK05 what is being mapped out in both parts are power 

functions on the unit root test in the Elder and Kennedy strategy. The response curves 

associated with the information criteria cannot be called power functions, as these model 

selection techniques do not have declared null and alternative hypotheses. For values of b < 

0, the higher the curve, the better the strategy is at choosing the correct model (as it indicates 

more frequent acceptance of b < 0 when it true). However, at b = 0, the lower the procedure’s 

frequency of choosing b < 0, the better the strategy is at choosing the correct model, since 

choosing b < 0 under such circumstances is an error.  

 
                       (a) Known no trend in y (b) Unknown trend status for y                           
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Figure 2. Frequency of choosing b < 0 with the data generating process  ttt byy ε+=Δ −1

 

In Figure 2, we see that as b becomes larger in magnitude (measured leftward from the 

origin), each of the EK response curves increases, indicating higher likelihood of the 

technique discovering b’s nonzero nature as b’s magnitude increases. This pattern is what we 

would expect and it is repeated with the AIC and SIC curves except when b is very close to 

zero. Part (b) of this figure indicates that when there is neither a trend nor a nonzero intercept 

term a in the true model and the trend status of y is unknown, the information criteria do 

better than the techniques using the EK05 and EK10 at choosing the absence of a unit root 

when there is indeed no unit root, and the same can be said under the same circumstances 
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when there is known to be no trend (as in part (a)), except EK10 finds b < 0 more frequently 

than SIC. However, when comparing any pair of strategies in the figure, the more frequent 

choosing of no unit root when none is present is at the clear cost of being less likely of 

choosing the unit root when a unit root exists.  

 

In both parts (a) and (b) of Figure 2, the simulated frequency of not choosing the unit root 

when it exists is respectively 10% and 5% (rounded to the nearest whole number) for EK10 

and EK05 respectively, so the size properties for the hypothesis testing strategies are very 

good as expected. The strategies using an information criterion tend to accept the unit root 

not as frequently when it exists: when the unit root exists, AICu and SIC result in 

respectively 15.7% and 8.9% frequencies on the choice of the unit root when the trend is 

known and respectively 26.3% and 15.4% frequencies on  the choice of the unit root when 

the trend status is unknown.  Compared to the other strategies, AIC and AICc have much 

more difficulty in finding the unit root when it exists, as can be seen in both parts (a) and (b) 

of the figure. 

 

Figure 2 also displays an order to the performance of the strategies which we see repeated in 

later figures. This order is based on the parsimoniousness in accepting coefficients for 

estimation rather than setting them equal to zero. In general, the order of parsimoniousness 

found from lowest to highest is AIC, AICc, AICu, SIC, and EK05. EK10 is less parsimonious 

than EK05 and more parsimonious than AICu, and appears here and in later figures as 

sometimes more parsimonious than SIC, and at other times less parsimonious than SIC. 

 

Figure 3 presents the same information as Figure 2 for the data generating process 

ttt byy ε++=Δ −15.0 . With the inclusion of the substantially nonzero intercept term of 0.5 

being the only change, the parts (a) and (b) in Figure 3 are almost identical to their 
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counterparts in Figure 2, with the notable of exception of when b is close to zero. In both 

parts (a) and (b) of this figure there is a range near b = 0 for which as b gets closer to zero, the 

information criteria are increasing their frequency in which they correctly choose b < 0. The 

simulation with b close to zero is of course a bit unfair in part (a) of Figure 3, since it 

produces a process which is (or is close to) a stochastic trend, and a situation with a trend 

should not be under consideration given the assumed a priori information on that matter in 

this case. 

 
               (a) Known no trend in y                               (b) Unknown trend status for 
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Figure 3. Frequency of choosing b < 0 with the data generating process  ttt byy ε++=Δ −15.0

 

 - 16 -



If the intercept term is higher, then the performance of the information criteria strategies can 

be substantially different. Figure 4 shows what happens when ttt byy ε++=Δ −15 and the 

trend status is unknown. In this case the information criteria strategies unusually have a local 

maximum in the frequency of choosing b < 0 when b is actually around -0.02.  
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Figure 4. Frequency of choosing b < 0 with the data generating 

process , trend status unknown ttt byy ε++=Δ −15

 

Figure 5 presents the same information as Figure 4 for the data generating process 

ttt tbyy ε+++=Δ − 25.05.0 1 , with there being a priori knowledge that there is a trend in y 

(thereby restricting the possible choices to models (3) and (6)).  Without using this a priori 

knowledge the figure would not look substantially different, which is why such a figure is not 

presented. For b ≤ -0.08, this figure has a pattern similar to previous figures. However, the 

frequency of choosing b < 0 when b is close to zero is exceptionally high for the information 

criteria strategies and when b is very close to zero that frequency goes to zero for EK05 and 

EK10. However, considering cases close to zero is somewhat unfair, since a unit root around 

a deterministic trend (model (5)) was removed a priori as a possibility for all strategies.9  

 

                                                 
9 The fact that EK05 and EK10 do not converge to their nominal sizes in this case is not unexpected. An 
additional term such as t2  would be needed to be included in the regression model for a legitimate test for the 
unit root under these circumstances (Harris and Sollis, 2003, p. 45). 
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Figure 5: Frequency of choosing b < 0 with the data generating 

ttt tbyy ε+++=Δ − 25.05.0 1 , known existence of trend in y process 

 

One of the issues that the previous five figures masks is the relevance of choosing the 

incorrect model. If indeed there is a very slowly converging stationary process, it will tend to 

act very similarly to a unit root process except over a long time span. Also we have the issue 

in applied work that none of the models is the true model; any economic variable is in reality 

determined through a very complicated system. What we are often interested in instead is 

whether the model we choose for indicating the movement in an economic variable is 

sufficient in the sense that the variable can be treated as if it was being determined by that 

model. A reasonable way to consider whether the model is sufficient for such purposes is to 

look at its predictive capability. 

 

For consideration of predictive capability, we can look at the L2 distance measure. For the 

model ttt ctbyay ε+++=Δ −1 , the L2 distance for Δy for simulations s is calculated as  

 

( )
T

tcybactbya
t

sstssst

2

,1,1 )ˆˆˆ()(∑ ++−++ −−

L2s  = ,   (6) 

 

where T is the number of observations, , , and  are the estimated or zero-restricted 

parameters associated with the estimation of a particular model in simulation s, and is 

sb̂sâ sĉ

sty ,1−
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the simulated lag value of y in simulation s. Therefore, L2s is basically the mean of the 

squared differences between the expected value of the dependent variable and the estimated 

value of that variable (McQuarrie and Tsai, 1998) in simulation s, where the dependent 

variable here is the change in y. For any particular set of parameters, the L2 distance presented 

in this paper is the mean over the various simulations for L2s. The L2 distances for the various 

techniques are shown in Figures 6, 7, and 8, respectively for same cases used in Figures 3, 4, 

and 5. Of course, the lower L2 is, the better. All three of the new figures indicate superior 

performance of the information criteria (compared to the two hypothesis-testing strategies) 

for moderately large-magnitude in b, i.e. around b = -0.3, and superior performance of the 

EK05 strategy for b between -0.1 and -0.06.  

 

In part (a) of Figure 6, the hypothesis testing strategies do horribly when b is very close to 

zero (both EK05 and EK10 meet the vertical axis near 0.25, whereas all the information 

criterion strategies do so below 0.09), but as noted previously, this is an unfair situation in 

which there is a stochastic trend, or close to one, and the assumed a priori knowledge is that 

there is no trend. Part (b) of Figure 6 indicates that when the same data generating process is 

present and no a priori knowledge of the trend status is used, EK05 has superior performance 

in comparison to the information criterion strategies for all values of b close to zero (-0.1 ≤ b  

≤ 0).  
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                          (a) Known no trend in y            (b) Unknown trend status for y 
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ttt byy ε++=Δ −15.0Figure  6. L2 distance with the data generating process  

 

In Figure 7, EK10 and EK05 have their L2 distances jump up to around 0.14 when b gets 

close to -0.02. All of the information criterion strategies avoid this jump. This corresponds to 

what we see in Figure 4 with the information criterion strategies jumping in their frequency 

in choosing b < 0 when b gets close to -0.02. Interestingly, with Figures 4 and 7, a jump in 

one figure corresponds to no jump in the other.  
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ttt byy ε++=Δ −15Figure  7. L2 distance with the data generating process , trend status unknown 

 

In Figure 8, for -0.06 < b ≤ 0 the L2 distance when using EK10 and EK05 shoots off to being 

very high (so high that the figure is truncated to have a maximum at 0.16, so other differences 

in the performances between the strategies can be seen). However, as noted with Figure 5, 

there is some unfairness in considering cases with b close to zero here since a unit root 
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around a deterministic trend (model (5)) was removed a priori as a possibility for all 

strategies. 
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Figure  8. L2 distance with the data generating process 

ttt tbyy ε+++=Δ − 25.05.0 1 , known existence of trend in y 

 

III. Minimizing the maximum regret 

This section considers many parameter permutations for the true model and considers the 

maximum regret of using one technique rather than another. How such regret is measured is 

done in a number ways and is discussed later, but first the set of various parameter 

permutations used for the true model in the simulations will be presented. The various 

permutations of the elements from following sets of numerical values are used for the true 

model based on the general equation ttt ctbyay ε+++=Δ −1 : 

 

a = {0.0, 0.25, 0.35, 0.4, 0.45, 0.5, 1, 2, 2.5, 3, 5, 10},  

b = {-1.0, -0.8, -0.6, -0.5, -0.4, -0.35, -0.3, -0.2 -0.15, -0.1, -0.08, -0.06, -0.04, -0.02, 0}, 

c = {0.0, 0.2, 0.4, 0.5, 1, 2, 5}.  

 

By focusing on values of b only in the range [-1, 0], only unit root and stationary processes 

that are nonoscillatory are dealt with. The 90 (=15 × 6) permutations from the above sets in 

which c > 0 and a = 0 are excluded as providing a legitimate model (none of the original six 
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in Table 1 matches this case). Also, the parameter permutations that result in unacceptable 

models according to Elder and Kennedy (2001), i.e. models (2) and (5), are removed as 

possibilities for the true model, and parameter permutations that result in model (6) formally 

but with an equation that is really close to model (5) are removed, so there are overall 848 

parameter permutations to be considered.10 Of these, there are 693 which have a trend and 

133 which have no trend and are not close to having a stochastic trend.11  

 

The regret of using one procedure rather than the other is measured in various ways. One is 

how much higher the L2 distance is using one strategy rather than another (the difference in 

L2) for a particular parameter permutation. Table 2 shows the maximum regrets with regret 

measured in this way over all the parameter permutations we consider. Part (a) assumes a 

priori knowledge that there is no trend, so only the 133 parameter permutations with no trend 

and not close to a stochastic trend are used there. Part (b) assumes a priori knowledge of a 

existing trend,  so the 693 parameter permutations with a trend are used there, and part (c) 

assumes no knowledge of the trend status of y, so all of the 848 considered parameter 

permutations are used in that part. The value in each cell represents the maximum regret of 

using the procedure noted in the corresponding row rather than the procedure in the 

corresponding column.  

 

As an example of how to read the table, when using EK05 rather than AIC and there is 

known to be no trend (taking us to part (a) of the table), the maximum worsening of the L2 

                                                 
10 In particular, the 14 cases in which b < 0 and a = c = 0 are removed; the 264 (=11×4×6) cases in which a ≠ 0, 

, and c ≠ 0 are removed; and the 44 (=11×1×4) cases in which a ≠ 0, b = -0.08 and are 
removed. Therefore there are overall 12×15×7 – 90 – 14 – 264 – 44 = 848 parameter permutations to be 
considered. 

006.0 ≥≥− b 5.0≥c

11 There are 22 (=11×2×1) cases with a≠0, -0.04≤b<0, and c=0 which are removed as possibilities as no-trend 
models even though they have no trend formally, since they are so close to having a stochastic trend. 
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12distance over all the 133 parameter permutations is 0.060 units,  whereas when using AIC 

rather than EK05, the maximum worsening of the L2 distance over all those permutations is 

0.040 units. Based on the difference in L2 distance, the maximum regret of using EK05 rather 

than AIC is therefore 0.060 units and the maximum regret of using AIC rather than EK05 is 

0.040 units. Using the concept of minimax regret, AIC would then be preferable to use in 

comparison to EK05 since AIC has a lower maximum regret compared to EK05. The table 

indicates that when there is known to be no trend, AIC minimizes the maximum regret in 

comparison to each of the other procedures. The highlighted cells in Table 2(a) are the 

relevant ones for the comparisons needed for this statement: in AIC’s comparison to AICc, 

0.005 < 0.006; in its comparison to AICu, 0.024 < 0.034; in its comparison to SIC, 0.033 < 

0.052; in its comparison to EK10, 0.032 < 0.036; and in its comparison to EK05, 0.040  < 

0.060. 

Table 2. Maximum regrets, predictive, based on the difference in L2 distance 

(a) Known there is no trend 

 AIC* AICc AICu SIC EK10 EK05 

AIC* 0  0.005  0.024  0.033  0.032  0.040 
AICc 0.006  0  0.019  0.028  0.028  0.035 
AICu 0.034  0.029  0  0.009  0.009  0.016 
SIC 0.052  0.050  0.026  0  0.024  0.007 

EK10 0.036  0.031  0.004  0.004  0  0.007 
EK05 0.060  0.058  0.035  0.009  0.032  0 

 

 

 

 

 

 

 

 

 

 

                                                 
12 For one permutation of the parameters L2 was 0.103 for EK05 and 0.043 for AIC, leading to the worsening of 
the L2 of 0.103 – 0.043 = 0.060 when using EK05 rather than AIC with that parameter permutation.  
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(b) Known there is a trend 

 AIC AICc AICu* SIC EK10 EK05 

AIC 0.037  0.052  0.080  0.089 0  0.008 
AICc 0.030  0.044  0.072  0.082 0.005  0 

AICu* 0.024  0.020  0  0.015  0.043  0.054 
SIC 0.016  0  0.029  0.039 0.034  0.031 

EK10 0.110  0.100  0  0.011 0.120  0.119 
EK05 0.120  0.11  0.039  0 0.130  0.129 

 

(c) Unknown trend status 

 AIC AICc AICu* SIC EK10 EK05 

AIC 0.05  0.07  0.08  0.089 0  0.010 
AICc 0.04  0.059  0.073  0.082 0.005  0 

AICu* 0.025  0.022  0  0.019  0.045  0.054 
SIC 0.023  0  0.036  0.04 0.039  0.039 

EK10 0.406  0.408  0  0.014 0.399  0.401 
EK05 0.411  0.413  0.038  0 0.405  0.407 

 
The value in each cell represents the maximum regret of using the procedure 
noted in the corresponding row rather than the procedure in the corresponding 
column. The strategy providing minimax regret compared to all other strategies 
has an asterisk noted next to it, and the highlighted cells are the ones used in the 
comparison to back that conclusion. 

 

 

Table 2(b) indicates that when there is known to be a trend in y, AICu minimizes the 

maximum regret in comparison to each of the other procedures (in AICu’s comparison to 

AIC, 0.024 < 0.037; in its comparison to AICc, 0.020 < 0.030, etc.). Table 2(c) indicates that 

with an unknown trend status, AICu is again the strategy that minimizes the maximum regret 

(in terms of the difference in L2 distance) with respect to each of the other strategies.  

 

All of the information criterion strategies minimize the maximum regret in terms of the 

difference of the L2 distance compared to EK05 or EK10, regardless of whether a priori 

information on trend status is used, except when comparing AICu or SIC with EK10 when 

there is known to be no trend. 
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Table 3 provides the same information as Table 2, except now to measure the maximum 

regret on predictive ability the difference in the ln L2 distance is used (this is equivalent to the 

ln of the ratio of the L2 distances, so exponentiation of the numbers in the table provides L2 

ratios).13 Here we see that when a priori knowledge of no trend in y is used, the Elder and 

Kennedy strategy does very well, with both EK10 and EK05 doing better in minimax regret 

than each of the information criterion strategies. EK05 has minimax regret compared to all 

other strategies including EK10. However, if there is a known to be a trend in the data or if 

the trend status is unknown, then SIC has minimax regret versus all other strategies. If the 

trend status is unknown, all the information criteria have minimax regret with respect to the 

two hypothesis testing strategies, but when knowledge of the existence of a trend is used, 

only AICu and SIC have minimax regret compared to the hypothesis testing strategies. 

 

When considering minimax regret, using the difference in ln L2 for regret appears to favor 

more parsimonious strategies than using the difference in L2. One weakness of using the 

difference in ln L2 however is that if model (1) is the true model and is choosable, then an 

extreme strategy that always chooses that model will have minimax regret against all others 

since the L2 distance is 0 for such a strategy when that model is the true one, so in effect any 

other strategy that sometimes does not choose that model will result in regret with respect to 

the extreme strategy that is in effect infinitely high (the ratio of the L2 distance for the 

alternative strategy compared the L2 distance of the extreme strategy of always choosing 

model (1) would be undefined since it would involve a division by zero). This problem does 

not arise when using the difference in L2 for determining regret. 

 

 
                                                 
13 In the case of using EK05 rather than AIC given prior knowledge of there being no trend in y, for example, 
the maximum regret is given as 0.871, which means using EK05 rather than AIC results in L2 being higher by 
about 139% (exp(0.871) = 2.39; 2.39-1=1.39=139%) for one parameter permutation, the worst situation when 
using EK05 rather than AIC.  
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Table 3. Maximum regrets, predictive, based on the difference in ln L2 distance 

(a) Known there is no trend 

 AIC* AICc AICu SIC EK10 EK05* 

AIC* 1.634 0  0.105  0.659  1.111  1.062 
AICc 1.529 0.098  0  0.554  1.006  0.957 
AICu 0.974 0.464  0.421  0  0.452  0.403 
SIC 0.523 0.785  0.743  0.327  0  0.290 

EK10 0.572 0.502  0.460  0.047  0.096  0 
EK05* 0.871  0.829  0.430  0.112  0.402  0 

 

(b) Known there is a trend 

 AIC AICc AICu SIC* EK10 EK05 

AIC 0.554  1.071  1.348 0  0.066  0.369 
AICc 0.491  1.007  1.287 0.057  0  0.304 
AICu 0.196  0.709  0.993 0.269  0.221  0 
SIC* 0.372  0.357  0.169  0  0.526  0.807 
EK10 0.731  0  0.288 0.969  0.953  0.841 
EK05 0.781  0.321  0 1.017  1.003  0.891 

 

(c) Unknown trend status 

 AIC AICc AICu SIC* EK10 EK05 

AIC 1.061  1.229  1.808 0  0.101  0.638 
AICc 0.959  1.128  1.707 0.055  0  0.537 
AICu 0.422  0.729  1.170 0.281  0.243  0 
SIC* 0.484  0.484  0.259  0  0.551  0.804 
EK10 2.151  0  0.579 2.010  2.040  2.119 
EK05 2.163  0.326  0 2.022  2.052  2.131 

 
The value in each cell represents the maximum regret of using the procedure 
noted in the corresponding row rather than the procedure in the corresponding 
column. The strategy providing minimax regret compared to all other strategies 
has an asterisk noted next to it, and the highlighted cells are the ones used in the 
comparison to back that conclusion. 

 

 

It is perhaps illuminating to understand what type of parameter permutations lead to the worst 

predictive regret for the information criteria against EK05 and vice versa. When the trend 

status is unknown, the data generating process that leads to the maximum regrets (in L2 

difference or ln L2 difference) for EK05 against any of the information criteria is 
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ttt yy ε+−=Δ −102.010

tty

. Thus an almost stochastic trend situation with a high-valued 

intercept, as seen to the far right of Figure 7, is giving EK05 the most problems. When the 

trend status is unknown, what gives the information criteria the most difficulty against EK05, 

in terms of maximum regrets based on the difference in L2 distance, are the simplest unit root 

case tty ε+=Δ 2 (for AIC) and the stochastic trend situations ε=Δ (for AICc and AICu) 

and tty ε+=Δ 5 (for SIC). When the trend status is unknown, what gives the information 

criteria the most difficulty against EK05, in terms of maximum regrets based on the 

difference in ln L2 distance, is the simplest unit root case tty ε=Δ  (for AIC, AICc, and AICu) 

and the stochastic trend situation tty ε+=Δ 5.2  (for SIC). 

 

A third way considered for measuring regret is how much more frequently the unit root status 

is chosen incorrectly compared to another procedure. Table 4 indicates the maximum regrets 

measured in this way and is otherwise read the same way as the previous two tables. For 

example, when it is known that there is no trend in y (part (a) in Table 4), AIC is shown at 

worst to get the unit root status incorrect by an extra 36.1 percentage points in frequency 

compared to the Elder and Kennedy strategy with five-percent significance testing. When it is 

known that there exists a trend in y, AICc minimizes the maximum regret on frequency of 

erroneous unit root choice compared to all other strategies, and when it is known that no 

trend exists or when the trend status is unknown, AIC minimizes the maximum regret on 

frequency of erroneous unit root choice compared to all other strategies. This table also 

shows that the information criterion strategies minimize the maximum regret compared to the 

techniques based on the Elder and Kennedy strategy in all three situations of a priori trend 

status knowledge, except EK10 has the minimax regret with respect to SIC when there is 

known to be no trend.  
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Table 4. Maximum regrets, difference in frequency of erroneous unit root choice 

(a) Known there is no trend 

 AIC* AICc AICu SIC EK10 EK05 

AIC* 0  0.062  0.249  0.321  0.308  0.361 
AICc 0.076  0  0.187  0.258  0.246  0.299 
AICu 0.365  0.300  0  0.071  0.059  0.112 
SIC 0.508  0.449  0.176  0  0.149  0.04 

EK10 0.475  0.410  0.138  0.012  0  0.053 
EK05 0.570  0.505  0.233  0.106  0.201  0 

 

(b) Known there is a trend 

 AIC AICc* AICu SIC EK10 EK05 

AIC 0.095  0.376  0.484  0.656  0.705 0 
AICc* 0.092  0  0.282  0.393  0.562  0.611 
AICu 0.292  0  0.115  0.285  0.337 0.377 
SIC 0.421  0.145  0  0.175  0.225 0.503 

EK10 0.721  0.661  0.603  0  0.054 0.728 
EK05 0.830  0.770  0.713  0.202  0 0.836 

 

(c) Unknown trend status 

 AIC* AICc AICu SIC EK10 EK05 

AIC* 0  0.096  0.392  0.506  0.675  0.728 
AICc 0.097  0  0.296  0.416  0.593  0.644 
AICu 0.410  0.326  0  0.124  0.318  0.367 
SIC 0.549  0.481  0.186  0  0.201  0.253 

EK10 0.961  0.961  0.960  0.960  0  0.052 
EK05 0.983  0.983  0.982  0.982  0.202  0 

 
The value in each cell represents the maximum regret of using the procedure 
noted in the corresponding row rather than the procedure in the corresponding 
column. The strategy providing minimax regret compared to all other strategies 
has an asterisk noted next to it, and the highlighted cells are the ones used in the 
comparison to back that conclusion. 

 

A fourth way considered for measuring regret is how much more frequently an action for 

further analysis is chosen incorrectly compared to another procedure. The actions are those 

typically taken when including the variable as a dependent variable (or a transformation of it) 

in a subsequent regression. The actions typically available are (i) take a first difference 

(correct if unit root found), (ii) detrend or include a time trend in subsequent regressions 
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(correct if a trend-stationary process found), or (iii) do nothing (correct if stationary with no 

trend found). Action (i) corresponds to choosing model (1) or model (3), action (ii) 

corresponds to choosing model (6), and action (iii) corresponds to choosing model (4). Table 

5 indicates the maximum regrets measured in this way with an unknown trend status of y and 

is otherwise read the same way as the previous table (when the trend status is known, choice 

of action is based solely upon unit root choice, so the maximum regrets would be the same as 

those in parts (a) and (b) of Table 3). For example, at worst AICu is shown in Table 5 for one 

parameter permutation to get the chosen action incorrect by an extra 36.7 percentage points in 

frequency compared to the Elder and Kennedy strategy with five-percent significance testing.   

Table 5. Maximum regrets, difference in frequency of incorrect action  

due to model choice, unknown trend status 

 AIC AICc AICu* SIC EK10 EK05 

AIC 0.392  0.506  0.675  0.728 0  0.096 
AICc 0.296  0.416  0.593  0.644 0.088  0 

AICu* 0.369  0.29  0  0.124  0.318  0.367 
SIC 0.147  0  0.201  0.253 0.491  0.41 

EK10 0.858  0.885  0  0.056 0.726  0.771 
EK05 0.858  0.885  0.202  0 0.787  0.771 

 
The value in each cell represents the maximum regret of using the procedure 
noted in the corresponding row rather than the procedure in the corresponding 
column. The strategy providing minimax regret compared to all other strategies 
has an asterisk noted next to it, and the highlighted cells are the ones used in the 
comparison to back that conclusion. 

 

Again, this table shows that when the trend status of y is unknown, the information criterion 

strategies minimize the maximum regret compared to the hypothesis testing techniques. AICu 

is now found to minimize the maximum regret compared to all the other strategies, in contrast 

with AIC being the minimax regret winner on frequency of erroneous unit root choice found 

in Table 3(c). 
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IV. Conclusions 

This paper has examined the relative performance of using information criteria rather than 

hypothesis testing to choose among the various models of the classic Dickey-Fuller unit-root 

testing environment. The results indicate that utilizing information criteria for deciding 

whether or not there is a unit root and (if unknown) whether or not a trend exists is a 

competitive technique to traditional hypothesis testing techniques based on, for example, the 

Elder and Kennedy (2001) strategy. The information criterion strategies are competitive when 

the researcher is more interested in the model that is most supported by the data rather than 

finding sufficient evidence to confidently reject a particular hypothesis. 

 

The simulations in this paper consider various situations of a priori knowledge on the trend 

status of the examined variable (known no trend, known existing trend, and trend status 

unknown) and various situations of performance measure used (minimax regret based on (1) 

the difference in L2 distance, which is a predictive measure; (2) the difference in ln L2 

distance; (3) the difference in the frequency of choosing a unit root or not correctly; or (4) the 

difference in the frequency of correctly choosing the subsequent action—first differencing, 

detrending, or doing nothing when using the examined variable as a dependent variable in a 

subsequent regression). In all situations, the information criterion strategies perform well (in 

terms of minimax regret) compared to the Elder and Kennedy strategy with the following 

exceptions: (1) when prior knowledge of no trend in the examined variable is used, then the 

Elder and Kennedy strategy with 10% significance used for the unit root test performs better 

than AICu and SIC when considering the difference in L2 distance and better than SIC when 

considering performance in unit-root choice and in choice of subsequent action, and (2) when 

considering the difference in ln L2 distance, the Elder and Kennedy strategy, with either 10% 

or 5% used for the unit root test, performs better than AIC and AICc when prior knowledge 
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of the existence of a trend is used and better than all the information criterion strategies when 

prior knowledge of no trend is used. When there is an unknown trend status or the 

information that a trend exists is used, then SIC and AICu always perform better than the two 

simulated hypothesis testing strategies, regardless of which of the four performance measures 

is used.  
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