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ABSTRACT 
 

To quickly adapt to technological change and developments, and thus remain competitive, firms increasingly 

resort to the use of external technology. This paper investigates whether and to what extent the acquisition of 

external disembodied technology affects the efficiency and productivity in innovation of technology acquiring 

firms. Using the stochastic frontier analysis combined with a difference-in-difference matching approach and 

firm-level panel from the German Innovation Survey for the period 1992–2004, we find that manufacturing 

firms that acquire disembodied technology experience more growth in innovative productivity than non-

acquiring firms do. Thus, this study provides evidence on complementarity between internal and external R&D 

in innovation production, which is attributed by increasing returns to R&D scale and increasing technical 

efficiency. Moreover, we find that firm size significantly contributes to innovative efficiency and productivity of 

external technology acquirers. 
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1 Introduction 
The recent rise of external technology acquisition is attributed to the growing complexity, 

speed, and uncertainty of technological developments, combined with greater codification of 

R&D processes that facilitate R&D contracting and segmentation of R&D activities (e.g., 

Grandstrand et al., 1992; Narula, 2001). To create sustainable performance differentials with 

competitors, firms must constantly update their technological capabilities (Leonard-Barton, 

1994). However, in many industries, accelerating own R&D efforts and developing internal 

innovative capabilities are no longer sufficient in light of the increasing cost, speed, and 

complexity of technological developments. Because of the high risk due to the low probability 

of innovation success and the length of required time for innovation to provide adequate 

returns, internal developments may be perceived as undesirable by firms (Hitt et al., 1991). 

Thus, firms prefer to invest fewer resources in internal R&D when faced with resource 

constraints or when there are attractive external sources of innovation. Compared to internal 

R&D, external sourcing allows a firm to obtain knowledge and technology beyond its current 

capability and routines (Mitchell and Singh, 1996). The combination of external technology 

sourcing and internal R&D can allow firms to benefit from research complementarities 

through involvement in multiple technological trajectories, research directions that cannot be 

developed simultaneously (at sufficient speed) in-house, and the use of outside skills that can 

exploit in-house research more effectively. 

The present paper examines the impact of external technology acquisition on a firm’s 

innovation performance in transforming innovation resources into commercially successful 

output. We focus on the disembodied technology sourcing such as licensing-in and R&D 

contracting, which are similar in that neither requires a joint research effort. Both technology 

sources can be viewed as two, possibly substitutable, ways of acquiring innovative knowledge 

and entail very little financial risk but grant quick access to necessary technology that is 

beyond in-house capabilities. In contrast to previous studies, the innovation performance of 

firms is determined not only by their resources and innovation inputs, but more importantly 

by their productivity in innovation and the factors that affect this productivity. In particular, 

we separate the effects of technical efficiency, scale efficiency, and technological level in 

attaining innovative productivity. 

With respect to innovative productivity, only a few examples in the literature discussed, 

independent from the issue of technology acquisition, innovative efficiency at the firm level 

by using quantitative approaches. Cosh et al. (2005) examine the impact of management 
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characteristics and patterns of collaboration on a firm’s innovative efficiency by comparing 

the Data Envelopment Analysis (DEA) and the Stochastic Frontier Analysis (SFA). Zhang et 

al. (2003) applied the SFA approach to the R&D efforts of Chinese firms to examine the 

difference in efficiency among various types of ownership. Hashimoto (2008) analyzed R&D 

efficiency change of Japanese pharmaceutical firms using DEA methodology. In addition, 

Korhonen et al. (2001) and Cherchye and Vanden (2005) applied the DEA technique to 

evaluate the efficiency of university R&D in Finland and the Netherlands, respectively. The 

few examples, however, use a two-stage approach when analyzing the inefficiency 

determinants1 and are restricted to estimation of predicted inefficiency. 

The main contribution of this paper to the existing literature is that, to the best of our 

knowledge, this study is the first attempt to empirically address the role of external 

technology acquisition in the achievement of innovative efficiency and productivity. More 

precisely, the present study quantifies to what extent technology acquirers are changing their 

innovative efficiency and productivity levels after acquiring external technology. The purpose 

of this study is twofold. First, we intend to measure the relative innovation performance of the 

firms within the German manufacturing sector. A stochastic output distance function is used 

to construct a generalized output Malmquist productivity index (Orea, 2002) for estimating 

the firm’s innovative productivity. Second, we analyze the impact of external technology 

acquisition on the acquiring firms’ innovative productivity growth. In particular, contribution 

of firm size to the growth of innovative productivity and its components – efficiency change, 

technical change and scale efficiency – following external technology activity is examined. 

The paper proceeds as follows. Section 2 discusses the theoretical underpinnings of 

external technology sourcing and innovative productivity. Section 3 introduces empirical 

methodologies and specifications of the models estimated. The description of data that 

facilitate our empirical analysis and their descriptive analysis are provided in Section 4, while 

Section 5 presents estimation results of the empirical analysis. Section 6 concludes. 

 

 

2 Theoretical Background 
In developing new technological output, “dual sourcing” of R&D is imperative (Mitchell and 

Singh, 1996). Together, internal and external R&D create the absorptive capacity (Cohen and 

                                                             
1 See Section 3.1.2 about drawbacks of this approach. 
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Levinthal, 1990) that underlies current and future technical output. Because external 

technology sourcing contributes to the development of absorptive capacity, it has implications 

for the ability of technological firms to generate and enhance new output. Expanding the 

scope of a firm’s internal R&D may help mitigate the uncertainties associated with the 

emergence of a new technology. However, it is virtually impossible for a firm, regardless of 

its effort, to keep abreast of all the relevant technological advances solely through internal 

R&D. When a new technology emerges, the technological know-how required for its 

commercial application may well fall outside the firm’s current area of expertise and the 

firm’s internal stock of technical knowledge becomes less relevant (Teece, 1988). In this 

situation, firms must look to external technology sourcing to complement their in-house 

R&D. Access to technological complementarities is one of the most important reasons for 

firms to acquire technology externally since R&D and innovation projects usually require a 

larger amount and more specific assets than do the firm’s other projects (Hagedoorn, 1993; 

Cassiman and Veugelers, 2006). In addition to acquiring the necessary knowledge and 

competencies, looking outside the firm for such also reduces the firm’s own innovation costs 

and rectifies internal rigidities through cost sharing as well as through risk sharing. 

The literature providing empirical evidence on the effect of external technology sourcing 

on a firm’s innovation performance is growing recently (e.g., Cassiman and Veugelers, 2007; 

Narayanan and Bhat, 2009; Grimpe and Kaiser, 2008, Veugelers and Cassiman, 1999; 

Beneito, 2006). It has been argued that in order to absorb externally acquired knowledge, an 

effective ‘absorptive capacity’ to identify and effectively utilize this knowledge is essential 

(e.g., Cohen and Levinthal, 1989). In-house R&D activities are often required to create 

sufficient absorptive capacity, which suggests a complementarity between internal and 

external R&D. Empirically, the effective balance between internal R&D and external sourcing 

and interaction between these two strategies has however remained relatively unexplored.  

Although the existing literature acknowledge that the efficient handling of organization 

costs might prove to be central for innovation success (Grimpe and Kaiser, 2008), they focus 

primarily on the success/failure of technology acquisition based on R&D efforts and R&D 

output. However, if R&D resources are not used effectively, additional investment may be of 

little support in stimulating innovation process. At the same time, if innovation outputs are not 

produced effectively, after a certain point, the R&D inefficiency may hinder the creation of 

innovation and eventually would lead to a technological exhaustion. Since external 

technology sourcing is aimed at securing access to new technology, which can make cost-

cutting possible or allocate fixed costs over a broader R&D base, investigating efficiency and 
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productivity in innovation is important for the effective allocation of external technology 

resources into internal R&D activities. 

The literature discussing the effects of R&D investment on production productivity in 

general emphasizes the role of firm characteristics such as firm size and resource and 

capability constraints as important determinants of production efficiency and productivity 

(Henderson and Cockburn, 1996; Marriese and Hall, 1996; Danzon et al., 2003, Berghäll, 

2006). Findings from the empirical literature on the relationship between firm size and 

efficiency are ambiguous, but there is indication that firm size could be a main source of the 

heterogeneity in technical efficiency. On the one hand, it is claimed that large firms could be 

more efficient in production because they use more specialized inputs and better coordinate 

their resources. On the other hand, it is emphasized that small firms could be more efficient 

because they have more flexible, non-hierarchical structures, and usually do not suffer from 

the so-called agency problem. 

Moreover, size may have an indirect effect on productivity through other variables, such as 

resource and capability constraints, as variations in these will lead to different patterns of 

behavior between small and large firms (Geroski, 1998). From the evolutionary theory 

perspective, innovation is an accumulating learning process, irreversible with regard to the 

technological path (Malerba and Orsenigo, 1990; Pavitt et al., 1987). This implies that the 

level of accumulated resources and capabilities will significantly affect future innovative 

efficiency. These resources and capabilities vary among firms and are determined by a vast 

and complex number of both stimulating and restraining factors that appear to have a 

significant impact on the innovative process and thus on the innovative efficiency of firms 

(Freel, 2000; Vossen, 1998). According to Vossen (1998), large firms’ strengths are 

predominantly material due to economies of scale and scope, and financial and technological 

resources, whereas small firms’ strengths are mostly behavioral, that is, small firms are more 

dynamic, flexible, efficient, and often have closer proximity to the market. Hence, small firms 

will be more likely to face material resource and capability constraints to innovation than 

larger firms will, while larger firms will be more likely to experience behavioral constraints to 

innovation. 

Scale efficiency is another major source of differences in productivity between small and 

large firms. Large firms are often argued to be more innovative as they enjoy greater 

economies of scale and scope than do smaller firms (Cohen and Klepper, 1996) and can 

capture the fruits of their innovation. They also have easier access to finance and greater 

capability to invest in R&D or acquire external innovation (Geroski et al., 2002). However, 
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You (1995) suggests that efficient firm size is determined by the interaction between 

economies of scale stemming from increasing returns to production technology and 

diseconomies of scale stemming from decreasing returns to organizational technology. Thus, 

although large firms may have technological and learning economies of scale, these may be 

outweighed by organizational diseconomies of scale (Zenger, 1994). Indeed, there are various 

arguments as to the impact firm size has on innovation performance. When R&D expenditure 

is used as a proxy for innovation, there is evidence that innovation increases more than 

proportionately with firm size up to a threshold point. This is explained by the size advantages 

of large firms in terms of internal knowledge, financial resources for innovation, sales base, 

and market power (Cohen and Klepper, 1996). When patents and innovation counts are 

employed as indicators of innovative output, it emerges that R&D productivity tends to 

decline with firm size, either when measured as patents per R&D (Bound et al., 1984) or 

when measured by innovations per unit of R&D (Acs and Audretsch, 1990, 1991). When 

market structure is taken into account, the large firms’ R&D advantage tends to disappear, 

innovative output (in terms of number of inventions) tends to fall as concentration grows, 

while the returns to R&D inputs decrease with firm size (Acs and Audretsch, 1988), which 

implies that industry specifics are key factors in innovative performance. These different 

findings suggest that the relationship between firm size and innovation performance depends 

on the choice of the performance indicator and the importance of technological regimes 

prevalent to a particular industry. 

Finally, technical change could be an important factor in explaining innovative 

productivity dynamics because small and large firms use R&D inputs in different proportions. 

If technical change is neutral, then there will be a parallel shift in the production function. 

That is, all firms face the same rate of technical change. If technical change is biased, then 

firms operating at different scales will benefit from technical change at different rates. Based 

on the above considerations, we argue that firm size and technology regime may induce a 

significant effect on the differentials of firms’ innovative productivity. 

Various external sourcing modes are discussed in the technology management literature. 

The transaction cost perspective treats the external technology sourcing choice as an 

organization boundary choice among market, hierarchies, and networks/alliances with the aim 

of curbing opportunism (e.g., Hennart, 1991). According to the resource-based view, the 

choice of mode is driven by pursuit of competitive advantages and technological capability 

(e.g., Kogut and Zander, 1992; Nagarajan and Mitchell, 1998). Based on a comparison of 

different technology acquisition modes, the literature concludes that the effectiveness of any 
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type of technology sourcing depends on the attributes of the technology being pursued, the 

extent of technical change, and uncertainty in the external environment (e.g., Arora and 

Gambardella, 1994; Steensma and Corley, 2000). 

In the present paper, we investigate two major subcategories of disembodied technology 

acquisition: firstly, new technology disembodied through a licensing agreement and, 

secondly, outsourcing of technology development to an R&D contractor. According to 

Cassiman and Veugelers (2007), if a firm decides to acquire technology externally, it will find 

that licensing agreements or R&D contracts are the most flexible modes of external sourcing. 

The main advantage of licensing is the speed with which technologies can be acquired and 

applied to own production. To make licensing efficient, licensees must have the capability to 

screen, identify, process, and utilize the technological know-how licensed. Hoekman and 

Javorcik (2006) and Lopez (2008) argue that technology licensing generates productivity 

spillovers and increases productivity in upstream sectors. On the other side, Grimpe and 

Kaiser (2008) find positive and significant effects for both internal and contractual R&D 

expenditure on the innovation success measured in innovative product sales. R&D contracts 

help firms to acquire technologies without significant irreversible financial commitment and 

firms can selectively and flexibly acquire technology based on their needs and technological 

configuration. The contractor firm becomes a possibility to focus on particular areas of 

research, which provides substantial cost saving compared to full-fledged in-house research 

facilities. When appropriability is high, firms are willing to sell their technology to other firms 

to appropriate the benefits from innovating (Teece, 1986). However, licensing-in and 

contractual R&D might also lead to a reluctance of firms to rely heavily on external sourcing 

of technological knowledge due to the contractual uncertainty, information asymmetry, and a 

limited transferability of tacit knowledge (Teece, 1988). 

 

 

3 Methodology 

3.1 Measuring Innovative Efficiency and Productivity 

Motivated by the knowledge production function set up in Pakes and Griliches (1984) and 

Griliches (1990), this paper considers R&D activity in manufacturing in the context of an 

innovative sales production function. The R&D production function applied to each firm is 

assumed to be well behaved and to exhibit variable returns to scale. It is presumed that all 
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firms have the same underlying aggregate production function in terms of standardized 

quantities of outputs and inputs but that they may operate on a different part of it. 

 

3.1.1 Estimation Approach 

Total factor productivity (TFP) using a productivity index is theoretically defined as the ratio 

of an aggregate output index to an aggregate input index. The most widely used productivity 

index is the Malmquist TFP index presented in Färe et al. (1994). The Malmquist TFP index 

measures the TFP change between two data points by calculating the ratio of two associated 

distance functions. Distance functions are a convenient way of describing a well-behaved 

multi-input and multi-output production technology without the necessity of specifying 

behavioral assumptions such as cost minimization or profit maximization. Let a multi-input 

and multi-output production technology at time t be defined as: 

 { }, :  can produce M N
t t t t tS x y x y +

+= ∈ℝ  (1) 

where ( ) ( )1 1,...,  and ,...,N M
i i iN i i iMx x x y y y+ += ∈ = ∈ℝ ℝ are input and output vectors for the i-th 

firm, 1,...,i I= , respectively. With a specific time period t, the production technology St 

transforms inputs xt into net outputs yt for each time period t =1,..., T. Then, the distance 

function can be defined by rescaling the length of an input or output vector with the 

production frontier as a reference: 

 ( ) ( ){ }, min : , /O
t t t t t tD x y x y Sθ θ= ∈  (2) 

where ( ) ( ), 1 if and only if ,O
t t t t t tD x y x y S≤ ∈ . Furthermore, ( ), 1O

t t tD x y =
 

if and only if

( ),t tx y is located on the outer boundary of the feasible production set, which occurs only if 

production is technically efficient. 

The output-oriented Malmquist TFP index as defined by Färe et al. (1994) measures the 

TFP change between two data points by calculating the ratio of the distances of each data 

point relative to a common technology. One main criticism of the Malmquist TFP index is 

that it is constructed under constant returns to scale assumption. Hence, the Malmquist TFP 

index does not provide an accurate measure of productivity change because it ignores the 

contribution of scale economies. Orea (2002) presents an approach to decompose the 

Malmquist TFP index into technical change, technical efficiency change, and scale efficiency 
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change where the contribution of scale economies is taken into account without requiring the 

prior calculation of scale efficiency measures as presented by Balk (2001).2 

The translog distance function for the case of N inputs (x1, x2,…,xN) and M outputs (y1, 

y2,…,yM) is quadratic in the variables lnyt, lnxt and t3: 

 

( ) 0
1 1 1 1
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1 1 1 1
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1 1
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 (3) 

Applying Diewert’s (1976) quadratic identity lemma to the translog distance function, Orea 

(2002) derives a generalized output-oriented Malmquist TFP index decomposition where the 

logarithmic form of the TFP change index between periods t and t+1 can be written as: 

( ) 1 1
1 1

1
1 1

1 1 1

ln ln ln1
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ln 2

1
                                      1 1 ln
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O O O
O t t t
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+
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   ∂ ∂= − +   ∂ ∂  

     + − − ⋅ + − − ⋅ ⋅      
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∑ ∑ ∑

                    

 (4) 

where 
1

ln / ln  and /
N

O
kt t kt kt kt kt

k

e D x s e e
=

= ∂ ∂ = ∑  represent the distance elasticity and distance 

elasticity share for the k-th input in period t, respectively. The negative of the sum of the input 

elasticities represents the scale elasticity, the inverse of which is the return to scale: 

 
1

1
1

N

kt
k

RTS e
−

+
=

 = −  
 
∑  (5) 

                                                             
2 Balk (2001) uses a parametric technique to decompose the Malmquist TFP index into technical change, 
technical efficiency change, scale efficiency change, and input- or output-mix effect. Although Balks’s approach 
is appealing, it does require the prior calculation of scale efficiency measures in which the scale effects are 
measured using the most productive scale size as a reference. As Orea (2002) points out, the scale efficiency 
measures are not bounded for either globally increasing, decreasing, or constant returns to scale or for ray-
homogenous technologies. More simply, in the case of a single output, a U-shaped average cost curve is required 
for the most productive scale size to exist. 
3 Including time as a variable in the production frontier allows for the shifts of the frontier over time, which are 

interpreted as technical change. Technical change is neutral if 0,  1,...,
kt

k Nα = = . 
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The scale term takes a positive value when there are increasing returns to scale, i.e. RTS < 1, 

and input expansion or decreasing returns to scale, i.e. RTS > 1, as well as when there is input 

contraction. 

As a result, the components of the productivity index ln O
vrsG present changes in output 

technical efficiency (EFFCH), technical change (TECHCH), and a scale term (SCALE) 

depending on RTS values and on changes in input quantities.4 

 

3.1.2 Model Specification 

In this study, we apply a translog functional form of an output distance function with two 

outputs and three inputs. Note that we employ a two-year time lag between inputs and outputs 

in the knowledge production function. Estimating the translog output distance function 

presented in equation (3) requires conditions of symmetry and linear homogeneity in outputs. 

Symmetry requires the restrictions ( ), , ,...,j l j l Mβ β=  and ( ), , ,...,kh hk k h Nα α= . The linear 

homogeneity of degree +1 in outputs is given if 
1

1
M

j
j

β
=

=∑ ,
1

0
M

jl
l

β
=

=∑ ,
1

0
M

kj
j

γ
=

=∑  and
1

0
M

jt
j

β
=

=∑  

hold. The homogeneity restrictions can be imposed by estimating a model where the 1M −

output quantities are normalized by the M-th output quantity.5 The distance term, DO, can be 

viewed as the error term as follows: 

 ln O
it itD v u− = −  (6) 

Then, the estimating form of the output distance function of our model is represented as: 
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 (7) 

where *
1 1 2/it it ity y y= ; 1  2,it ity y , and 2 2,− −kit hitx x  denote outputs and inputs of the i-th firm at the 

t-th and t-2-th time period, respectively; T is a linear time trend that is used as an index of 

                                                             

4 The term ln oG
vrs

is viewed as the parametric counterpart of the generalized productivity index introduced by 

Griffel and Lovell (1999) when the distance function is translog. 
5 The symmetry restrictions are imposed in the estimation. 
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technology; POSTit is a post-acquisition binary variable; fitr  represents dummy variables for 

technology regimes that correspond to each firm in the sample; itWESTis a region-specific 

dummy variable; vit is the random error, which is assumed to be i.i.d. and follows a ( )20, vN σ

distribution independent of the uit, which is a non-negative random variable associated with 

technical inefficiency. 

According to the Battese and Coelli (1995) model, uit is specified as a function of firm-

specific factors that might influence technical inefficiency. In particular, uit is determined by 

the truncation (at zero) of the ( )2, uN µ σ distribution where the general form of the firm-

specific mean, itµ , is specified as a function of variables explaining technical inefficiency of 

firms. In this study, we specify the model of technical inefficiency as follows: 

 0 1 2 1 2 3= + + + Φ + Φ + Φ +it it it it it itACQ T C S Xµ δ δ δ ε  (8) 

where ACQit is the acquisition binary variable; T is a time trend; Cit is a set of dummy 

variables that indicate resource and capability constraints to innovation; Sit is a set of dummy 

variables for firm size categories; Xit is a set of firm-related characteristics; and itε is statistical 

noise. The unknown parameters of the stochastic frontier translog distance function (7) and 

the technical efficiency model (8) are estimated simultaneously using the method of 

maximum likelihood. This approach avoids the inconsistency problem of the two-stage 

approach used in previous empirical works when analyzing inefficiency determinants.6 

Battesse and Corra (1977) suggest that the two variance parameters can be replaced by two 

new parameters2 2 2 2 2 and /v u vσ σ σ γ σ σ= + = . The γ -parameterization has advantages in 

obtaining maximum likelihood estimates because the parameter space for γ  can be searched 

for a suitable starting value for the iterative maximization routine. If γ  is close to one, the 

deterministic frontier is the result because all variation in the error term is attributed to 

inefficiency. Conversely, if γ  is close to zero, there is no inefficiency in the disturbance, so 

the estimated function could be estimated by OLS method, for instance. 

After simultaneous estimation of the output distance function (7) and the technical 

efficiency model (8), we can compute the components of the Malmquist TFP change index 

                                                             
6 In a two-stage procedure, firstly, a stochastic frontier production function is estimated and the inefficiency 
scores are obtained under the assumption of independently and identically distributed inefficiency. However, in 
the second step, inefficiency effects are assumed to be a function of some firm-specific variables, which 
contradicts the assumption of identically distributed inefficiency. 
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presented in (4). First, the technical efficiency prediction for the i-th firm in the t-th time 

period can be calculated as follows: 

 ( )exp  where .it it it it it itTE E u e e v u=  −  = −   (9) 

Thus, the technical efficiency change of the i-th firm between adjacent years  and 1t t + yields: 
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The technical change and scale efficiency change can be calculated as follows: 
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3.2 Measuring the Effects of External Technology Acquisition 

In this section, we present the econometric methodology that we apply for analyzing the 

effects of external technology acquisition on the innovative productivity of the acquirer firm. 

On the one hand, simply comparing the innovative productivity before and after the 

acquisition is not satisfactory because such a comparison would be beset with variation in 

outcome that is actually due to change in the market environment over time. On the other 

hand, solely comparing the innovative productivity between acquirer and non-acquirer firms 

in the post-acquisition period could be biased due to permanent differences between these 

groups of firms. To avoid these biases, we employ the difference-in-difference method 

(Ashenfelter and Card, 1985) which compares the difference in the outcome before and after 

the acquisition for acquiring firms to the difference in the outcome before and after the 

acquisition for a control group, i.e. non-acquiring firms. 

However, it is doubtful whether the effects of external technology acquisition can be 

assessed properly if there are considerable differences in outcome between acquiring and non-

acquiring firms. As discussed in Section 2, there are different patterns of innovative 

productivity among small and large firms, as well as between manufacturing sectors. 
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Moreover, recent empirical evidence indicates that since acquiring firms differ in some 

important aspects from other firms in the pre-acquisition period, it is important to take these 

differences into account in any performance study of acquisitions (Bertrand and Zitouna, 

2008, Gantumur and Stephan, 2007). Choosing an appropriate control group will account for 

this selection bias. To this end, we integrate a propensity score method (Dehejia and Wahba, 

2002) into the difference-in-difference approach, thereby controlling for endogeneity and ex-

ante observable firm characteristics. 

For each firm i  in the sample, let iACQ  be an acquisition indicator that equals one when 

the firm acquires technology externally and zero otherwise, 1
iY  is the innovative productivity 

of acquiring and 0
iY  is the innovative productivity of non-acquiring firms. Then, the effect of 

technology acquisition is defined by the difference between the expected innovative 

productivities as ( ) ( )1 01 1i i i iE Y ACQ E Y ACQ= − = . Since we do not have counterfactual 

evidence of what would have happened if a firm had not acquired external technology,

( )0 1i iE Y ACQ=
 
is unobservable. However, it can be estimated by ( )0 0i iE Y ACQ =

 
and the 

effect can be given by the difference in the average outcome between the acquiring and non-

acquiring firms as ( ) ( )1 0
i i i iE Y ACQ 1 E Y ACQ 0= − = . The estimator will be unbiased only 

when the acquiring and the non-acquiring firms do not systematically differ in their firm 

characteristics. Rubin (1997) and Rosenbaum and Rubin (1983) show that a propensity score 

analysis of observational data can be used to create groups of treated and control units that 

have similar characteristics, whereby comparisons can be made within these matched groups.7 

The acquisition propensity score is then defined as the conditional probability of acquiring 

external technology given a set of firm’s productivity characteristics iY  and other firm-related 

characteristics iX : 

 ( ) ( )2 2Pr 1 ,it it it itp ACQ ACQ Y X− −= =  (12) 

Thus, we account for the lagged time structure of the technology acquisition decision 

problem. 

                                                             
7 In these groups, there are firms that have been treated and firms that have not been treated; hence, the 
allocation of the treatment can be considered as random inside the groups of firms. 
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Based on the propensity score matched sample, the effects of acquisition on the acquirer’s 

innovative productivity can be estimated using the following difference-in-difference 

estimator: 

( ) ( ) ( ) ( )1 1 0 0
2 2 2 21 1 0 0+ − + −

   = − = − = − =   it it it it it it it itE Y ACQ E Y ACQ E Y ACQ E Y ACQ (12) 

where 2, 2t t− + denote the pre- and post-acquisition periods, respectively. The two-year time 

window surrounding the acquisition event in t allows us to account for the length of time 

required between acquisition of the technology and its adaptation for innovative sales 

production. 

Finally, the above estimator is obtained by performing the following regression: 

 0 1 2 3it it it it it it itY ACQ POST ACQ POST Xβ β β β ε= + + + ⋅ + Φ +  (12) 

where ACQit is a dummy variable that captures possible differences in outcome Yit between 

acquiring and non-acquiring groups; POSTit is a dummy variable for the post-acquisition time 

period, which controls for aggregate factors that would cause changes in outcome Yit even in 

the absence of acquisition; the coefficient 3β  represents the difference-in-difference estimator 

of the effect of acquisition on the group of technology acquiring firms; and the vector Xit 

represents firm characteristics. Thus, controlling for the differences in the technology 

acquired and non-acquired firms’ innovative productivity prior to acquisition, we estimate the 

firm’s post-acquisition innovative productivity compared to what it would have been in the 

absence of the acquisition. 

 

 

4 Data and Descriptive Analysis 

4.1 Sample Description 

The analysis makes use of data from the German Innovation Survey, which is the German 

contribution to the EU’s Community Innovation Survey (CIS). This innovation survey fully 

complies with the methodological recommendations for CIS surveys and adopts the standard 

CIS questions (see Janz et al., 2001 for a detailed discussion). The survey was conducted by 

the Centre for European Economic Research (ZEW) and covers a representative sample of the 

German manufacturing sector (as well as business-related services). It is designed as a panel 
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survey and is conducted at the firm level on a yearly basis. The yearly data are updated with 

biannual survey data that include more comprehensive and detailed information and 

compensate for panel mortality. Each survey reports information on the innovation activity of 

firms in the previous three-year period. The panel design of the survey offers the possibility of 

analyzing seven waves, covering the periods 1990–1992 (1993), 1992–1994 (1995), 1994–

1996 (1997), 1996–1998 (1999), 1998–2000 (2001), 2000–2002 (2003), and 2002–2004 

(2005). 

Combining the biannual surveys allows us to construct an unbalanced panel covering the 

period 1992–2004 (with lagged year 1992) in which firms appear in at least three subsequent 

survey waves, i.e. at least three times biannually which yields six years of observation so far. 

We use an unbalanced panel in order to account for developments in innovative efficiency 

and productivity growth caused by sector entrants and by market exits, which would not be 

possible using a balanced panel. In other words, a balanced panel containing only firms that 

were active over the whole observation period could bias our results. Next, we restrict our 

analysis to innovative firms that continuously employed internal R&D.8 Furthermore, we 

choose firms with positive value on innovation outputs, such as innovative sales with new 

products to the firm and innovative sales with market novelties, and on at least one non-

missing input, such as innovation expenditure, labor in R&D, and material expenditure at the 

end of each period. Our effective initial sample consists of 1,555 observations corresponding 

to 412 firms. 

In the MIP questionnaire, firms are asked whether they engaged (i) in external R&D 

acquisition, (ii) in the acquisition of external knowledge such as licenses, patents, and non-

patented inventions, and/or (iii) in R&D contracting during a certain year. Identification of 

external technology acquisition is based on whether one of these external sourcing activities 

has been undertaken. During the period 1994–2004, on average, 27 percent of the firms  

acquired disembodied technology externally. The frequency of the firms’ technology 

acquisition over the years is shown in Table A4 in the Appendix. 

 

 

 

 

                                                             
8 Each MIP survey wave contains a question as to whether a firm has engaged in continuous internal R&D for 
the last three years. 
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4.2 Variables of the Analysis 

The description of the variables used in the analysis and their summary statistics are shown in 

Table 1. We use two outputs and three input variables in the production function specified in 

equation (7). In particular, the two output variables are defined as the innovative sales with 

significantly improved products or products new to the firm (YINF) and the innovative sales 

with market novelties (YINM). The outputs have been constructed as shares of total sales and 

they are mutually exclusive variables, depending on whether the product innovation is just 

new to the firm or new to the market. 

The three input variables are innovation expenditure (XINEXP), labor (XLRD), and material 

(XM). Innovation expenditures encompass, in addition to internal and external R&D, other 

costs incurred when innovating, such as training costs, market research, marketing activities, 

the purchase of licenses, capital expenditures for innovation, and design. We use the 

innovation expenditure intensity, which is measured as a share of total sales. Labor is defined 

by the number of R&D employees, and material comprises total material expenditure. The 

latter inputs are measured as shares of total employees and total sales, respectively. 

Furthermore, in the distance function, we include a post-acquisition binary variable 

(POST) which is equal to one for all years subsequent to external technology sourcing and 

zero otherwise. POST allows shifting for the distance function in the post-acquisition period 

in relation to the pre-acquisition one. 

In the inefficiency model (8), various variables are included to explain the technical 

inefficiency of firms. All surveyed firms were asked about the obstacles to innovation they 

have encountered and about the consequences of those obstacles on their innovation projects. 

Specifically, firms were asked to assess the importance of hampering factors. After rescaling9 

the values, we obtain a dummy variable that takes value zero, when a hampering factor does 

not constrain the innovation activity of a firm, and value one when a constraint to innovation 

is present. We include the factors that decrease the efficiency of innovative productivity such 

as high economic risk (RISK), high innovation cost (COST), lack of information about 

technologies (TECH), organizational rigidity (RIG), lack of suitably qualified personnel 

(PERS), and lack of market information (MARKET) as resource and capability constraints. 

Moreover, we include in the inefficiency model specific firm-related variables, such as 

capital intensity (CAP), export intensity (EXP), and market share (MS). The expectations 

                                                             
9
 Different scaling was applied to the answers in different waves of the survey, that is, scaling from unimportant 

to important values is sometimes between 0 and 5, sometimes between 0 and 3, and sometimes between 0 and 1. 
Therefore, we have rescaled the values to obtain a binary variable. 
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regarding the effect of capital intensity on innovative efficiency are ambiguous. On the one 

hand, if a firm’s production process is capital intensive, any changes or additions to that 

process required by a new product will have a substantial impact. Innovative efficiency could 

deteriorate due to substantial sunk investments made in R&D that cannot be exploited by 

existing production resources. On the other hand, dated fixed assets may often be designed to 

accommodate emerging shifts or variations in raw materials and market preferences. If this is 

the case, increasing capital intensity will enhance innovative efficiency. The market share, 

defined as firm sales over total sector10 sales, captures the relevance of the firm’s market 

power in its sector. There is mixed evidence implying a positive relationship between a firm’s 

efficiency and its market share and increasing productivity due to the increased competition. 

We expect a positive relationship between export intensity of firms and their innovative 

efficiency. 

An acquisition dummy variable (ACQ) which is equal to one for the technology acquiring 

firms and zero otherwise is included in the inefficiency model to assess the impact of 

technology sourcing on inefficiency. A linear time trend (T), which indicates how efficiency 

changes with time, is included in both the distance function and the inefficiency model. 

A comparison of the means between the groups of technology acquiring (ACQ) and non-

acquiring firms (NACQ) in Table 1 shows that there are significant differences not only with 

respect to the firm-related characteristics but also in the innovation-specific variables that 

determine the production distance function. 

 

Table 1. Variables description and descriptive statistics,a 1992–2004 

 
Variables 
 

 
Description 
 

 
SAMPLEb 

 

 
NACQc 

 

 
ACQc 

 
OUTPUT  
YINF Innovative sales with new products to the firm 

as a share in total assets 
 0.3691 
(0.2467) 

 0.3110 
(0.1245) 

 0.3929*** 
(0.1102) 

YINM Innovative sales with market novelties as a 
share in total sales 

 0.2392 
(0.2164) 

 0.2053 
(0.0087) 

 0.2305*** 
(0.0093) 

INPUT 
XINEXP Innovation expenditure intensity as a share of 

innovation expenditure in total sales 
 0.0655 
(0.0750) 

 0.0575 
(0.0023) 

 0.0741*** 
(0.0033) 

XLRD R&D labor intensity measured as a share of 
R&D employees in total employees 

 0.0755 
(0.0503) 

 0.0713 
(0.0022) 

 0.0827*** 
(0.0024) 

XM Material expenditure intensity measured as a 
share of material expenditure in total sales 

 0.4834 
(0.1899) 

 0.4815 
(0.0067) 

 0.4967* 
(0.0088) 

INNOVATION CONSTRAINTS 
RISK High economic risk  0.4834 

(0.4927) 
 0.5651 
(0.0176) 

 0.5887 
(0.2210) 

                                                             
10 Sectors are defined according to NACE 2 industry classification. 
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COST High innovation cost  0.6162 
(0.4864) 

 0.5939 
(0.0175) 

 0.6282 
(0.0217) 

TECH Lack of information on technologies   0.3745 
(0.4846) 

  0.3397 
(0.0169) 

  0.4314*** 
(0.0224) 

RIG Organizational rigidity  0.3965 
(0.4890) 

 0.3651 
(0.0172) 

 0.4720*** 
(0.0223) 

PERS Lack of suitably qualified personnel  0.3672 
(0.4824) 

 0.2984 
(0.0285) 

 0.3813** 
(0.0449) 

MARKET Lack of market information  0.3884 
(0.4876) 

 0.3470 
(0.0189) 

 0.4245*** 
(0.0240) 

FIRM-RELATED CHARACTERISTICS 
CAP Capital intensity measured as a share of 

investment expenditure in total sales 
 0.0798 
(0.1393) 

 0.0760 
(0.0047) 

 0.0767 
(0.0053) 

EXP Export intensity measured as a share of sales 
abroad of total sales 

 0.2701 
(0.2555) 

 0.2215 
(0.0081) 

 0.3575*** 
(0.0117) 

MS Market share measured as a share of firm’s 
sales of total market sales 

 0.0903 
(0.0870) 

 0.0464 
(0.0036) 

 0.0671*** 
(0.0060) 

SMALL Dummy variable for firms with 10–49 
employees 

 0.2836 
(0.4508) 

 0.3402 
(0.0156) 

 0.2053*** 
(0.0176) 

MEDIUM Dummy variable for firms with 50–249 
employees 

 0.3852 
(0.4868) 

 0.4076 
(0.0162) 

 0.3403*** 
(0.0206) 

LARGE Dummy variable for firms with >250 
employees 

 0.3311 
(0.4707) 

 0.2521 
(0.0143) 

 0.4543*** 
(0.0217) 

SB Dummy variable for “ science-based” 
technological regime 

 0.2360 
(0.4247) 

 0.1815 
(0.0127) 

 0.3250*** 
(0.0204) 

FP Dummy variable for “fundamental process” 
technological regime 

 0.0848 
(0.2788) 

 0.0891 
(0.0093) 

 0.0836 
(0.0120) 

CS Dummy variable for “complex (knowledge) 
systems” technological regime 

 0.2372 
(0.4255) 

 0.1967 
(0.0131) 

 0.2984*** 
(0.0199) 

PE Dummy variable for “production engineering” 
technological regime 

 0.1196 
(0.3246) 

 0.1380 
(0.0113) 

 0.0969*** 
(0.0129) 

CP Dummy variable for “continuous processes” 
technological regime 

 0.3221 
(0.4674) 

 0.3945 
(0.0161) 

 0.1958*** 
(0.0173) 

WEST Dummy variable for West region  0.6971 
(0.4996) 

 0.6663 
(0.0155) 

 0.7490*** 
(0.0189) 

Observations (firm-years)     1555     1129     426 
% of total       -     73%     27% 
Notes:  a Comparison of means for acquiring (ACQ) and non-acquiring firms (NACQ). 
             b Standard deviations in parentheses.  
            c Standard errors of the test on the difference of means are parentheses.  
            ** and *** significant at 5% and 1%, respectively. 

 

Furthermore, most factors hampering innovation are identified more frequently by acquiring 

firms than by non-acquiring firms. In addition, larger firms are more likely to supplement 

their internal R&D with externally acquired disembodied technology. Finally, external 

technology sourcing is predominant in all technological regimes expect for those involving 

continuous and fundamental processes. 

 

4.3 Accounting for Firm Heterogeneity and Sector Specificity 

In the inefficiency model, we include dummy variables for firm sizes in order to analyze the 

heterogeneity in innovative efficiency and productivity that is potentially induced by different 



size of firms. Firms are classified as small if they have 10

medium if they have 50–250 employees (

employees (LARGE). A significant impact of firm sizes on the innovative inefficiency would 

show whether any significant differences with regard to innov

different classes of firm size. 

Moreover, in the distance function, we include dummy variables for technological regimes 

in order to control for differences in technological and market conditions between 

manufacturing sub-sectors. Empirical evidence confirms that patterns of innovation are 

technology specific and vary across industries (e.g., Nelso

Hence, it is important to account for the technological regimes 

common among firms belonging to different manufacturing sector,

the differences between industrial sectors without accounting for innovation characteristics. 

To this end, we apply Marsili’s typology of technological regimes

basis of technological opportunity conditions, appropriability conditions, cumulativeness of 

learning, and the nature of the knowledge base (for more detail

 

Figure 1. Distribution of product innovators across technological clusters
 

 

Using Marsili’s typology, we classify the industrial sectors into five technological classes

science based (SB), fundamental process

production engineering (PE), and continuous processes

technological regimes and their application to industry sectors is given in 

Appendix. Figure 1 presents the percentage of innovators 

sample. The different size classes of firms in our sample are distributed quite evenly across 

                                                             
11 The Marsili’s classification has been applied to the Dutch and Norwegian manufacturing sector but 
been applied to the German manufacturing sector (e.g., 
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size of firms. Firms are classified as small if they have 10–49 employees (

250 employees (MEDIUM), and large if they have more than 250 

). A significant impact of firm sizes on the innovative inefficiency would 

show whether any significant differences with regard to innovative efficiency exist for 

Moreover, in the distance function, we include dummy variables for technological regimes 

in order to control for differences in technological and market conditions between 

Empirical evidence confirms that patterns of innovation are 

across industries (e.g., Nelson and Winters, 1982; Dosi, 1988

Hence, it is important to account for the technological regimes whose characteristics are 

on among firms belonging to different manufacturing sector, rather than control

the differences between industrial sectors without accounting for innovation characteristics. 

s typology of technological regimes, which sorts regimes on the 

technological opportunity conditions, appropriability conditions, cumulativeness of 

nature of the knowledge base (for more details, see Marsili, 2001).

of product innovators across technological clusters by firm size 

 

we classify the industrial sectors into five technological classes

, fundamental processes (FP), complex (knowledge) systems

and continuous processes (CP).11 An overview of these 

and their application to industry sectors is given in Table A1 in the 

Figure 1 presents the percentage of innovators across technological regimes in our

sample. The different size classes of firms in our sample are distributed quite evenly across 

s classification has been applied to the Dutch and Norwegian manufacturing sector but 
to the German manufacturing sector (e.g., Marsili and Verspagen, 2002). 

ployees (SMALL), as 

), and large if they have more than 250 

). A significant impact of firm sizes on the innovative inefficiency would 

ative efficiency exist for 

Moreover, in the distance function, we include dummy variables for technological regimes 

in order to control for differences in technological and market conditions between 

Empirical evidence confirms that patterns of innovation are 

n and Winters, 1982; Dosi, 1988). 

whose characteristics are 

rather than controlling for 

the differences between industrial sectors without accounting for innovation characteristics. 

orts regimes on the 

technological opportunity conditions, appropriability conditions, cumulativeness of 

li, 2001). 

we classify the industrial sectors into five technological classes: 

, complex (knowledge) systems (CS), 

overview of these 

Table A1 in the 

across technological regimes in our 

sample. The different size classes of firms in our sample are distributed quite evenly across 

s classification has been applied to the Dutch and Norwegian manufacturing sector but has not yet 



technological regimes; there are slightly more medium

and more large firms in the process engineering regime.

Figure 2 shows that external technology acquisition was most prevalent for the science 

based firms, while the firms with continuous process technology were the least likely to use 

external technology for innovation. On average, 45 percent of total acquisitions were ca

out by large firms, while small and medium

acquisitions, respectively. 

 

Figure 2. Distribution of external technology acquisition

 

According to Table 2, small and medium

both innovations new to the firm and new to the market than large firms are. As innovation is 

defined by innovative product sales, this implies that the firms with smalle

(expressed by the number of employees) are not hindered by potential constraints at the 

downstream value chain activities 

 

Table 2. Innovative product sales of manufacturing firms by size c
 
  

Observation 

SMALL 441 
MEDIUM 599 
LARGE 515 
Total/Average 1,555 

 

Since the time period of analysis covers the early years of the German Reunification as well, a 

dummy variable that distinguishes between the innovative productivity of East and West 

geographic regions is included in the production distance function. About

firms in our sample are located in the Western Germany.
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technological regimes; there are slightly more medium-size firms in the science-

and more large firms in the process engineering regime. 

ws that external technology acquisition was most prevalent for the science 

based firms, while the firms with continuous process technology were the least likely to use 

external technology for innovation. On average, 45 percent of total acquisitions were ca

out by large firms, while small and medium-size firms conducted 19 and 36 percents of the 

xternal technology acquisitions by firm size and by technology regime

 

According to Table 2, small and medium-size firms, on average, are more innovative in 

both innovations new to the firm and new to the market than large firms are. As innovation is 

defined by innovative product sales, this implies that the firms with smalle

(expressed by the number of employees) are not hindered by potential constraints at the 

downstream value chain activities to bring an invention to the marketplace. 

sales of manufacturing firms by size categories 

Innovation new to firm Market novelties

Mean Std.dev. Mean 
0.4401 0.2889 0.2889 
0.3779 0.2414 0.2427 
0.3084 0.2248 0.2008 
0.3691 0.2467 0.2392 

Since the time period of analysis covers the early years of the German Reunification as well, a 

dummy variable that distinguishes between the innovative productivity of East and West 

geographic regions is included in the production distance function. About 69 percent of the 

firms in our sample are located in the Western Germany. 

-based regime 

ws that external technology acquisition was most prevalent for the science 

based firms, while the firms with continuous process technology were the least likely to use 

external technology for innovation. On average, 45 percent of total acquisitions were carried 

size firms conducted 19 and 36 percents of the 

by firm size and by technology regime 

size firms, on average, are more innovative in 

both innovations new to the firm and new to the market than large firms are. As innovation is 

defined by innovative product sales, this implies that the firms with smaller firm size 

(expressed by the number of employees) are not hindered by potential constraints at the 

Market novelties 

Std.dev. 
0.2481 
0.2109 
0.1897 
0.2164 

Since the time period of analysis covers the early years of the German Reunification as well, a 

dummy variable that distinguishes between the innovative productivity of East and West 

69 percent of the 
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5 Empirical Results 
This section first reports the results for innovative efficiency based on stochastic frontier 

analysis. Using the parametric decomposition of a Generalized Malmquist Productivity Index 

as described in Section 3.1, we then present an analysis of the productivity effects regarding 

innovation of external technology acquisitions on efficiency change, technological change, 

and scale efficiency change of German manufacturing firms during the period 1994 through 

2004. 

 

5.1 Innovative Efficiency 

In analyzing innovative efficiency in a year, it would not be appropriate to apply input and 

output data for the same year. Instead, we consider that variations in input do cause observed 

changes in output some years later. In this study, we apply a two-year time lag between input 

expenditure and realization of its outcome, e.g. innovative sales. 

The results of the maximum likelihood estimation for the translog distance function (7) and 

the technical inefficiency model (8) are presented in Table A3 (in the Appendix) and Table 3, 

respectively.12 

 

Table 3. Maximum-likelihood estimates for parameters of inefficiency effects model in stochastic 
frontier production function 

 
Variable 
 

 
Parameter 
 

 
Estimated value 
 

 
t-statistic 
 

RISK δ1   0.2136   2.4591** 
COST δ2   0.3628   2.9012** 
TECH δ3   0.6731   5.1443*** 
RIG δ4   0.0294   1.0704 
PERS δ5   0.0092   0.8573 
MARKET δ6   0.8707   4.0739*** 
SMALL δ7   0.5892   2.5370** 
LARGE δ8   0.2626   2.0732** 
ACQ δ9  -0.4201  -5.3452*** 
CAP δ10  -0.8828  -4.2643*** 
EXP δ11  -0.1853  -0.4105 
MS δ12   0.1127   0.0813 
T δ13   0.0252   0.0524 
Constant δ0   1.6532   7.0174*** 
 
Variance parameters of distance function 
SIGMA 2 2

u vσ σ+    0.6129   5.7830*** 

LAMBDA  /u vσ σ    2.0468   9.1078*** 

                                                             
12 The model parameters are estimated using the FRONTIER 4.1 (Coelli, 1996). 
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GAMMA  ( )2 2 2/u u vσ σ σ+    0.7841   8.0236*** 

Log likelihood  -1433.412 
Notes: The translog distance function and inefficiency effects model are estimated simultaneously. 
            The estimates for parameters of translog distance function are presented in Table A3 in the Appendix. 
            The group of medium-size firms is the base case used for the firm size comparison. 
            ** and *** significant at 5% and 1%, respectively. 
 

The estimates of λ  and σ  are large and significantly different from zero, indicating a 

good fit and confirms the specified distributional assumption. As λ  is the ratio of the 

variances uσ  and vσ , it becomes evident that the one-sided error term u dominates the 

symmetric error v, so that variation in innovative sales from production arises out of 

differences in the firms’ R&D performance rather than being due to random variability. The 

estimate of γ  suggests that 78 percent of random variation in innovative sales is explained by 

inefficiency. Therefore, the inefficiency effects are substantial in the stochastic frontier model 

analyzed. 

Hypothesis tests regarding the structure of the production technology are conducted using 

likelihood ratio tests. Table 4 shows that the null hypothesis that all the δ - parameters and the 

intercept term are zero is rejected at the five percent significance level, confirming that the 

joint effect of these variables on technical inefficiency is statistically significant. Furthermore, 

we analyzed whether the chosen translog specification is appropriate by testing it against the 

simpler Cobb-Douglas functional form. The likelihood ratio test strongly rejects the 

hypothesis that the Cobb-Douglas function fits the data better, so we are confident that the 

translog specification is appropriate. 

 

Table 4. Generalized likelihood ratio tests of hypotheses of the distance function and inefficiency 
effects model 
 
 
Null hypothesis 
 

Test 
statistica 

Critical 
valueb 

Decision 

The inefficiency model is not appropriate 
Ho: 0 1 13... 0γ δ δ δ= = = = =  76.04   24.38(15)c Reject H0 

Cobb-Douglas production function 
Ho: 11 22 33 12 13 23 11 11 21 31 0α α α α α α β γ γ γ+ + + + + + + + + =  37.98   17.67(10) Reject H0 

No technical change 
Ho: 1 2 3 1 0t tt t t t tϕ ϕ α α α β= = = = = =  48.84 12.59(6) Reject H0 

Notes:  a The test statistics have a χ2 distribution with degrees of freedom equal to the difference between the   
               parameters involved in the null and the alternative hypothesis.  
                  b For a 95% significance level. Degrees of freedom are in parentheses. 
            c As γ takes values between 0 and 1, the statistic is distributed according to a mixed χ2 whose critical   
               value is obtained from Kodde and Palm (1986). 
 



23 

 

We further test whether the assumption of technical change is evident; the hypothesis of no 

technical change is rejected at the five percent significance level, so incorporation of a time 

trend is adequate. Thus, the likelihood ratio tests indicate the presence of inefficiency in 

production and that the determinants of inefficiency should be included in the efficiency 

effects model specification. 

We now turn to the maximum likelihood estimates presented in Table A3 and Table 3. To 

interpret the estimated first-order parameters of the translog output distance function as 

elasticities of distance with respect to inputs and outputs evaluated at the sample means, all 

variables are scaled to have unit means. The share of turnover from market novelties is used 

as the normalizing output. All the first-order coefficients are statistically significant at the one 

percent level and they have the expected signs, implying that the output distance function is 

increasing in outputs and decreasing in inputs at the sample mean. Taking into account the 

homogeneity restriction presented in equation (7), the estimated output elasticities for the 

sales shares from market novelties and new products to the firm are found to be 0.385 and 

0.614, respectively. Furthermore, since the sum of the input elasticities provides information 

on scale economies, the RTS is equal to 0.9496, indicating that the technology exhibits 

moderately increasing returns to scale at the sample mean. 

The estimated coefficient of the post-acquisition dummy variable is statistically significant, 

indicating that the distance function is shifting in the post-acquisition period in relation to the 

pre-acquisition period. Furthermore, three of the four estimated coefficients of the dummy 

variables for technology regimes are statistically significant, indicating that the intercept of 

each estimated distance function is shifted by the technology regime factors vis-à-vis the 

intercept of an arbitrary base technology regime, i.e. the continuous processing regime. The 

shifting of the distance function is also apparent between West and East regions. 

The parameter estimates for the inefficiency model suggest a number of factors which may 

explain technical inefficiency of innovative output. The results suggest that innovation 

constraining factors identified by the firms such as high economic risk, high innovation costs, 

and lack of technological and market information contribute significantly to R&D 

inefficiency. For an average firm, however, the inefficiency is not affected by internal 

organizational rigidities or the lack of qualified employees. 

The estimated coefficients on the groups of small and large firms are both positive and 

statistically significant, indicating presence of significant size effect on the firm’s innovative 

efficiency in the sample. This suggests that manufacturing firms of small and large sizes are 

less efficient than their counterparts of medium-size. 
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The estimate for the acquisition dummy variable indicates that innovative inefficiency is 

lower for an average acquirer of external technology than those for non-acquiring firms 

during the observed time period. 

In addition, the estimated coefficient of the gross capital intensity has a significant negative 

coefficient, reflecting the fact that inefficiency and fixed assets intensity are negatively 

related. Thus, an average firm in the sample invests in rather flexible assets which are able to 

cope with market preferences, thereby increasing efficiency in R&D. The effects of market 

share and export intensity variables are insignificant. The insignificant coefficient for the time 

trend shows that inefficiency does not change over time. 

The firm’s technical efficiency is computed using the conditional expectation of the 

equation (9), conditioned on the composed error (it it ite v u= − ), and calculated using the 

estimated parameters presented in Tables A3 and 3. The summary statistics of the estimated 

technical efficiency scores are reported in Table 5. 

 

Table 5. Summary statistics for technical efficiency scores 
 
  

SAMPLE 
 

 
ACQ 

 

 
NACQ 

 
Mean 0.73 0.80  0.67 
Standard deviation 0.21 0.19  0.21 
Minimum 0.16 0.17 0.16 
Median 0.70 0.78  0.68 
Maximum 0.92 0.92  0.81 
Observations  1,555 426  1,129 

 

In total, the minimum estimated efficiency is 0.16 percent, the maximum is 0.92 percent. The 

mean efficiency value of 0.73 implies that, on average, the same inputs could have produced 

19 percent more of the observed output if the inputs were deployed by firm using the frontier 

production technology. For the technology outsourcing firms, the mean efficiency is 13 

percent larger than it is for non-acquiring firms. 

Table 6 shows the distribution of firms across the range of technical efficiencies. Note that 

the percentages of firms refer to each corresponding group of firms. Across the entire sample, 

17 percent of the firms have a technical efficiency in the range above 80 percent, whereas the 

most technically efficient firms are those firms complementing externally technology to their 

in-house innovation activity. In contrast, 2 percent of the technology acquirers and 13 percent 

of the non-acquirers have a mean technical efficiency below 20 percent, and thus are 

considered technically inefficient. 



Table 6. Acquiring and non-acquiring firms by technical efficiency 
 

 
Technical efficiency (%) 

 
SAMPLE

< 20 
20-39 
40-59 
60-79 
80-99 
Total 

 

In Figure 3, the distribution of 

reveals that medium-size and large firms have the highest technical efficiency; 19 and 23 

percents of the medium-size and large firms have a mean technical efficiency above 60 per

cent, whereas only 12 percent of small firms fall within this range. Small firms are more 

frequently found in the technical efficiency range of 40 

 

Figure 3. Distribution of firm size classes by 
 

 

In sum, larger firms are more likely 

external technology acquisitions present more innovative efficiency. However, the 

relationship between firm size and technical efficiency is curvilinear, implying that medium

size firms, on average, are the most efficient. Thus, smaller firms are, on average, more 

innovative in terms of innovation output (see Table 2), while medium

technically efficient in innovation production.

 

5.2 Innovative Productivity and Post

In this section we examine the effect of technology acquisition on productivity growth. Total 

factor productivity growth is computed

25 

acquiring firms by technical efficiency  

SAMPLE 
 

ACQ 
 

NACQ

10% 2% 
13% 3% 
23% 10% 
37% 57% 
17% 28% 
100% 100% 100%

In Figure 3, the distribution of firms of different sizes across technical efficiency ranges 

size and large firms have the highest technical efficiency; 19 and 23 

size and large firms have a mean technical efficiency above 60 per

ly 12 percent of small firms fall within this range. Small firms are more 

frequently found in the technical efficiency range of 40 – 59 percent. 

Distribution of firm size classes by technical efficiency  

 

In sum, larger firms are more likely to acquire technology externally and firms engaging in 

external technology acquisitions present more innovative efficiency. However, the 

relationship between firm size and technical efficiency is curvilinear, implying that medium

e the most efficient. Thus, smaller firms are, on average, more 

innovative in terms of innovation output (see Table 2), while medium-size firms are more 

technically efficient in innovation production. 

Innovative Productivity and Post-Acquisition Changes

the effect of technology acquisition on productivity growth. Total 

computed from the estimated output distance function

NACQ 
 

13% 
18% 
30% 
27% 
11% 
100% 

firms of different sizes across technical efficiency ranges 

size and large firms have the highest technical efficiency; 19 and 23 

size and large firms have a mean technical efficiency above 60 per 

ly 12 percent of small firms fall within this range. Small firms are more 

to acquire technology externally and firms engaging in 

external technology acquisitions present more innovative efficiency. However, the 

relationship between firm size and technical efficiency is curvilinear, implying that medium-

e the most efficient. Thus, smaller firms are, on average, more 

size firms are more 

Changes 

the effect of technology acquisition on productivity growth. Total 

from the estimated output distance function using 
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equation (4). This allows us to disentangle the effects of technical change, technical efficiency 

changes and scale efficiency if inputs expand over time, which are evaluated according to the 

equations (10), (11), and (12), respectively. Table 7 presents summary statistics on the 

biannual growth of the measures of innovative productivity for technology acquiring and non-

acquiring firms separately. Across the entire time period, technical change was strongly 

biased, accelerating from -3.6 percent to 9.2 percent. Thus, manufacturing firms were likely to 

render older technologies obsolete at a faster rate.  

 

Table 7. Summary statistics on growth rates of efficiency change, technical change, scale change, and 
total factor productivity change 
 
  

EFFCH 
 

TECHCH 
 

SCALE 
 

TFPCH 
 ACQ NACQ ACQ NACQ ACQ NACQ ACQ NACQ 
Mean  0.0163 0.0181 0.0414 0.0222 0.0203 0.0262 0.0780 0.0665 
Std. Dev. 0.0093 0.0059 0.0382 0.0180 0.0177 0.0086 0.0684 0.0302 
Min -0.0267 -0.1920 -0.0360 -0.0161 -0.0051 -0.0210 -0.0678 -0.0229 
Median 0.0155 0.0171 0.0451 0.0330 0.0228 0.0240  0.1112 0.0492 
Max 0.0224 0.0291 0.0924 0.0617 0.0470 0.0423 0.1618 0.1331 
Observation 406 928 406 928 406 928 406 928 
Notes: The number of observations is smaller than that in Table 5 due to the inclusion of growth variables. 
 

At the same time, the growth rates in efficiency change and scale efficiency were relatively 

moderate, ranging from -2.6 percent to 2.9 percent and from -0.5 percent to 4.7 percent, 

respectively. As a result, output-based TFP growth varies from -6.7 percent to 16.1 percent 

for technology acquirers, while for non-acquiring firms it ranges from -2.2 percent to 13.3 

percent. The average TFP growth rate was 1.2 percent higher for acquiring firms than for non-

acquiring firms during the sample period. Thereby, the highest growth rate for technology 

acquirers is in technical change, at 4.1 percent on average, whereas the highest growth for 

non-acquiring firms occurs in efficiency change and scale economies, at 1.8 percent and 2.6 

percent, respectively. 

After assessing the aggregate productivity of an average acquiring and non-acquiring firm, 

we now focus our analysis on the post-acquisition changes in innovative productivity. In 

particular, we estimate the effects of external technology acquisitions on innovative 

productivity, as described in Section 3.2. 

First of all, we derive an appropriate counterfactual group for technology acquiring firms 

by estimating the propensity to outsource external technology using a probit model. The 

propensity to acquire is defined by the growth rates in innovative productivity and overall 

performance of firms. More specifically, the firms’ growth rates in efficiency change, 
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technical change, and scale efficiency change, as well as in market share, capital intensity, 

and export intensity, are included as determinants of acquisition probability. Moreover, we 

include factors indicative of resource and capability constraints to innovation. Note that the 

determinants are lagged by two years to avoid endogeneity problems in the input-output 

relationship. In addition, we include dummy variables for firm size classes. 

The coefficient estimates of the probit model are shown in Table A4 in the Appendix.13 

Firms with lower technical efficiency change and scale efficiency have a significantly greater 

propensity to acquire technology externally. Hence, deterioration in innovative efficiency and 

diseconomies of R&D scale appear to be the driving forces behind the acquisition of 

disembodied technology. At the same time, firms experiencing greater technological change 

are more likely to employ external knowledge for their innovation production. Given the 

productivity determinants, we find that the likelihood of acquiring external knowledge is 

higher for larger firms. While acquisition of disembodied technology is attracted by the firms 

that have a scarcity of technological information, the firms identifying the high risk of 

innovation for marketplace and the firms facing problems with qualified personnel do not use 

external technology sourcing as a mean for overcoming their resource and capability 

constraints. 

As the next step, we apply nearest-neighbor matching on the predicted propensity scores 

derived from the estimation described above. Thus, at each point in time, a technology 

acquiring firm is matched with a non-acquiring firm in the same technology cluster and size 

class, thereby reducing the possible bias related to unobservable changes. Table A5 in the 

Appendix displays the balancing outcome of our matching procedure. We include in the 

matching only variables on annual (e.g., biannual) changes. There are significant differences 

between the growth variables of acquiring and non-acquiring firms across the whole sample, 

while the differences of the same characteristics for acquiring and the matched control firms 

are insignificant. The matching method therefore provides a valid control group to which we 

compare changes in the productivity growth of technology acquirers. 

We estimate for each of the outcome variables two model specifications: one analyzing 

overall effects on technology acquiring firms and another one accounting for firm size effects 

of acquirers. The former analysis reveals that medium-size and large firms have greater 

innovative efficiency and that they engage more in technology acquisition than do small 

                                                             
13

 Note, in this study, the primary aim of estimating the probability function is to find an appropriate control 
group of firms rather than to examine the determinants of the decision to pursue external technology acquisition, 
which is a question worthy of a separate investigation. 
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firms.14 To study the heterogeneity of the technology acquisition effects for different size 

classes, we consider therefore the effects of technology acquisition by medium-size and large 

firms in a separate model by including the acquisition dummies for both size categories 

(ACQMEDIUM and ACQLARGE). Furthermore, the annual (e.g., biannual) changes in certain 

firm-related variables, such as capital intensity (CAPCH), export intensity (EXPCH), and 

market share (MSCH), are included as well. In addition, we account for unobserved constant 

heterogeneity across technological regimes, as well as potential external shocks, by including 

both technology regime and fixed year dummies. In this case, the OLS method with robust 

standard errors fits our estimation model well. Since the panel data sample has a cadence of 

two years, it allows accounting for technology adaptation and integration time after 

technology sourcing. 

 

Table 8. Effects of external technology acquisition on efficiency change, technical change and scale 
change 
 
 EFFCH TECHCH SCALE 
 (1) (2) (3) (4) (5) (6) 
ACQ  -0.0297** 

 (0.0038) 
   0.0167 

 (0.0289) 
   0.0390*** 

 (0.0031) 
 

ACQMEDIUM    0.0038** 
 (0.0018) 

   0.0344 
 (0.0401) 

   0.0458** 
 (0.0230) 

ACQLARGE    0.0070** 
 (0.0032) 

   0.0449 
 (0.0487) 

   0.0419** 
 (0.0183) 

POST  -0.0840*** 
 (0.0015) 

 -0.0695*** 
 (0.0049) 

  0.0586** 
 (0.0231) 

  0.0501*** 
 (0.0029) 

 -0.0643** 
 (0.0264) 

 -0.0301*** 
 (0.0019) 

ACQ*POST   0.0071** 
 (0.0032) 

   0.0014* 
 (0.0008) 

   0.0091*** 
 (0.0002) 

 

ACQMEDIUM*POST    0.0086*** 
 (0.0006) 

   0.0021** 
 (0.0010) 

   0.0072** 
 (0.0030) 

ACQLARGE*POST    0.0052** 
 (0.0021) 

   0.0019 
 (0.0021) 

   0.0094** 
 (0.0028) 

CAPCH   0.0100 
 (0.0151) 

  0.0835** 
 (0.0244) 

 -0.0626** 
 (0.0217) 

 -0.0290* 
 (0.0280) 

 -0.0420*** 
 (0.0032) 

 -0.0602*** 
 (0.0029) 

EXPCH   0.0764** 
 (0.0214) 

  0.0431* 
 (0.0270) 

 -0.2807 
 (0.3349) 

 -0.2451 
 (0.2996) 

  0.0637*** 
 (0.00471) 

  0.0887*** 
 (0.0036) 

MSCH   0.0551** 
 (0.0201) 

  0.0461* 
 (0.0285) 

- 0.0087 
 (0.0137) 

 -0.0499 
 (0.0842) 

 -0.1360 
 (0.1765) 

 -0.0947 
 (0.1207) 

Constant   0.0127*** 
 (0.0006) 

  0.0582*** 
 (0.0008) 

  0.0220** 
 (0.0102) 

  0.0490*** 
 (0.0030) 

  0.0699*** 
 (0.0048) 

  0.0801*** 
 (0.0030) 

Observation      766      642      766      642      766      642 
Adjusted R2      0.58      0.68      0.62      0.64      0.52      0.62 
Notes: The models (1), (3) and (5) include all firms. The models (2), (4) and (6) include medium-size and large   
             firms only. Technological regime and year fixed effects are included. 
             Robust standard errors are in parentheses. *, **, *** significant at 10%, 5%; and 1%, respectively. 
 

                                                             
14 In the last estimation sample (Table 8), we have 383 technology acquisitions in total, whereby 16, 40, and 44 
percents of the acquisitions have been carried out by small, medium-size, and large firms, respectively. 
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A number of interesting insights emerge from the review of the estimates on the effects of 

technology acquisition in Table 8. The significant positive increase in efficiency change 

suggests that in the second year following technology acquisition, the efficiency change of the 

acquirers is 0.71 percent higher than that of non-acquiring firms with similar characteristics. 

The increase in the average efficiency change is mostly due to the 0.86 percent increase in 

efficiency change experienced by the medium-size acquirers. The medium-size acquirers 

show a low increase in technical change, while the large acquirers do not differ from their 

large non-acquiring counterparts with regard to growth of technical change. This causes a low 

technical change of 0.1 percent at a 10 percent significance level in the overall sample. Yet, 

the results is not surprising since the acquiring firms and control group have been matched 

within their corresponding technology regimes. 

The positive and significant values in the scale effect regression imply the presence of 

increasing returns to scale and input expansion for technology acquirers after technology 

adaptation in their R&D production. Both medium-size and large acquiring firms have 

experienced a significantly positive impact on their R&D scale changes. After acquisition of 

disembodied technology, the medium-size firms have increased their returns to R&D scale by 

0.72 percent, while the large firms had even higher returns to scale of 0.94 percent than large 

firms which rely solely on their internal R&D. 

In Table 9, we summarize the growth rates after two years following external technology 

acquisition. Total productivity growth (TFPCH) is derived as the sum of the three growth 

components, i.e. EFFCH, TECHCH, and SCALE.  

 

Table 9. Summary of post-acquisition growth rates of efficiency change, technical change, scale 
change, and total factor productivity change 
 
  

ACQ 
 

 
ACQMEDIUM 

 
ACQLARGE 

EFFCH 0.0071 0.0086 0.0052 
TECHCH 0.0014 0.0021 0.0000 
SCALE 0.0091 0.0072 0.0094 
TFPCH 0.0176 0.0179 0.0146 
Observation/Acquisition 383 152 169 

 

We find that acquisition of disembodied technology increases the innovative productivity 

of acquiring firms by 1.7 percent compared to the outcome that these firms would have 

experienced, on average, if they had not acquired external technology. The growth in 

innovative productivity is mostly driven by R&D scale efficiency change, whereas the 
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contribution of the increase in technical change is only moderate. At the same time, the 

innovative productivity growth of the medium-size and large firms is higher than that of their 

non-acquiring counterparts; the differences between these two sizes of acquiring firms are 

very slight. The 1.7 percent increase in innovative productivity for the medium-size acquirers 

is due to the increase in efficiency change, while the increase in the large acquirers’ 

innovative productivity of 1.4 percent is driven mostly by R&D scale effects. 

To sum up, given the continuous internal R&D, the upgraded exploitation of resources, and 

capabilities of technology acquiring firms by combining internal and external R&D induce a 

significant higher innovative productivity growth attributed by increasing returns of R&D 

scale and innovative efficiency. Although no empirical evidence for this strong 

complementarity between internal and external R&D in the context of efficiency and 

productivity in innovation exists so far, our findings are with line to those of Beneito (2006) 

and Grimpe and Kaiser (2008). The former study finds that contracted R&D improves 

innovative output performance (measured by patent application) only when it is combined 

with internal R&D, and the latter study provides evidence that simultaneous use of contractual 

and internal R&D efforts contribute to innovation success (measured in innovative product 

sales). 

 

 

6 Conclusions 
The growing complexity, speed, and uncertainty of technological development is increasingly 

forcing manufacturing firms to make adequate adaptations to the technological changes and 

quickly respond to the essential technological development – often through external 

technology acquisition. In contrast to previous studies that investigate the effects of 

technology acquisition on innovation exclusively in the context of R&D success, in the 

present paper we investigate whether and to what extent an acquisition of external 

disembodied technology affects the efficiency and productivity in innovation of technology 

acquiring firms. The analysis in this paper, which is conducted at the most disaggregated level 

possible with respect to the interrelationship of innovative productivity, external technology 

sourcing, and firm size, finds that licensing-in and R&D contracting matter innovative 

efficiency and productivity. 

Based on a stochastic frontier analysis approach, the empirical results reveal an R&D 

inefficiency of 27 percent, on average, for German manufacturing firms during the period 
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from 1994 to 2004. This inefficiency is mostly driven by those firms that rely solely on 

internal R&D activity, while firms deploying external disembodied technology are, on 

average, 13 percent less inefficient than non-acquiring firms. 

This study provides strong evidence of complementarity between internal and external 

R&D in innovation production, manifesting as increasing returns to R&D scale and increasing 

technical efficiency. The manufacturing firms that engaged in the acquisition of external 

disembodied technology experienced a 1.76 percent greater increase in innovative 

productivity than non-acquiring firms. In particular, the contribution of an increase in R&D 

scale efficiency change had considerable effects on the productivity growth increase of the 

technology acquirers. Overall, the increase in innovative productivity is driven more by 

medium-size firms engaged in the acquisition of external technology, highlighting that 

medium-size firms are more capable of adapting and then actually using external knowledge. 

The analysis shows that with regard to firm size, firms are distributed quite evenly across 

different technological regimes, but that the technology regimes themselves show a great deal 

of diversity in their tendency to acquire external technology. The results also suggest that 

there are innovative efficiency differentials between manufacturing firms operating within 

different technological regimes. Although we emphasize the type of technology used by 

manufacturing firms by disaggregating the industry classification into technological regimes, 

it would be useful if future work on this topic could be based on a more refined analysis of 

different technological regimes, something we were not able to accomplish due to data 

limitations. Nevertheless, we believe the analysis presented in this paper provides a tractable 

contribution to the understanding of the impact external technology acquisition has on 

innovative efficiency and productivity, and the results provide encouraging step towards 

future studies. 
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Appendix 
Table A1. Sample size and distribution of external technology acquisitions over years 

 1992 1994 1996 1998 2000 2002 2004 Total/ 
Average 

Number of 
observations 

109 221 201 272 329 249 174 1,555 

Number of acquiring 
firms 

- 43 77 96 123 44 43 426 

Percent of acquiring 
firms 

- 19% 38% 35% 37% 18% 25% 27% 

 
 
Table A2. Application of Marsili’s typology (2001) of technological regimes  

Technological Regime 
 

Characteristics NACE Classification 

Science based High technological opportunity; high entry 
barriers; high cumulativeness of innovation; 
focus on product innovations. 
 

30, 31, 32, 33 

Fundamental process Medium technological opportunity; high entry 
barriers, strong persistence on innovation; focus 
on process innovation. 
 

10, 11, 12, 13, 14, 23, 24 

Complex (knowledge) 
system 

Medium to high levels of technological 
opportunity; entry barriers and persistence on 
innovation; high degree of differentiation. 
 

29, 34, 35 

Production engineering Medium to high levels of technological 
opportunity, low entry barriers to innovation, 
medium persistence on innovation; high 
technological diversity, focus on product 
innovation. 
 

25, 26, 27, 28 

Continuous process Low levels of technological opportunity, entry 
barriers and innovation persistence; 
heterogeneous technology; differentiated 
knowledge base. 

15, 16, 17, 18, 19, 20, 22,  36, 
37 

 
 
Table A3. Maximum-likelihood estimates for parameters of translog distance function with                           
inefficiency effects model 

Variable Parameter 
 

Estimated value t-statistic 

 
Stochastic distance function 
Constant α0   0.4642   6.2170*** 
XINEXP α1  -0.3384   -3.3881*** 
XLRD α2  -0.2014  -5.6513*** 
XM α3  -0.5132  -2.3881** 
YINM/YINF β1   0.3850   3.3070** 
(XINEXP)

2 
α11   0.1632   4.3661*** 

(XLRD)
2 

α22   0.1897   6.2009*** 
(XM )

 2 
α33   0.1123   8.126*** 

XINEXP XLRD α12  -0.0126  -4.6280*** 
XEXPIN XM α13  -0.0423  -0.9702 
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XLRD XM α23  -0.1230  -0.3751*** 
(YINM/YINF)

2 β11  -0.0304  -5.9727*** 
XINEXP (YINM/YINF) γ11   0.0704   2.7405*** 
XLRD(YINM/YINF) γ12  -0.1231  -3.1302*** 
XM(YINM/YINF) γ13  -0.0063  -1.3280 
T φt   0.0239   5.3092*** 
T2 φtt  -0.1763  -0.8921 
XINEXPT αt1  -0.2326  -4.0726*** 
XLRDT αt2   0.1945   0.1608 
XMT αt3   0.2380   4.4122*** 
(YINM/YINF) T βt1  -0.0247  -0.1963** 
POST ψ   0.2348   2.4087** 
SB 

1φ    0.4231   3.4521** 

CS 
2φ   -0.3609  -6.7987*** 

PE 
3φ    0.5004   2.3880** 

FP 
4φ  -0.4923  -1.5046 

WEST η   0.1930   4.1072*** 
Variance parameters of distance function 
SIGMA 2 2

u vσ σ+    0.6129   5.7830*** 

LAMBDA /u vσ σ    2.0468   9.1078*** 
GAMMA ( )2 2 2/u u vσ σ σ+    0.7841   8.0236*** 

Log likelihood  -1433.412 
Note: The translog distance function and inefficiency effects model are estimated simultaneously.  
           The estimation results of the inefficiency effects model are provided in Table 3.  
           All variables are in natural logarithm and are normalized by their sample median.  
           The technology regime of continuous process is the base case used for the comparison among technology    
           regimes. ** and *** significant at 5% and 1%, respectively. 
 
 

Table A4. Propensity of acquiring external technology 

Dependent variable: ACQ 
 
Variable Estimated value 
EFFCH  -0.7480*** 

 (0.0063) 
TECHCH   0.8560** 

 (0.3216) 
SCALE  -1.0062* 

 (0.5229) 
CAPCH  -0.1323 

 (0.1992) 
EXPCH   0.0924*** 

 (0.0022) 
MSCH   0.1495** 

 (0.0419) 
SMALL  -0.0692* 

 (0.0466) 
LARGE   0.3983** 

 (0.1189) 
RISK  -2.3926*** 

 (0.0613) 
COST   0.3681 

 (0.4051) 
TECH   0.2200*** 

 (0.0042) 
RIG   0.0157 
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 (0.0437) 
PERS  -0.8613** 

 (0.4037) 
MARKET   0.0576 

 (0.0488) 
Constant   0.1041*** 

 (0.0008) 
Observation   1,160 
Log likelihood  -1,029.98 
Prob >  ChiSqd   0.00 
Notes: The number of observations is smaller than in Table 5 due to the lagged structure of the treatment  
             probability decision. The group of medium-size firms is the base case used for the firm size comparison. 
             Standard errors are in parentheses.  
             *, **, *** significant at 10%, 5%, and 1%, respectively. 
 
 
Table A5. Balancing effect of the matching approach 

 
                                                        

NACQ 
 

ACQ CONTROL 

EFFCH Mean 0.0181   0.0161   0.0172 
 t-statistic    4.2719***   -1.5225 
TECHCH Mean 0.0222   0.0414   0.0401 
 t-statistic   -3.9781***   0.9632 
SCALE Mean 0.0262   0.0203   0.0212 
 t-statistic    2.7812**   -1.2043 
CAPCH Mean 0.0141   0.0211   0.0173 
 t-statistic    6.4539***   0.5742 
EXPCH Mean 0.0212   0.0309   0.0278 
 t-statistic   -4.4878***    1.7592 
MSCH Mean 0.0197   0.0250   0.0212 
 t-statistic   -2.5522**   1.1302 
Observation 1160   383   383 
Notes: ** and *** significant at 5% and 1%, respectively. 


