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Abstract 

 

The classic Dickey-Fuller unit-root test can be applied using three different equations, 

depending upon the inclusion of a constant and/or a time trend in the regression equation. 

This paper investigates the size and power properties of a unit-root testing strategy outlined in 

Enders (2004), which allows for repeated testing of the unit root with the three equations 

depending on the significance of various parameters in the equations. This strategy is similar 

to strategies suggested by others for unit root testing. Our Monte Carlo simulation 

experiments show that serious mass significance problems prevail when using the strategy 

suggested by Enders. Excluding the possibility of unrealistic outcomes and using a priori 

information on whether there is a trend in the underlying time series, as suggested by Elder 

and Kennedy (2001), reduces the mass significance problem for the unit root test and 

improves power for that test. Subsequent testing for whether a trend exists is seriously 

affected by testing for the unit root first, however.  
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Introduction 

Unit root testing is one of the most common procedures in modern time series analysis. This 

has arisen since determination of unit root status is a prerequisite to figure out whether 

correlation between variables in a regression is spurious or whether cointegration exists.1 The 

earliest and one of the simplest unit root tests used is the Dickey and Fuller (1979) test, which 

is based on one of the three regression equations below 

 

ttt byy ε+=Δ −1     (1) 

ttt byay ε++=Δ −1     (2) 

ttt byctay ε+++=Δ −1     (3) 

 

where yt is the variable being tested for unit root, t is time, εt is white noise, a, b, and c are 

parametric constants, and the first difference operator is represented by Δ.2 The null 

hypothesis of unit root in this formulation is expressed as a zero restriction on b. Note that 

equations (1) and (2) are simply restricted forms of equation (3). The unit root test is one-

sided and the distribution of the test statistic is non-standard under the null, and differs 

depending upon which equation is used. Dickey and Fuller (1979) have provided the special 

critical values for a finite set of observations3 and MacKinnon (1991) has offered a means for 

determining the special critical values more generally. 

 

Unfortunately, one often does not know which of the three equations is appropriate for 

testing. Some authors have recommended sequential testing strategies to determine unit roots 

under such circumstances. The time series econometrics textbook by Enders (2004) for 

example presents a sequential testing strategy, which is repeated in the applied econometrics 

textbook by Asteriou and Hall (2007). Some authors, including Enders (2004), have 

recommended sequential testing strategies to determine unit roots under such circumstances. 

These strategies typically start with testing the unit root using equation (3), and depending 

                                                 
1 The issue of spurious regression was illustrated by Granger and Newbold (1974) as their simulation showed 
that a regression of variables with unit roots produced significant correlation even if the variables are 
independent. This point was also proved analytically by Phillips (1986). The issue of cointegraton was brought 
up by Granger (1981) and tests for cointegration were developed by Engle and Granger (1987), Phillips (1987), 
Johansson (1988), and Johansson and Juselius (1990), among others. 
2 According to Said and Dickey (1984), the test equation should be augmented with lags of tyΔ  if 
autocorrelation exists for the error term εt.   
3 Dickey and Fuller (1981) show that the distribution of the F test is nonstandard when a unit root is included in 
the null hypothesis. They provide new critical values for the F test under such circumstances. 
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upon the result of that test and others, allow consideration of testing using the more restricted 

equations (1) and (2). Such techniques are likely to suffer from the problem of mass 

significance due to the repeated testing. 

 

The purpose of this paper is to evaluate the precision of inference based on the sequential 

testing techniques of Enders (2004) and show the effect of a priori elimination of possible 

outcomes based upon arguments by Elder and Kennedy in their 2001 article “Testing for Unit 

Roots: What Should Students Be Taught?”. To achieve this purpose, we conduct Monte Carlo 

experiments on the sequential testing technique put forward by Enders (2004), and the unit 

root testing strategy suggested by Elder and Kennedy (2001).  

 

The rest of this paper is organised in the following way. Next section describes the sequential 

testing strategy outlined by Enders (2004) and evaluates this strategy. Section 3 presents the 

unit root testing strategy with prior restrictions as suggested by Elder and Kennedy (2001), 

and this is also evaluated. The last section concludes the paper. 

 

I. The Sequential Unit Root Testing Strategy of Enders (2004) 

Of the three previous equations, equation (3) is the most general with equations (1) and (2) 

nested in it. Since each of these three equations has one of two unit root statuses—a unit root 

exist or it does not—we can consider six possible models as shown in Table 1. These models 

are presented based on different restrictions imposed on the parameters of the underlying data 

generating process. The main goal is to find out whether y has a unit root or not. To achieve 

this it is often crucial to appropriately include or not include the intercept and/or time trend 

term in the unit-root test equation.   

 

To deal with the lack of information of whether an intercept or time trend should be included, 

Enders (2004) provides a multiple-step sequential strategy for going about the testing for unit 

roots. He attributes this methodology as being a modification of one suggested by Dolado, 

Jenkinson, and Sosvilla-Rivero (1990). Elder and Kennedy (2001) list other sources with 

similar recommendations: Perron (1988), Holden and Perman (1994), and Ayat and Burridge 

(2000). The Enders strategy is shown in Figure 1 for a Dickey-Fuller (DF) environment.4 

                                                 
yΔ4 Formally, Enders presented his strategy in an augmented DF environment with various lags of  as 

additional explanatory variables to handle possible autocorrelation in the error terms, but this modification is 
suppressed in this paper for simplicity. The later simulations will have no inherent autocorrelation in the error 
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Table 1. Definitions of Models Based on the General Equation  ttt ctbyay ε+++=Δ −1

Model  Model  Model Model  Model  Model  

(1) (2) (3) (4) (5) (6) 

 a = 0 a = 0 a ≠ 0 a ≠ 0 a ≠ 0 a ≠ 0 

b = 0 b < 0 b = 0 b < 0 b = 0 b < 0 

c = 0 c = 0 c = 0 c = 0 c ≠ 0 c ≠ 0 

Unit root, Stationary 

around zero 

equilibrium 

Unit 

root 

Stationary 

around non-

zero constant 

equilibrium 

Unit root Deterministic 

trend, no intercept, 

no time 

trend 

 with 

intercept  with 

drift 

“trend 

stationary”  and time 

trend 

 

  
Enders does not specify the concluding model as is done in Figure 1. He just provides the 

conclusion of whether there is a unit root or not. The concluding model noted in the figure is 

the current authors’ interpretation of the implied model. The following is also done in this 

paper to complete the model-selection interpretation. Toward the top of the figure one 

conclusion is “Decide no unit root (model (2), (4) or (6))”. In that case, which of these three 

models is ultimately concluded is determined by standard t-statistic testing. If c = 0 can be 

rejected, then we conclude model (6); if it cannot be rejected then we estimate 

ttt abyy ε++=Δ −1  and test whether a = 0 can be rejected, with an affirmative indicating 

model (4) and a negative answer indicating model (2). Likewise, further down near the 

middle of the figure one conclusion is “Decide no unit root ((model (2) or (4))”. In that case, 

which of the two models is concluded is determined by standard t-statistic testing: if a = 0 

can be rejected, then we conclude model (4); if it cannot be rejected then we conclude model 

(2). 

                                                                                                                                                        
terms, so this seems reasonable. Also, to be fair to Enders, he warns that “no procedure can be expected to work 
well if it used in a completely mechanical fashion. Plotting the data is usually an important indicator of the 
presence of deterministic regressors.” (p. 214) 
 - 5 -



 
Figure 1. Enders Strategy 

ttt ctbyay ε+++=Δ −1              Estimate  

  ↓ 

Can b = 0 be rejected using DF critical values?→ Yes → Decide no unit root (model (2), (4) or (6)) 

  ↓ No    
               Can b = 0 and c = 0 be rejected using DF critical values?  

   No      ↓ Yes 

   Can b = 0 be rejected using a normal 

distribution? 

     ↓ No  

  ↓Yes 

            Decide unit root (model 5)       Decide 

no unit root (model 6)  

        Estimate ttt byay ε++=Δ −1  

↓ 

Can b = 0 be rejected using DF critical values? → Yes → Decide no unit root ((model (2) or (4)) 

  ↓ No  

 Can a = 0 and b = 0 be rejected  

                      using DF critical values? → Yes 

                 No                               ↓ 

                Can b = 0 be rejected using a normal distribution?  

  ↓ No                                                                ↓ Yes 

         Decide there is a unit root (model 3)       Decide no unit 

root (model 4) 

              Estimate ttt byy ε+=Δ −1  

↓ 

Can b = 0 be rejected using DF critical values? → Yes → Decide has no unit root (model (2)) 

  ↓ No  

               Decide there is a unit root (model (1))   

 
 
Notes: DF stands for Dickey-Fuller. Each question about parameters is answered based on the last estimated 
equation before the question. 
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To make an evaluation of the Enders (2004) strategy, we conduct some Monte Carlo 

simulations using a program developed for GAUSS. The design of these simulations is as 

follows. Fifty observations are generated according to parameters consistent with models (1), 

(3), or (5), i.e. the models with a unit root, using an error term drawn independently from a 

standard normal distribution. The Enders strategy with the model-choice extensions noted 

previously is then employed to determine whether a unit root exists or not and the implied 

model given the results. This experiment is performed 5000 times and the percent of times 

the null hypothesis of a unit root is rejected is reported in Table 2 and the percent of times 

each model is chosen is reported in Table 3. The nominal significance level indicated (10%, 

5%, or 1%) is applied on every hypothesis test performed. 

 

Table 2. Frequency of Rejecting Unit Root When There Is a Unit Root Based on the 

General Equation ; Using Enders Strategy ttt ctbyay ε+++=Δ −1

a= 0, b = 0, a = 0.25, b = 0, a = 1, b = 0, a = 1, b = 0, Nominal 

c = 0: c = 0: c = 0: c =0.4: Significance 

Level true model is 

Model (1) 

true model is true model is true model is 

Model (3) Model (3) Model (5) 

10% 23.0% 15.3% 10.5% 0.1% 

5% 11.5% 7.6% 5.1% 0.0% 

1% 2.6% 2.9% 1.2% 0.0% 
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Table 3. Percentage Choosing Various Models, Based on the General Equation 

 ttt ctbyay ε+++=Δ −1

3(i). Model Chosen, given true model is (1); a = 0, b = 0, c = 0 

Nominal Model Model Model Model Model Model 

Significance (1) (2) (3)  (4)  (5)  (6) 

Level 

10% 73.5 % 8.7 % 1.7 % 14.1 % 1.8 % 0.3 % 

5% 86.1 % 4.9 % 1.3 % 6.8 % 1.1 % 0.0 % 

1% 97.0 % 0.9 % 0.2 % 1.7% 0.2 % 0.0 % 

3(ii). Model Chosen, given true model is (3); a = 0.25, b = 0, c = 0 

Nominal Model Model Model Model Model Model 

Significance (1) (2) (3)  (4)  (5)  (6) 

Level 

10% 63.4 % 1.8 % 19.5 % 11.1 % 1.8 % 2.4 % 

5% 76.8 % 1.2 % 14.4 % 5.7 % 1.2 % 0.7 % 

1% 92.7 % 0.4 % 5.1 % 1.5 % 0.4 % 0.1 % 

3(iii). Model Chosen, given true model is (3); a = 1, b = 0, c = 0 

Nominal Model Model Model Model Model Model 

Significance (1) (2) (3)  (4)  (5)  (6) 

Level 

10% 0.0 % 0.0 % 87.7 % 0.4 % 1.8 % 10.1 % 

5% 0.0 % 0.0 % 93.7 % 0.3 % 1.2 % 4.9 % 

1% 0.0 % 0.0 % 98.6 % 0.1 % 0.2 % 1.2 % 

3(iv). Model Chosen, given true model is (5); a = 1, b = 0, c = 0.4 

Nominal Model Model Model Model Model Model 

Significance (1) (2) (3)  (4)  (5)  (6) 

Level 

10% 0.0 % 0.0 % 0.0 % 0.0 % 99.9 % 0.1 % 

5% 0.0 % 0.0 % 0.0 % 0.0 % 100.0 % 0.0 % 

1% 0.0 % 0.0 % 0.0 % 0.0 % 100.0 % 0.0 % 
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The results of the simulation experiments, presented in Tables 2 and 3, may be interpreted as 

follows: 

• With no intercept and no time trend, the frequency of concluding a unit root when 

there is actually a unit root is too low (actual size is too high relative to nominal size). 

This ensues because the Enders methodology allows for rejection of the null 

hypothesis of the unit root at various steps, so mass significance becomes very 

problematic. As Table 3 indicates, model choices in this situation tend to be spread 

over all possible models, with model (4) as the main alternative followed by model 

(2). 

• Without a time trend but with a weak drift term, there is still over-rejection of the null 

hypothesis of a unit root, although not as much as when there is no drift term. 

• Without a time trend but with a strong drift term, there are less tests that are relevant 

in the Enders methodology—testing model (1) versus model (2) is not done since a = 

0 is always rejected. This is visible in Table 3 also, with models (1) and (2) never 

chosen when a = 1, b = 0, and c = 0. As a result, the mass significance problem is 

reduced, and the actual sizes are closer to the nominal sizes, although the actual sizes 

are too high. Model (6) is the main incorrectly chosen alternative, and the percentage 

choice of that model closely matches the nominal sizes.  

• With a time trend and a unit root, the size suddenly becomes too low, almost always 

failing to reject the null hypothesis of a unit root. This comes about because this 

simple Dickey-Fuller test is not sufficient for testing unit roots when there is both a 

unit root and a time trend. An additional regressor such as t2 would be needed to test 

for a unit root under such circumstances since the number of deterministic regressors 

needs to be at least as numerous as the number deterministic components (Harris and 

Sollis (2003), p. 45). 5 

                                                 
5 Strategy S1 in Ayat and Burridge (2002) includes a t2 regressor in the first unit-root test of a strategy similar to 
that of Enders, but at the cost of more mass significance difficulties and too-frequent spurious identification of a 
quadratic trend when a strong linear trend exists.   
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II. Unit Root Testing Strategy with Prior Limitations 

 

Elder and Kennedy (2001) have criticized methods like Enders’ method based on the 

following arguments: 

• they are double testing and triple testing for unit roots (the mass significance 

problem), 

• they allow for unrealistic outcomes, and 

• they do not take advantage of prior knowledge of time series growth. 

 

The problem of mass significance has already been demonstrated by the simulation results 

that we have just presented. Cutting down on possible models based on removing unrealistic 

outcomes and using prior knowledge about time series growth provides a way to deal with 

the mass significance problem. Elder and Kennedy (2001) claim that model (5) should not be 

allowed due to its explosive nature,6 and model (2) should not be allowed since a stationary 

process around an equilibrium of exactly zero is unlikely. When there is no prior knowledge 

about growth in the variable, only models (1), (3), (4), and (6) should be allowed. However, if 

we have a good reason to think there is a time trend or a trend created by a drift term we can 

narrow down our choices further to models (3) and (6) only. If instead we have a good reason 

to think there is no time trend or a trend created by a drift term, we can narrow down our 

choices further to models (1) and (4). How the Enders strategy is modified by Elder and 

Kennedy’s suggestions (referred to as the Elder and Kennedy strategy) when there is no prior 

knowledge of the variable’s growth is listed below.7 

 

Elder and Kennedy Strategy, No Prior Knowledge of Growth in Variable 

ttt ctbyay ε+++=Δ −1A. Estimate the equation , and test whether b = 0 can be rejected 

using DF critical values. If it can be rejected, conclude no unit root, and if not, 

conclude there is a unit root.8  

                                                 
6 By explosive is meant the series has a rate of change that is ever increasing or ever decreasing. Elder and 
Kennedy (2001) more widely criticize this model as unrealistic for economic time series, with explosiveness 
being one reason why it is unrealistic. Elder and Kennedy refer to Perron (1988) and Holden and Perman (1994) 
on discussing the issue of the unrealistic nature of this model.  
7 Again, the presentation is in a Dickey-Fuller environment rather than an augmented Dickey-Fuller one, 
matching the presentation in Elder and Kennedy. 
8 Elder and Kennedy accept that some double testing for unit roots could be appropriate at this point to improve 
power. The problem of mass significance is reintroduced with that double testing, however. 
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B. If b = 0 can be rejected in step A, use standard t testing to determine whether c = 0 

can be rejected (i.e. conclude model 6) or not (i.e. conclude model 4). 

C. If b = 0 cannot be rejected in step A, estimate the equation tt ay ε+=Δ , and test 

whether a = 0 can be rejected using standard t-statistic testing. If it can be rejected, 

conclude model (3), if not, conclude model (1). 

 

 

If nonzero growth in the y variable is known a priori, the Elder and Kennedy strategy 

becomes the same as step A above, with the conclusion of no unit root implying model (6) 

and the conclusion of unit root implying model (3) (neither step B nor step C need be done). 

If zero growth in the y variable is known a priori, the Elder and Kennedy strategy becomes 

the same as step A above with ct excluded in estimation. The conclusion of no unit root 

would then imply model (4) and the conclusion of a unit root implying model (1) (neither 

step B nor step C need be done). 

 

The issue of what constitutes appropriate prior knowledge may not be clear however. Some 

variables for theoretical reasons have growth or not, and that certainly constitutes prior 

knowledge. However, if the growth (or not) of a variable is determined prior to testing solely 

by looking at the data or previous similar data, then that “eyeball test” arguably should be 

considered part of the testing procedure and again could lead to a mass significance problem 

after being followed by other tests. 

 

Examining the Elder and Kennedy strategy with no prior knowledge of growth, we can see 

that they avoid the issue of mass significance on the unit root test by avoiding multiple testing 

of the unit root; determination of whether a unit root or not exists is based entirely on one 

test. A second test after that is suggested by Elder and Kennedy only to determine whether 

growth or not is involved along with the stationarity or nonstationarity determined by the unit 

root test. Due to this structure in their strategy, they completely control for size in their unit 

root test – the actual size for that test should be very close to the nominal size, and 

simulations we have done have indicated that is true.9  

                                                                                                                                                        
 
9 Another strategy with good size properties under similar conditions is strategy S3 of Ayat and Burridge 
(2000), which includes pre-testing for the linear trend using Vogelsang’s (1998) t-PS1 statistic, which is 
invariant to the unit root, followed by a single unit-root test appropriate given the results of the trend test. That 
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The power of the unit root test of course depends on the true parameter values and the 

associated issue of which alternative situation—stationary around a nonzero constant or trend 

stationary—is the true one, and the associated true parameter values. If stationarity around a 

nonzero constant (model 4) is the true model, then the power function has the typical shape, 

with small magnitudes of b resulting in power close to the size, and successively larger 

magnitudes (more negative) of b resulting in successively higher power. This is demonstrated 

in the simulation results of Figure 2 when no prior knowledge of growth is used and when 

correct prior knowledge that there is no growth is used.  The figure also shows that power 

improvement is possible from utilizing prior correct knowledge about non-growth when 

stationarity around a nonzero constant is true, confirming the statement on this matter by 

Elder and Kennedy.   

 

Figure 2. Power Function When DGP is ttt byy ε++=Δ − 11  Using Elder and Kennedy 

Strategy with No Prior Knowledge of Growth and 5% Nominal Size for All Testing. 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0

b

P
ow

er

Absence of growth
assumed and used
No knowledge of
growth used

 
If trend stationarity (model 6) is the true model, the power function representing the 

likelihood of accepting stationarity correctly does not differ whether or not we use correct a 

priori information on growth in the Elder and Kennedy method. This is true since the 

equation estimated for the unit root test would be the same regardless of the a priori 

information; the estimated equation would include time as an explanatory variable along with 

a constant regardless. However, the power function under such circumstances can have an 

                                                                                                                                                        
strategy was found to have good size properties for the unit root test, but the power properties for that test were 
not impressive. 
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unusual shape (rising, falling, and rising again with higher magnitudes of b) as demonstrated 

in Figure 3. This is perhaps attributable to the fact that for values of b near 0, there is slow 

convergence so the variable can take on attributes that seem like those of a variable generated 

by the excluded model (model (5)), in which there is nonstationarity around a trend leading to 

explosiveness.  

 

Figure 3. Power Function When DGP is ttt tbyy ε+++=Δ −11  Using Elder and Kennedy 

Strategy with No Prior Knowledge of Growth and 5% Nominal Size for Testing. 

0
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The Elder and Kennedy strategy using no prior knowledge on growth is admirable in its 

control of size on the unit root test. However, those authors also suggest a second test (step B 

or C) as a possibility for those interested in what is the appropriate model to conclude upon. 

At this point the legitimacy of the size of the second test becomes questionable due to the 

prior testing for the unit root. 

 

In Table 5 we present for various data generating processes (DGP) the simulated size or 

power on the first test and second test in the Elder and Kennedy strategy when there is no 

prior knowledge of growth in the variable. The first test is the unit root test. The second test is 

either the test for a drift if a unit root is not rejected in the first test, or the test for a 

deterministic time trend if a unit root is rejected in the first test. The table also shows the 

frequency of choosing the correct DGP structure (unit root no drift, unit root with drift, 

stationary around nonzero constant, or trend stationary). Each cell in the table presents three 

 - 13 -



numbers. The first number in each case is the simulated value when a nominal size of 10% is 

used on all tests. The second number is the corresponding value when a nominal size of 5% is 

used on all tests, and the third number is the corresponding value when a nominal size of 1% 

is used on all tests.  

 

Table 5. Size and Power Properties for the First and Second Tests of the Elder and 

Kennedy Testing Strategy with No Prior Knowledge of Growth 

True data generating process, Size Power Size Power Frequency 
1st test 1st test 2nd test 2nd test with εt ~ N(0,1) Choosing 

true DGP 
structure 

9.8% - 19.9% - 72.3%tty ε=Δ(i)  
4.9% 9.9% 85.7% 
0.8% 1.7% 97.5%
9.6% - - 100.0% 90.4%tty ε+=Δ 1  (ii) 
4.5% 100.0% 95.5%
1.0% 100.0%   99.0%

10.3% - -   68.2% 61.2%tty ε+=Δ 25.0  (iii)
5.1%   53.7% 51.0%
0.9%     26.6% 26.4%

- 96.9% 0% - 96.9%ttt yy ε++−=Δ − 15.0 1(iv)  
90.3% 0%  90.3%
62.7% 0%  62.7%

- 11.4% 56.1% - 5.0%ttt yy ε++−=Δ − 205.0 1(v)  
6.8% 41.2% 4.0%
1.7% 17.6% 1.4%

-  96.4% - 100.0% 96.4%ttt tyy ε+++−=Δ − 4.015.0 1(vi)  
89.9% 100.0% 89.9%
60.3% 100.0% 60.3%

-   47.4% - 100.0%        47.4% ttt tyy ε+++−=Δ − 4.011.0 1(vii)  
32.5% 100.0% 32.5%
12.1% 100.0% 12.1%

- 96.6% - 97.7% 94.4%ttt tyy ε+++−=Δ − 2.015.0 1(viii)  
90.1% 63.9% 57.6%
60.5% 4.3% 2.6%

- 96.9% - 1.4% 1.4%ttt tyy ε+++−=Δ − 1.015.0 1(ix)  
90.4% 0.0% 0.0%
62.7% 0.0% 0.0%

Notes: 
a. The first test is the unit root test. The second test is either the test for a drift if a unit root is not rejected in the 

first test, or the test for a deterministic time trend if a unit root is rejected in the first test. 
b. The three numbers in each cell are, in order, the results when the nominal size of 10%, 5%, or 1% is used. 
c. The size and power found on second test are calculated as the frequencies respectively of rejecting the true 

null hypothesis and of accepting the true alternative hypothesis for those situations in which stationarity status 
was chosen correctly. 

 - 14 -



With the true DGP in case (i) in the table there is a unit root with no drift, so the simulations 

are providing information on size on the first test (the unit root test) and size on the second 

test (the test for a drift term given there is a unit root). The results indicate the actual size 

matches the nominal size well on the first test, but the second test has actual size too high 

compared to the nominal level. The frequency of choosing the true DGP structure appears 

quite good, between 72% and 98%. With the true DGP in (ii) and (iii), there is a unit root 

with drift, so the simulations are providing information on size on the first test (the unit root 

test) and power on the second test (the test for a drift term given there is a unit root). Again, 

the size on the first test is what we expect for each of these true DGPs. The power is varying 

on the second test, but not in an unexpected way: when the drift term is strong as in case (ii), 

the power is 100%, and when it is weak as in case (iii), the power is notably weak. The 

frequency of choosing the correct model is strong when the power is strong as in case (ii) and 

is weakened by the weak power in case (iii). 

 

With the true DGP in case (iv) there is stationarity around a nonzero constant, so the 

simulations are providing information on power on the first test (the unit root test) and size on 

the second test (the test for a deterministic trend with an otherwise stationary process). The 

power on the first test with these parameters seems good, but the most surprising aspect here 

is the actual size on the second test is zero for all three nominal size levels considered. 

Because of this, the frequency of choosing the true DGP structure is exactly equal to the 

power on the first test. 

 

Case (v) is the same as case (iv) but with a very low rate of convergence for the stationary 

process (the coefficient on yt-1 is very low). Under these circumstances the true DGP is 

getting close to a random walk with drift, making the distinction difficult between the true 

DGP structure (stationary around a nonzero constant) and a DGP structure with drift-induced 

growth. However, since a DGP structure with drift-induced growth is not available as an 

option after the unit root has been rejected, the second test will mistake near drift-induced 

growth for time-trend induced growth more often in case (v) than in case (iv). This explains 

the high size values found in case (v) for the second test while in case (iv) they were all zero. 

 

With the true DGP in case (vi) there is a trend stationary process, so the simulations are 

providing information on power on the first test (the unit root test) and power on the second 

test (the test for a deterministic trend with an otherwise stationary process). Here we see 
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strong power in both cases due to the strong convergence parameter and the strong coefficient 

on the time variable. The frequency of choosing the correct model is high and equal to the 

power on the first test since the power on the second test is 100%.  

 

Cases (vii), (viii), and (ix) are alterations of case (vi) on one parameter each. The changed 

parameter is made to be lower so we can examine situations where the true model is more 

likely not to be chosen. In case (vii) the convergence parameter is lowered in magnitude from 

-0.5 to -0.1, resulting in much lower power on the first test while the power on the second test 

remains at 100%. In case (viii) the coefficient on the time variable is reduce from 0.4 to 0.2 in 

comparison to case (vi). The power on the first test is not affected much by this change, but 

the power on the second test has gone down. Interestingly magnitude of the drop in the power 

on the second test varies from little with 10% nominal size to very much with 1% nominal 

size. This pattern is reflected in how the frequency of choosing the true DGP structure is 

reduced. Finally, in case (ix) the coefficient parameter for the time trend is reduced from 0.4 

to 0.1 in comparison to case (vi). The pattern of changes observed between cases (vi) and 

(viii) are generally repeated between cases (vi) and (ix), although stronger in magnitude. In 

case (ix) there is very little power on the second test with 10% nominal size, and virtually 

zero power on that test with 5% or 1% nominal size.  
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III. Conclusions 

One objective of this paper has been to evaluate a unit root model selection strategy 

suggested by Enders (2004) via Monte Carlo experiments. Our simulation results indicate 

serious mass significance problem if this strategy is used in conducting tests for unit roots. 

Our simulation results also indicate that utilizing prior restrictions to remove non-credible 

models, as suggested by Elder and Kennedy (2001), is exceptionally helpful, if not crucial, to 

have Dickey-Fuller unit root testing have empirical sizes close to their nominal counterparts. 

Since the Enders (2004) strategy does not utilize such prior restrictions, its use can be 

misleading as our simulations show.  

 

We also investigate the size and power properties of the Elder and Kennedy (2001) unit root 

testing strategy when there is no knowledge of the growth status of the examined variable. 

Our simulations indicate that after the unit root status has been determined, the actual size of 

the subsequent test suggested by those authors (determining stationarity around a nonzero 

constant versus trend stationarity, or random walk versus random walk with drift) is rarely 

close to the nominal size, with there being the distinct possibility that the actual size will be 

extremely far from the nominal size when testing for a time trend after stationarity has been 

determined. The simulations also indicate that when trend stationarity is the true model, the 

test for inclusion of a time trend after the unit root has been rejected is more robust in its 

power to a low coefficient for the time variable when higher nominal size levels are used for 

both the unit root test and the trend test (e.g. there is more robustness at the 10% significance 

level than at the 1% significance level).  
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