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1 Introduction

The recent rise of external technology acquisii®rattributed to the growing complexity,
speed, and uncertainty of technological developmeambined with greater codification of
R&D processes that facilitate R&D contracting amgjraentation of R&D activities (e.g.,
Grandstrancet al, 1992; Narula, 2001). To create sustainable p@dace differentials with
competitors, firms must constantly update theihtexdogical capabilities (Leonard-Barton,
1994). However, in many industries, acceleratingn d®®&D efforts and developing internal
innovative capabilities are no longer sufficientlight of the increasing cost, speed, and
complexity of technological developments. Becaush® high risk due to the low probability
of innovation success and the length of requiretketior innovation to provide adequate
returns, internal developments may be perceivedndgsirable by firms (Hitet al, 1991).
Thus, firms prefer to invest fewer resources irefinal R&D when faced with resource
constraints or when there are attractive exteroatces of innovation. Compared to internal
R&D, external sourcing allows a firm to obtain kredge and technology beyond its current
capability and routines (Mitchell and Singh, 1998Bhe combination of external technology
sourcing and internal R&D can allow firms to behdfiom research complementarities
through involvement in multiple technological trefjeries, research directions that cannot be
developed simultaneously (at sufficient speed)dode, and the use of outside skills that can
exploit in-house research more effectively.

The present paper examines the impact of exteswinblogy acquisition on a firm’s
innovation performance in transforming innovati@sources into commercially successful
output. We focus on the disembodied technology @gngrsuch as licensing-in and R&D
contracting, which are similar in that neither regs a joint research effort. Both technology
sources can be viewed as two, possibly substieitakdys of acquiring innovative knowledge
and entail very little financial risk but grant gkiaccess to necessary technology that is
beyond in-house capabilities. In contrast to presistudies, the innovation performance of
firms is determined not only by their resources amvation inputs, but more importantly
by their productivity in innovation and the factdrat affect this productivity. In particular,
we separate the effects of technical efficiencgles@fficiency, and technological level in
attaining innovative productivity.

With respect tannovativeproductivity, only a few examples in the literature discussed,
independent from the issue of technology acquisitionovative efficiencyt the firm level

by using quantitative approaches. Caghal (2005) examine the impact of management



characteristics and patterns of collaboration dimma’s innovative efficiency by comparing
the Data Envelopment Analysis (DEA) and the Stotb&3ontier Analysis (SFA). Zhanet

al. (2003) applied the SFA approach to the R&D e#fast Chinese firms to examine the
difference in efficiency among various types of enship. Hashimoto (2008) analyzed R&D
efficiency change of Japanese pharmaceutical fusisg DEA methodology. In addition,
Korhonenet al (2001) and Cherchye and Vanden (2005) appliedDiBA technique to
evaluate the efficiency of university R&D in Finthand the Netherlands, respectively. The
few examples, however, use a two-stage approachn wdrealyzing the inefficiency
determinantsand are restricted to estimation of predictedficiehcy.

The main contribution of this paper to the existiitgrature is that, to the best of our
knowledge, this study is the first attempt to emcpity address the role of external
technology acquisition in the achievement of inniweaefficiency and productivity. More
precisely, the present study quantifies to wha¢mixtechnology acquirers are changing their
innovative efficiency and productivity levels afrquiring external technology. The purpose
of this study is twofold. First, we intend to megesthe relative innovation performance of the
firms within the German manufacturing sector. Acstastic output distance function is used
to construct a generalized output Malmquist progitgtindex (Orea, 2002) for estimating
the firm’s innovative productivity. Second, we ard the impact of external technology
acquisition on the acquiring firms’ innovative pradivity growth. In particular, contribution
of firm size to the growth of innovative productiviand its components — efficiency change,
technical change and scale efficiency — followirteenal technology activity is examined.

The paper proceeds as follows. Section 2 discusestheoretical underpinnings of
external technology sourcing and innovative prohitgt Section 3 introduces empirical
methodologies and specifications of the modelsnmeddd. The description of data that
facilitate our empirical analysis and their destivigp analysis are provided in Section 4, while

Section 5 presents estimation results of the engianalysis. Section 6 concludes.

2 Theoretical Background

In developing new technological output, “dual saugt of R&D is imperative (Mitchell and
Singh, 1996). Together, internal and external R&Bate the absorptive capacity (Cohen and

! See Section 3.1.2 about drawbacks of this approach
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Levinthal, 1990) that underlies current and futuszhnical output. Because external
technology sourcing contributes to the developneémitbsorptive capacity, it has implications
for the ability of technological firms to generaaed enhance new output. Expanding the
scope of a firm’s internal R&D may help mitigateetlincertainties associated with the
emergence of a new technology. However, it is gityuimpossible for a firm, regardless of
its effort, to keep abreast of all the relevanthtexogical advances solely through internal
R&D. When a new technology emerges, the technaddgkmow-how required for its
commercial application may well fall outside thenfis current area of expertise and the
firm’s internal stock of technical knowledge becarless relevant (Teece, 1988). In this
situation, firms must look to external technologyucing to complement their in-house
R&D. Access to technological complementarities e @f the most important reasons for
firms to acquire technology externally since R&Ddannovation projects usually require a
larger amount and more specific assets than ddirthés other projects (Hagedoorn, 1993;
Cassiman and Veugelers, 2006). In addition to acwuithe necessary knowledge and
competencies, looking outside the firm for suclo alsduces the firm’s own innovation costs
and rectifies internal rigidities through cost shgras well as through risk sharing.

The literature providing empirical evidence on #féect of external technology sourcing
on a firm’s innovation performance is growing retteie.g., Cassiman and Veugelers, 2007;
Narayanan and Bhat, 2009; Grimpe and Kaiser, 20@fjgelers and Cassiman, 1999;
Beneito, 2006). It has been argued that in ordexbsorb externally acquired knowledge, an
effective ‘absorptive capacity’ to identify and edtively utilize this knowledge is essential
(e.g., Cohen and Levinthal, 1989). In-house R&Divitets are often required to create
sufficient absorptive capacity, which suggests anmglementarity between internal and
external R&D. Empirically, the effective balancdaween internal R&D and external sourcing
and interaction between these two strategies has\er remained relatively unexplored.

Although the existing literature acknowledge tha efficient handling of organization
costs might prove to be central for innovation gssc(Grimpe and Kaiser, 2008), they focus
primarily on the success/failure of technology astjion based on R&D efforts and R&D
output. However, if R&D resources are not usedatffely, additional investment may be of
little support in stimulating innovation process.the same time, if innovation outputs are not
produced effectively, after a certain point, the R&efficiency may hinder the creation of
innovation and eventually would lead to a technwlalg exhaustion. Since external
technology sourcing is aimed at securing accessew technology, which can make cost-

cutting possible or allocate fixed costs over aaldey R&D base, investigating efficiency and
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productivity in innovation is important for the efitive allocation of external technology
resources into internal R&D activities.

The literature discussing the effects of R&D inwesint on production productivitin
general emphasizes the role of firm characteristics sushfiem size and resource and
capability constraints as important determinantgfduction efficiency and productivity
(Henderson and Cockburn, 1996; Marriese and Ha®61 Danzoret al, 2003, Berghall,
2006). Findings from the empirical literature ore thelationship between firm size and
efficiency are ambiguous, but there is indicatibat tfirm size could be a main source of the
heterogeneity inechnical efficiencyOn the one hand, it is claimed that large firrosld be
more efficient in production because they use nspecialized inputs and better coordinate
their resources. On the other hand, it is emphddizat small firms could be more efficient
because they have more flexible, non-hierarchitacsires, and usually do not suffer from
the so-called agency problem.

Moreover, size may have an indirect effect on potiglity through other variables, such as
resource and capability constraints, as variationthese will lead to different patterns of
behavior between small and large firms (Geroski98)9 From the evolutionary theory
perspective, innovation is an accumulating learrpnacess, irreversible with regard to the
technological path (Malerba and Orsenigo, 1990;itPav al, 1987). This implies that the
level of accumulated resources and capabilitie$ sijnificantly affect future innovative
efficiency. These resources and capabilities vangray firms and are determined by a vast
and complex number of both stimulating and restnginfactors that appear to have a
significant impact on the innovative process anagstbn the innovative efficiency of firms
(Freel, 2000; Vossen, 1998). According to VossefA98), large firms’ strengths are
predominantly material due to economies of scatksmope, and financial and technological
resources, whereas small firms’ strengths are gnbsthavioral, that is, small firms are more
dynamic, flexible, efficient, and often have clopeoximity to the market. Hence, small firms
will be more likely to face material resource arapability constraints to innovation than
larger firms will, while larger firms will be morikely to experience behavioral constraints to
innovation.

Scale efficiencys another major source of differences in produtstibetween small and
large firms. Large firms are often argued to be enomovative as they enjoy greater
economies of scale and scope than do smaller f(dahien and Klepper, 1996) and can
capture the fruits of their innovation. They alsavé easier access to finance and greater

capability to invest in R&D or acquire external avation (Gerosket al, 2002). However,
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You (1995) suggests that efficient firm size is edetined by the interaction between
economies of scale stemming from increasing retumsproduction technology and
diseconomies of scale stemming from decreasingnetio organizational technology. Thus,
although large firms may have technological andnlieg economies of scale, these may be
outweighed by organizational diseconomies of s(admger, 1994). Indeed, there are various
arguments as to the impact firm size has on inn@vaterformance. When R&D expenditure
is used as a proxy for innovation, there is evidetitat innovation increases more than
proportionately with firm size up to a thresholdroThis is explained by the size advantages
of large firms in terms of internal knowledge, firtéal resources for innovation, sales base,
and market power (Cohen and Klepper, 1996). Wheenp& and innovation counts are
employed as indicators of innovative output, it eges that R&D productivity tends to
decline with firm size, either when measured a®mtat per R&D (Boundet al, 1984) or
when measured by innovations per unit of R&D (Acsl @udretsch, 1990, 1991). When
market structure is taken into account, the laigesd R&D advantage tends to disappear,
innovative output (in terms of number of inventipends to fall as concentration grows,
while the returns to R&D inputs decrease with fisire (Acs and Audretsch, 1988), which
implies that industry specifics are key factorsinmovative performance. These different
findings suggest that the relationship between 8ime and innovation performance depends
on the choice of the performance indicator and ithportance of technological regimes
prevalent to a particular industry.

Finally, technical changecould be an important factor in explaining inndvat
productivity dynamics because small and large fiuss R&D inputs in different proportions.
If technical change is neutral, then there willdb@arallel shift in the production function.
That is, all firms face the same rate of techna@nge. If technical change is biased, then
firms operating at different scales will benefibrft technical change at different rates. Based
on the above considerations, we argue that firra aizd technology regime may induce a
significant effect on the differentials of firmsinovative productivity.

Various external sourcing modes are discusseddrntdbhnology management literature.
The transaction cost perspective treats the exdtaewhnology sourcing choice as an
organization boundary choice among market, hierascland networks/alliances with the aim
of curbing opportunism (e.g., Hennart, 1991). Adoag to the resource-based view, the
choice of mode is driven by pursuit of competitadvantages and technological capability
(e.g., Kogut and Zander, 1992; Nagarajan and Mitch898). Based on a comparison of

different technology acquisition modes, the litearatconcludes that the effectiveness of any
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type of technology sourcing depends on the ateswf the technology being pursued, the
extent of technical change, and uncertainty in ¢lxgernal environment (e.g., Arora and
Gambardella, 1994; Steensma and Corley, 2000).

In the present paper, we investigate two major stdgories of disembodied technology
acquisition: firstly, new technology disembodiedrotigh a licensing agreement and,
secondly, outsourcing of technology developmentaio R&D contractor. According to
Cassiman and Veugelers (2007), if a firm decidezctyuire technology externally, it will find
that licensing agreements or R&D contracts araribst flexible modes of external sourcing.
The main advantage of licensing is the speed whithvtechnologies can be acquired and
applied to own production. To make licensing eéfitti licensees must have the capability to
screen, identify, process, and utilize the techgiold know-how licensed. Hoekman and
Javorcik (2006) and Lopez (2008) argue that teagyllicensing generates productivity
spillovers and increases productivity in upstreauntas. On the other side, Grimpe and
Kaiser (2008) find positive and significant effedts both internal and contractual R&D
expenditure on the innovation success measureshiovative product sales. R&D contracts
help firms to acquire technologies without sigrafit irreversible financial commitment and
firms can selectively and flexibly acquire techrgptdbased on their needs and technological
configuration. The contractor firm becomes a pabsibto focus on particular areas of
research, which provides substantial cost savimgpewed to full-fledged in-house research
facilities. When appropriability is high, firms anélling to sell their technology to other firms
to appropriate the benefits from innovating (Tee&886). However, licensing-in and
contractual R&D might also lead to a reluctancdirofis to rely heavily on external sourcing
of technological knowledge due to the contractudeutainty, information asymmetry, and a
limited transferability of tacit knowledge (Teed®88).

3 Methodology

3.1 Measuring Innovative Efficiency and Productivity

Motivated by the knowledge production function sptin Pakes and Griliches (1984) and
Griliches (1990), this paper considers R&D activilymanufacturing in the context of an
innovative sales production function. The R&D protion function applied to each firm is

assumed to be well behaved and to exhibit variedtierns to scale. It is presumed that all
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firms have the same underlying aggregate produchiotion in terms of standardized

quantities of outputs and inputs but that they wygrate on a different part of it.

3.1.1 Estimation Approach

Total factor productivity (TFP) using a productwindex is theoretically defined as the ratio
of an aggregate output index to an aggregate imoletx. The most widely used productivity
index is the Malmquist TFP index presented in Feiral (1994). The Malmquist TFP index
measures the TFP change between two data pointaltylating the ratio of two associated
distance functions. Distance functions are a comvenway of describing a well-behaved
multi-input and multi-output production technologyithout the necessity of specifying
behavioral assumptions such as cost minimizatioprofit maximization. Let a multi-input

and multi-output production technology at titee defined as:
S ={ %, y: x can producey} OR}™ 1)

where X =(X,,....% JORY andy=(y, ,...y, )ORY are input and output vectors for thth

firm, i=1,...| , respectively. With a specific time periadthe production technolog$
transforms inputs; into netoutputsy; for each time period =1,..., T. Then, the distance
function can be defined by rescaling the lengthaaf input or output vector with the

production frontier as a reference:
Dto(x,x):min{e:(x,y/H)D $} (2)

whereD? (X, ;) <1if and only if(x ,y)O S. Furthermore, D°(x,y,)=1 if and only if

(x[, yt) is located on the outer boundary of the feasibtelpction set, which occurs only if

production is technically efficient.

The output-oriented Malmquist TFP index as defibgd-areet al (1994) measures the
TFP change between two data points by calculatiegratio of the distances of each data
point relative to a common technology. One maitiazsim of the Malmquist TFP index is
that it is constructed under constant returns &desassumption. Hence, the Malmquist TFP
index does not provide an accurate measure of ptwity change because it ignores the
contribution of scale economies. Orea (2002) pmssem approach to decompose the

Malmquist TFP index into technical change, technédciency change, and scale efficiency



change where the contribution of scale economiéskisn into account without requiring the
prior calculation of scale efficiency measures @sented by Balk (200%).

The translog distance function for the caseNohputs &i, %,...,%) andM outputs ¥,
Y2,...,\) iS quadratic in the variablesyinlnx; andt®:

N M l N N
In Dto(yt,x,t)=cro+Zcrk In &*Z‘,ﬁj In yjt+5220kh In %, In x,
k=1 =1

= j k=1 h=1
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Applying Diewert’s (1976) quadratic identity lemnba the translog distance function, Orea
(2002) derives a generalized output-oriented MalstqUFP index decomposition where the

logarithmic form of the TFP change index betweengast andt+1 can be written as:

In D2

NG, (Xe1s Yoorr X5 %) { o D‘I&}
t

+%i|:{_ 'j S ™ j@tﬂ*—{_i &~ jm§tj|m Eﬂxﬂj 4)

Xt

_1/9InDg, , dInD?
2| ot ot

N
where g, =0In D? /dIn x, ands, = g /> ¢ represent the distance elasticity and distance
k=1

elasticity share for thk-th input in period, respectively. The negative of the sum of the inpu

elasticities represents the scale elasticity, tierise of which is the return to scale:

RTS= _|:Z,\_‘: §+1:|_ 5)

2 Balk (2001) uses a parametric technique to decempbe Malmquist TFP index into technical change,
technical efficiency change, scale efficiency chegrand input- or output-mix effect. Although Bakksipproach

is appealing, it does require the prior calculatainscale efficiency measures in which the scafeces are
measured using the most productive scale sizerafeeence. As Orea (2002) points out, the scalieieffcy
measures are not bounded for either globally irsinga decreasing, or constant returns to scaleoordy-
homogenous technologies. More simply, in the casesingle output, a U-shaped average cost curkexjigired

for the most productive scale size to exist.

3 Including time as a variable in the productiomtier allows for the shifts of the frontier ovemi, which are
interpreted as technical change. Technical chanmgeutral itr, =0, k=1,...N.
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The scale term takes a positive value when therenareasing returns to scale, i.e. RTS < 1,
and input expansion or decreasing returns to scaleRTS > 1, as well as when there is input

contraction.
As a result, the components of the productivityeidn G, present changes in output

technical efficiency EFFCH), technical changeTECHCH), and a scale termSCALB

depending on RTS values and on changes in inputtijea’

3.1.2 Model Specification

In this study, we apply a translog functional foahan output distance function with two

outputs and three inputs. Note that we employ ayear time lag between inputs and outputs
in the knowledge production function. Estimatinge tlranslog output distance function

presented in equation (3) requires conditions afregtry and linear homogeneity in outputs.

Symmetry requires the restrictiofis=3,(j.l,...M ) anda,, =a,.(kh,...,N). The linear

M M M M
homogeneity of degree +1 in outputs is givelﬁf,ﬁ’j :1,2,8“ = O,ZVkj =0 andz,ﬁ’jt =0
=1 1=1 j=1 j=1

hold. The homogeneity restrictions can be imposgediimating a model where thd -1
output quantities are normalized by tketh output quantity. The distance terni)®, can be

viewed as the error term as follows:
-InD° =v, -y, (6)

Then, the estimating form of the output distana®fion of our model is represented as:

2 L o1& 2%
—Inyy, =ao+zak IN X2+ B Ya +§Zzakh In X ol X 2+:811(|n yn)
k=1

k=1 h=1
3 . 1 3 .
+ Z Via 1Mo Yo + ¢tT+§¢n T+ Zatk TIng,+B, Tiny, (7)
k=1 k=1
4
+YPOST +Z¢Fn +n WEST+v, —u,
f=1

whereyy, = Vi / Yoo Vi » Yar » @N0% 0, Xy, dENOte outputs and inputs of tieh firm at the

t-th andt-2-th time period, respectivelyf; is a linear time trend that is used as an index of

* The termin G° is viewed as the parametric counterpart of the gdized productivity index introduced by
vrs

Griffel and Lovell (1999) when the distance funatis translog.
®The symmetry restrictions are imposed in the exfon.
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technology;POST; is a post-acquisition binary variable, represents dummy variables for
technology regimes that correspond to each firnthen sample WESTis a region-specific
dummy variabley; is the random error, which is assumed ta.io and follows aN (O,JVZ)

distribution independent of th&, which is a non-negative random variable assatiati¢h
technical inefficiency.
According to the Battese and Coelli (1995) modeljs specified as a function of firm-

specific factors that might influence technicalffioéency. In particularu; is determined by

the truncation (at zero) of thél (,u,aj)distribution where the general form of the firm-

specific meary, , is specified as a function of variables explagniachnical inefficiency of

firms. In this study, we specify the model of teiciah inefficiency as follows:
Hy =0, +OACQ +0,T+B,G +D, 5+, X +§ 8

where ACQ is the acquisition binary variabld; is a time trendCj is a set of dummy
variables that indicate resource and capabilityst@amts to innovationS; is a set of dummy
variables for firm size categories; is a set of firm-related characteristics; agds statistical
noise. The unknown parameters of the stochastitigotranslog distance function (7) and
the technical efficiency model (8) are estimatechudianeously using the method of
maximum likelihood. This approach avoids the inéstesicy problem of the two-stage
approach used in previous empirical works whenyaiirag inefficiency determinants.

Battesse and Corra (1977) suggest that the twarvegi parameters can be replaced by two
new parametews’ =g’+0’andy=0’ lo?. The y-parameterization has advantages in
obtaining maximum likelihood estimates becausepdw@meter space fgr can be searched
for a suitable starting value for the iterative maization routine. If y is close to one, the
deterministic frontier is the result because alliatgon in the error term is attributed to
inefficiency. Conversely, ify is close to zero, there is no inefficiency in thstutbance, so
the estimated function could be estimated by OL#ow for instance.

After simultaneous estimation of the output diserfanction (7) and the technical

efficiency model (8), we can compute the componeitthe Malmquist TFP change index

® In a two-stage procedure, firstly, a stochastanfier production function is estimated and theffiniency
scores are obtained under the assumption of indiepgly and identically distributed inefficiency. Wever, in
the second step, inefficiency effects are assumeblet a function of some firm-specific variables,iehh
contradicts the assumption of identically distréglitnefficiency.
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presented in (4). First, the technical efficienagdiction for thei-th firm in thet-th time

period can be calculated as follows:
TE, = E[exp(-y )| ¢ ] whereg= y- 9

Thus, the technical efficiency change of itth firm between adjacent yearandt + lyields:

_ |n[TEt+lj _ ln[E(exp(-um) (V™ M)J

E(exp(-u)|(v - y))

In EFFCH,

iit+1

(10)

it

The technical change and scale efficiency changéeaalculated as follows:
1 3 . .
InTECHCH,n+1 = _§|:2(¢t +¢tt ( t+1/ 2)) +zatk ( In i ¥ In )ﬁitﬂ) +:Btl( In Yo + In ¥t+l)i| (11)
k=1

N N N
R [T TR T E P T M E e
k=1 k=1

k=1 it

N
whereg, =0In DY /9In X, = a, + @y In X, + @ In X+ y, In Y+a,tands, =g, /) & .-
pe=}

3.2 Measuring the Effects of External Technology Acquisition

In this section, we present the econometric metloggyothat we apply for analyzing the
effects of external technology acquisition on theavative productivity of the acquirer firm.
On the one hand, simply comparing the innovativedpctivity before and after the
acquisition is not satisfactory because such a eoisgn would be beset with variation in
outcome that is actually due to change in the ntagke@ironment over time. On the other
hand, solely comparing the innovative productilagtween acquirer and non-acquirer firms
in the post-acquisition period could be biased tu@ermanent differences between these
groups of firms. To avoid these biases, we empluy difference-in-difference method
(Ashenfelter and Card, 1985) which compares thiemihce in the outcome before and after
the acquisition for acquiring firms to the diffecenin the outcome before and after the
acquisition for a control groug. non-acquiring firms.

However, it is doubtful whether the effects of ewntd technology acquisition can be
assessed properly if there are considerable diftexein outcome between acquiring and non-
acquiring firms. As discussed in Section 2, there different patterns of innovative

productivity among small and large firms, as wed between manufacturing sectors.
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Moreover, recent empirical evidence indicates thiace acquiring firms differ in some
important aspects from other firms in the pre-asigjoin period, it is important to take these
differences into account in any performance stuflyaaquisitions (Bertrand and Zitouna,
2008, Gantumur and Stephan, 2007). Choosing aroppate control group will account for
this selection bias. To this end, we integratea@e@nsity score method (Dehejia and Wahba,
2002) into the difference-in-difference approadtereby controlling for endogeneity and ex-
ante observable firm characteristics.

For each firmi in the sample, [eACQ be an acquisition indicator that equals one when
the firm acquires technology externally and zerhnemvise,Yi1 is the innovative productivity

of acquiring andY?’ is the innovative productivity of non-acquiringrfis. Then, the effect of
technology acquisition is defined by the differenbetween the expected innovative
productivities aE(\ﬁACQzl)— E(,\P\ ACQ= 1). Since we do not have counterfactual
evidence of what would have happened if a firm mad acquired external technology,
E(YO\ ACQ=1) is unobservable. However, it can be estimateoEléyi’O\ ACQ:O) and the
effect can be given by the difference in the averagtcome between the acquiring and non-
acquiring firms aE(Yil\ ACQ= j)— E( Y| ACE } The estimator will be unbiased only
when the acquiring and theon-acquiring firms do not systematically differ tineir firm
characteristics. Rubin (1997) and Rosenbaum andnR@B83) show that a propensity score
analysis of observational data can be used toemgaups of treated and control units that
have similar characteristics, whereby comparisamste made within these matched grolps.
The acquisition propensity score is then definedhasconditional probability of acquiring

external technology given a set of firm’s produyicharacteristicsy, and other firm-related

characteristicX;:

p(ACQ)=Pr(ACQ=1Y,, X,) (12)

Thus, we account for the lagged time structure ke technology acquisition decision

problem.

" In these groups, there are firms that have beemted and firms that have not been treated; hehee,
allocation of the treatment can be considered rdora inside the groups of firms.
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Based on the propensity score matched sample fféetseof acquisition on the acquirer’s
innovative productivity can be estimated using tfwlowing difference-in-difference

estimator:
[E(Y..|AcQ=1)- H ¥,| AcR=1)]-[ €Y AGE0- EY ACeq]12)

wheret -2, t + 2denote the pre- and post-acquisition periods, ctis@dy. The two-year time
window surrounding the acquisition eventtimllows us to account for the length of time
required between acquisition of the technology atisdadaptation for innovative sales
production.

Finally, the above estimator is obtained by periagithe following regression:
Yi =5+ BACQ + B, POST+ B, AGQ] POSF® | X & (12)

where ACQ; is a dummy variable that captures possible diffees in outcomé’; between
acquiring and non-acquiring groug®ST; is a dummy variable for the post-acquisition time
period, which controls for aggregate factors thatild cause changes in outcomjeeven in

the absence of acquisition; the coefficighitrepresents the difference-in-difference estimator

of the effect of acquisition on the group of teclogy acquiring firms; and the vectof;

represents firm characteristics. Thus, controllileg the differences in the technology
acquired and non-acquired firms’ innovative produdtt prior to acquisition, we estimate the
firm’s post-acquisition innovative productivity cgared to what it would have been in the

absence of the acquisition.

4 Data and Descriptive Analysis

4.1 Sample Description

The analysis makes use of data from the Germanvatiom Survey, which is the German
contribution to the EU’s Community Innovation SwwvEI1S). This innovation survey fully
complies with the methodological recommendationsdts surveys and adopts the standard
CIS questions (see Jamtzal, 2001 for a detailed discussion). The survey e@slucted by
the Centre for European Economic Research (ZEW)anmdrs a representative sample of the

German manufacturing sector (as well as busindatereservices). It is designed as a panel
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survey and is conducted at the firm level on alydaasis. The yearly data are updated with
biannual survey data that include more comprehensind detailed information and
compensate for panel mortality. Each survey repgoftsmation on the innovation activity of
firms in the previous three-year period. The palesign of the survey offers the possibility of
analyzing seven waves, covering the periods 19982-12993), 1992-1994 (1995), 1994—
1996 (1997), 1996-1998 (1999), 1998-2000 (2001p02R002 (2003), and 2002-2004
(2005).

Combining the biannual surveys allows us to comstan unbalanced panel covering the
period 1992-2004 (with lagged year 1992) in whicm$ appear in at least three subsequent
survey waves, i.e. at least three times biannuwelich yields six years of observation so far.
We use an unbalanced panel in order to accounddeelopments in innovative efficiency
and productivity growth caused by sector entrants lay market exits, which would not be
possible using a balanced panel. In other wordsmlanced panel containing only firms that
were active over the whole observation period cdués our results. Next, we restrict our
analysis to innovative firms that continuously eaygld internal R& Furthermore, we
choose firms with positive value on innovation aufy such as innovative sales with new
products to the firm and innovative sales with nearkovelties, and on at least one non-
missing input, such as innovation expenditure, labdR&D, and material expenditure at the
end of each period. Our effective initial samplagets of 1,555 observations corresponding
to 412 firms.

In the MIP questionnaire, firms are asked whetleytengaged (i) in external R&D
acquisition, (ii) in the acquisition of external &mledge such as licenses, patents, and non-
patented inventions, and/or (iii) in R&D contragfiduring a certain year. ldentification of
external technology acquisition is based on whetimer of these external sourcing activities
has been undertaken. During the period 1994-200Q4avwerage, 27 percent of the firms
acquired disembodied technology externally. Thequesmcy of the firms’ technology

acquisition over the years is shown in Table Athim Appendix.

8 Each MIP survey wave contains a question as tadhehe firm has engaged in continuous internal R&D
the last three years.

15



4.2 Variablesof the Analysis

Thedescription of the variables used in the analysdstheir summary statistics are shown in
Table 1. We use two outputs and three input vagmbl the production function specified in
equation (7). In particular, the two output varegblare defined as the innovative sales with
significantly improved products or products newthie firm (Yjyg) and the innovative sales
with market noveltiesYjnm). The outputs have been constructed as sharegabfsales and
they are mutually exclusive variables, dependingmrether the product innovation is just
new to the firm or new to the market.

The three input variables are innovation expenditinexp), labor ¥ rp), and material
(Xm). Innovation expenditures encompass, in additmrnternal and external R&D, other
costs incurred when innovating, such as traininggggamarket research, marketing activities,
the purchase of licenses, capital expendituresirfioovation, and design. We use the
innovation expenditure intensity, which is measuasd share of total sales. Labor is defined
by the number of R&D employees, and material cosgwitotal material expenditure. The
latter inputs are measured as shares of total gregdoand total sales, respectively.

Furthermore, in the distance function, we includepast-acquisition binary variable
(POST) which is equal to one for all years subsegte external technology sourcing and
zero otherwise. POST allows shifting for the distafunction in the post-acquisition period
in relation to the pre-acquisition one.

In the inefficiency model (8), various variables ancluded to explain the technical
inefficiency of firms. All surveyed firms were askebout the obstacles to innovation they
have encountered and about the consequences efabstacles on their innovation projects.
Specifically, firms were asked to assess the ingmoe of hampering factors. After rescafing
the values, we obtain a dummy variable that taledgevzero, when a hampering factor does
not constrain the innovation activity of a firm,camalue one when a constraint to innovation
is present. We include the factors that decreaseftficiency of innovative productivity such
as high economic riskRISK), high innovation costGOST), lack of information about
technologies TECH), organizational rigidity RIG), lack of suitably qualified personnel
(PERS, and lack of market informatioMARKET) as resource and capability constraints.

Moreover, we include in the inefficiency model sifiecfirm-related variables, such as

capital intensity CAP), export intensity EXP), and market shard\§). The expectations

% pifferent scaling was applied to the answers inedéht waves of the survey, that is, scaling froimportant
to important values is sometimes between 0 andrigimes between 0 and 3, and sometimes betweed 0.a
Therefore, we have rescaled the values to obthinay variable.
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regarding the effect of capital intensity on inntiva efficiency are ambiguous. On the one
hand, if a firm’s production process is capitalemgive, any changes or additions to that
process required by a new product will have a suthstl impact. Innovative efficiency could
deteriorate due to substantial sunk investmentsemadr&D that cannot be exploited by
existing production resources. On the other haatbdifixed assets may often be designed to
accommodate emerging shifts or variations in ravengls and market preferences. If this is
the case, increasing capital intensity will enhamg®vative efficiency. The market share,
defined as firm sales over total setiosales, captures the relevance of the firm's market
power in its sector. There is mixed evidence immmya positive relationship between a firm’s
efficiency and its market share and increasing ypetidity due to the increased competition.
We expect a positive relationship between expornsity of firms and their innovative
efficiency.

An acquisition dummy variableACQ) which is equal to one for the technology acqgrin
firms and zero otherwise is included in the ine#icy model to assess the impact of
technology sourcing on inefficiency. A linear tirend (), which indicates how efficiency
changes with time, is included in both the distafucetion and the inefficiency model.

A comparison of the means between the groups tintdogy acquiring (ACQ) and non-
acquiring firms (NACQ) in Table 1 shows that thare significant differences not only with
respect to the firm-related characteristics bub ats the innovation-specific variables that

determine the production distance function.

Table 1. Variables description and descriptive statistit892-2004

Variables Description SAMPLE® NACQ® ACQ*

OUTPUT

Yine Innovative sales with new products to the - 0.369: 0.311(C 0.3929%***
as a share in total assets (0.2467) (0.1245) (0.1102)

Yinm Innovative sales with market novelties asa 0.2392 0.2053 0.2305***
share in total sales (0.2164) (0.0087) (0.0093)

INPUT

XiNEXP Innovation expenditure intensity as a share 0f0.0655 0.0575 0.07471***
innovation expenditure in total sales (0.0750) (0.0023) (0.0033)

XL rD R&D labor intensity measured as a shar 0.075¢ 0.071: 0.0827***
R&D employees in total employees (0.0503) (0.0022) (0.0024)

Xm Material expenditure intensity measured as a 0.4834 0.4815 0.4967*
share of material expenditure in total sales (0.1899) (0.0067) (0.0088)

INNOVATION CONSTRAINTS

RISK High economic ris 0.483¢ 0.5651 0.5881

(0.4927)  (0.0176) (0.2210)

10 Sectors are defined according to NACE 2 indudtgsification.
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COS1 High innovation co:t 0.616: 0.593¢ 0.628:
(0.4864) (0.0175) (0.0217)

TECH Lack of information on technologies 0.3745 0.3397 0.4314***
(0.4846) (0.0169) (0.0224)
RIG Organizational rigidit 0.396¢ 0.365 0.4720***
(0.4890) (0.0172) (0.0223)
PERS Lack of suitably qualified personnel 0.3672 0.2984 0.3813**
(0.4824) (0.0285) (0.0449)
MARKET Lack of market informatic 0.388¢ 0.347( 0.4245%*

(0.4876)  (0.0189) (0.0240)
FIRM-RELATED CHARACTERISTICS

CAP Capital intensity measured as a shar 0.079¢ 0.076( 0.076
investment expenditure in total sales (0.1393) (0.0047) (0.0053)
EXP Export intensity measured as a share of sale€.2701 0.2215 0.3575***
abroad of total sales (0.2555) (0.0081) (0.0117)
MS Market share measured as a share of fii 0.090: 0.046¢ 0.0671***
sales of total market sales (0.0870) (0.0036) (0.0060)
SMALL Dummy variable for firms with 10-49 0.2836 0.3402 0.2053***
employees (0.4508) (0.0156) (0.0176)
MEDIUM Dummy variable for firms with £-249 0.385: 0.407¢ 0.3403***
employees (0.4868) (0.0162) (0.0206)
LARGE Dummy variable for firms with >250 0.3311 0.2521 0.4543***
employees (0.4707) (0.0143) (0.0217)
SB Dummy variable fo“scienc-based” 0.236( 0.181¢ 0.3250***
technological regime (0.4247) (0.0127) (0.0204)
FP Dummy variable for “fundamental process” 0.0848 0.0891 0.0836
technological regime (0.2788) (0.0093) (0.0120)
Cs Dummy variable fo“complex (knowledge 0.237: 0.196 0.2984***
systems” technological regime (0.4255) (0.0131) (0.0199)
PE Dummy variable for “production engineering”0.1196 0.1380 0.0969***
technological regime (0.3246) (0.0113) (0.0129)
CF Dummy variable fo“continuous processe 0.322: 0.394¢ 0.1958***
technological regime (0.4674) (0.0161) (0.0173)
WEST Dummy variable for West region 0.6971 0.6663 0.7490%***
(0.4996) (0.0155) (0.0189)
Observations (firr-years 155¢ 112¢ 42€
% of tota - 73% 27%

Notes: # Comparison of means for acquiring (ACQ) and noguiring firms (NACQ).
® Standard deviations in parentheses.
¢ Standard errors of the test on the difference &dims are parentheses.
** and *** significant at 5% and 1%, gpectively.

Furthermore, most factors hampering innovationideatified more frequently by acquiring
firms than by non-acquiring firms. In addition, dar firms are more likely to supplement
their internal R&D with externally acquired disendied technology. Finally, external
technology sourcing is predominant in all technaabregimes expect for those involving

continuous and fundamental processes.

4.3 Accounting for Firm Heterogeneity and Sector Specificity

In the inefficiency model, we include dummy varebffor firm sizes in order to analyze the

heterogeneity in innovative efficiency and produtyi that is potentially induced by different
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size of firms. Firms are classified as small if ytheave 149 enployees SMALL, as
medium if they have 5@50 employeesMEDIUM), and large if they have more than -
employeesl(ARGBH. A significant impact of firm sizes on the inndive inefficiency woulc
show whether any significant differences with relgao innovative efficiency exist fo
different classes of firm size.

Moreover, in the distance function, we include dumrariables for technological regim
in order to control for differences in technolodicand market conditions betwe
manufacturing sub-sector&mpirical evidence confirms that patterns of inrtaa are
technology specific and vagcross industries (e.g., Nen and Winters, 1982; Dosi, 1S).
Hence, it is important to account for the technadagregimeswhose characteristics &
comnon among firms belonging to different manufacturgagtor rather than contrling for
the differences between industrial sectors withedounting for innovation characteristi
To this end, we apply Marsii'typology of technological regimr, which rts regimes on th
basis oftechnological opportunity conditions, appropridigilconditions, cumulativeness

learning, and theature of the knowledge base (for more ds, see Marsj 2001)

Figure 1. Distributionof product innovators across technological clu: by firm size
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Using Marsili’s typology we classify the industrial sectors into five teclogacal classe:
science basedS@, fundamental procees EP), complex (knowledge) syste (C9,
production engineeringPE), and continuous proces: (CP)."* An overview of thes
technological regimeand their application to industry sectors is giwerTable Al in the
Appendix.Figure 1 presents the percentage of innoveacross technological regimes in

sample. The different size classes of firms in gample are distributed quite evenly aci

1 The Marsili's classification has been applied to the DutchNwidvegian manufacturing sector thas not yet
been appliedo the German manufacturing sector (eMarsili and Verspagen, 2002).
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technological regimes; there are slightly more m-size firms in the scieneeased regime
and more large firms in the process engineeringre

Figure 2 shws that external technology acquisition was mostvalent for the scienc
based firms, while the firms with continuous pracéschnology were the least likely to 1
external technology for innovation. On averagepébcent of total acquisitions wererried
out by large firms, while small and medi-size firms conducted 19 and 36 percents of

acquisitions, respectively.

Figure 2. Distribution of eternal technology acquisitis by firm size and by technology regi
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According to Table 2, small and medi-size firms, on average, are more innovativi
both innovations new to the firm and new to thekaathan large firms are. As innovatior
defined by innovative product sales, this impliéattthe firms with smalr firm size
(expressed by the number of employees) are notehaddby potential constraints at

downstream value chain activitito bring an invention to the marketplace.

Table 2. Innovative producsales of manufacturing firms by sizategories

Observation Innovation new to firm Market noveltie
Mear Std.dev Mear Std.dev
SMALL 441 0.4401 0.288¢ 0.288¢ 0.248:
MEDIUM 599 0.3779 0.2414 0.2427 0.2109
LARGE 515 0.3084 0.2248 0.2008 0.1897
Total/Averag 1,55¢ 0.369! 0.246 0.239: 0.216¢

Since the time period of analysis covers the egfrs of the German Reunification as we
dummy variable that distinguishes between the iatieg productivity of East and We
geographic regions is included in the producticstatice function. Abo 69 percent of th

firms in our sample are located in the Western Gery

20



5 Empirical Results

This section first reports the results for innowvatiefficiency based on stochastic frontier
analysis. Using the parametric decomposition ofeadsalized Malmquist Productivity Index
as described in Section 3.1, we then present dgsimaf the productivity effects regarding
innovation of external technology acquisitions dficeency change, technological change,
and scale efficiency change of German manufactuiings during the period 1994 through
2004.

5.1 Innovative Efficiency

In analyzing innovative efficiency in a year, it wd not be appropriate to apply input and
output data for the same year. Instead, we con#lidévariations in input do cause observed
changes in output some years later. In this stweyapply a two-year time lag between input
expenditure and realization of its outcome, e.govative sales.

The results of the maximum likelihood estimationtfte translog distance function (7) and
the technical inefficiency model (8) are presentedable A3 (in the Appendix) and Table 3,

respectively?

Table 3. Maximum-likelihood estimates for parameters offficeency effects model in stochastic
frontier production function

Variable Parameter Estimated value t-statistic
RISK d1 0.213¢ 2.4591*
COST 32 0.3628 2.9012**
TECH 33 0.6731 5.1443%*
RIG 34 0.029¢ 1.070¢
PERS 35 0.009: 0.857:
MARKET 36 0.8707 4.0739%+*
SMALL 37 0.5892 2.5370**
LARGE dg 0.262¢ 2.0732*
ACQ d9y -0.420: -5.3452%*+*
CAP d10 -0.8828 -4.264 3%+
EXP d11 -0.1853 -0.4105
MS 312 0.1127 0.081:

T 313 0.025: 0.052¢
Constant do 1.6532 7.0174%*
Variance parameters of distance function

SIGMA o+, 0.6129 57830
LAMBDA o,lo, 2.0468 9.1078***

12 The model parameters are estimated using the FRERIZ.1 (Coelli, 1996).
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GAMMA a2 l(at+0?) 0.7841 8.0236%**
Log likelihood -1433.412

Notes: The translog distance function and inefficiendgets model are estimated simultaneously.
The estimates for parameters of trandistance function are presented in Table A3 énAppendix.
The group of medium-size firms is tlesd® case used for the firm size comparison.
** and *** significant at 5% and 1%, gpectively.

The estimates ofl and o are large and significantly different from zerodirating a
good fit and confirms the specified distributioredsumption. AsA is the ratio of the

varianceso, and g,, it becomes evident that the one-sided error targiominates the

symmetric errorv, so that variation in innovative sales from praddut arises out of
differences in the firms’ R&D performance ratheanhbeing due to random variability. The

estimate ofy suggests that 78 percent of random variationnovative sales is explained by

inefficiency. Therefore, the inefficiency effecteaubstantial in the stochastic frontier model
analyzed.

Hypothesis tests regarding the structure of thelyrtion technology are conducted using
likelihood ratio tests. Table 4 shows that the hylpothesis that all thé - parameters and the
intercept term are zero is rejected at the fivecgetr significance level, confirming that the
joint effect of these variables on technical imgéfincy is statistically significant. Furthermore,
we analyzed whether the chosen translog speciicasi appropriate by testing it against the
simpler Cobb-Douglas functional form. The likeliltbaatio test strongly rejects the
hypothesis that the Cobb-Douglas function fits daga better, so we are confident that the

translog specification is appropriate.

Table 4. Generalized likelihood ratio tests of hypotheséshe distance function and inefficiency
effects model

Test Critical Decisior
Null hypothesis statistié valué’
The inefficiency model is not appropriate 26.04 24.38(18) Reiect
Ho y=06,=3,=..23,=0 : -38(15)  Reject
Cobb-Douglas production function 37.98 17.67(10) Reject H
HO: all +0'22+a33+0'12+a13+0' 23+:B 11-.'-y 1]-.'-y ZTy Sl: 0 ' ' J
No technical chanc .
48.84 12.59(6) RejectH

HO: ¢t :¢tt :a,tl:a([Z :a,ISZﬂ[l:O

Notes: 2 The test statistics havesadistribution with degrees of freedom equal todifeerence between the
parameters involved in the null dnel alternative hypothesis.
®For a 95% significance level. Degrees of freedoenim parentheses.
¢ As y takes values between 0 and 1, the statistic isldised according to a mixed whose critical
value is obtained from Kodde andPél1986).
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We further test whether the assumption of techribahge is evident; the hypothesis of no
technical change is rejected at the five percemiifitance level, so incorporation of a time
trend is adequate. Thus, the likelihood ratio testicate the presence of inefficiency in
production and that the determinants of inefficierstiould be included in the efficiency
effects model specification.

We now turn to the maximum likelihood estimatesspreed in Table A3 and Table 3. To
interpret the estimated first-order parameters haf translog output distance function as
elasticities of distance with respect to inputs antbuts evaluated at the sample means, all
variables are scaled to have unit means. The gfartegnover from market novelties is used
as the normalizing output. All the first-order diaénts are statistically significant at the one
percent level and they have the expected signdyingpthat the output distance function is
increasing in outputs and decreasing in inputhatsample mean. Taking into account the
homogeneity restriction presented in equation {f7§, estimated output elasticities for the
sales shares from market novelties and new prodadise firm are found to be 0.385 and
0.614, respectively. Furthermore, since the surhefinput elasticities provides information
on scale economies, the RTS is equal to 0.9496c¢atidg that the technology exhibits
moderately increasing returns to scale at the samphn.

The estimated coefficient of the post-acquisitiomadny variable is statistically significant,
indicating that the distance function is shiftimgthe post-acquisition period in relation to the
pre-acquisition period. Furthermore, three of tberfestimated coefficients of the dummy
variables for technology regimes are statisticaltynificant, indicating that the intercept of
each estimated distance function is shifted byt#whnology regime factors vis-a-vis the
intercept of an arbitrary base technology regine, the continuous processing regime. The
shifting of the distance function is also appatettiveen West and East regions.

The parameter estimates for the inefficiency maedeggest a number of factors which may
explain technical inefficiency of innovative outpufhe results suggest that innovation
constraining factors identified by the firms sushhéggh economic risk, high innovation costs,
and lack of technological and market informationntcibute significantly to R&D
inefficiency. For an average firm, however, thefficeency is not affected by internal
organizational rigidities or the lack of qualifiechployees.

The estimated coefficients on the groups of smadl Erge firms are both positive and
statistically significant, indicating presence gjrsficant size effect on the firm’s innovative
efficiency in the sample. This suggests that mastufang firms of small and large sizes are

less efficient than their counterparts of mediugesi
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The estimate for the acquisition dummy variabledates that innovative inefficiency is
lower for an average acquirer of external technpltdgan those for non-acquiring firms
during the observed time period.

In addition, the estimated coefficient of the groapital intensity has a significant negative
coefficient, reflecting the fact that inefficien@nd fixed assets intensity are negatively
related. Thus, an average firm in the sample isviestather flexible assets which are able to
cope with market preferences, thereby increasifigi&ficy in R&D. The effects of market
share and export intensity variables are insigaific The insignificant coefficient for the time
trend shows that inefficiency does not change tiures.

The firm’s technical efficiency is computed usinge tconditional expectation of the

equation (9), conditioned on the composed ermr=(y, — ), and calculated using the

estimated parameters presented in Tables A3 almtie8summary statistics of the estimated

technical efficiency scores are reported in Table 5

Table 5. Summary statistics for technical efficiency scores

SAMPLE ACQ NACQ
Mear 0.7% 0.8C 0.67
Standard deviation 0.21 0.19 0.21
Minimum 0.16 0.17 0.16
Median 0.70 0.78 0.68
Maximumnr 0.92 0.92 0.81
Observation: 1,55k 42¢€ 1,12¢

In total, the minimum estimated efficiency is Ofddrcent, the maximum is 0.92 percent. The
mean efficiency value of 0.73 implies that, on ager, the same inputs could have produced
19 percent more of the observed output if the impugre deployed by firm using the frontier
production technology. For the technology outsmgcfirms, the mean efficiency is 13
percent larger than it is for non-acquiring firms.

Table 6 shows the distribution of firms acrossrénege of technical efficiencies. Note that
the percentages of firms refer to each correspgngtioup of firms. Across the entire sample,
17 percent of the firms have a technical efficieimrcthe range above 80 percent, whereas the
most technically efficient firms are those firmayg@dementing externally technology to their
in-house innovation activity. In contrast, 2 peitcehthe technology acquirers and 13 percent
of the non-acquirers have a mean technical effagiebelow 20 percent, and thus are

considered technically inefficient.
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Table 6. Acquiring and noracquiring firms by technical efficienc

Technical efficiency (%) SAMPLE ACQ NACQ
<20 10% 2% 13%
2C-39 13% 3% 18%
40-59 23% 10% 30%
60-79 37% 57% 27%
80-99 17% 28% 11%
Total 100% 100% 100%

In Figure 3, the distribution cfirms of different sizes across technical efficigmanges
reveals that mediursize and large firms have the highest technicatieffcy; 19 and 2.
percents of the mediusize and large firms have a mean technical effaieabove 60 pi
cent, whereas ty 12 percent of small firms fall within this rang8mall firms are mor

frequently found in the technical efficiency rargfed0— 59 percent.

Figure 3. Distribution of firm size classes ttechnical efficiency
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In sum, larger firms are more liketo acquire technology externally and firms engagm
external technology acquisitions present more iatigg efficiency. However, th
relationship between firm size and technical edficly is curvilinear, implying that medit-
size firms, on average, ethe most efficient. Thus, smaller firms are, m@rage, mort
innovative in terms of innovation output (see TaB)e while mediur-size firms are mor

technically efficient in innovation productic

5.2 Innovative Productivity and Post-Acquisition Changes

In this section we examirtbe effect of technology acquisition on productivgrowth. Total

factor productivity growth icomputer from the estimated output distance func using
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equation (4). This allows us to disentangle thect#f of technical change, technical efficiency
changes and scale efficiency if inputs expand @, which are evaluated according to the
equations (10), (11), and (12), respectively. Tablgresents summary statistics on the
biannual growth of the measures of innovative patigity for technology acquiring and non-
acquiring firms separately. Across the entire tipexiod, technical change was strongly
biased, accelerating from -3.6 percent to 9.2 pgrdéhus, manufacturing firms were likely to

render older technologies obsolete at a faster rate

Table 7. Summary statistics on growth rates of efficienbgrge, technical change, scale change, and
total factor productivity change

EFFCH TECHCH SCALE TFPCH
ACQ NACQ ACQ NACQ ACQ NACQ ACQ NACQ
Mean 0.0163  0.0181  0.0414  0.0222  0.0203  0.0262 780.0 0.0665
Std. Dev 0.009:  0.005¢  0.038;  0.018C 0017  0.008  0.068:  0.030:
Min -0.0267 -0.192(  -0.036( -0.0167  -0.005. -0.021(  -0.067¢  -0.0229
Median 0.0155  0.0171  0.0451  0.0330  0.0228  0.0240 .1112  0.0492
Max 0.0224  0.0291  0.0924  0.0617  0.0470  0.0423  ®161 0.1331
Observatio 40€ 92¢ 40€ 92¢ 40€ 92¢ 40€ 92¢

Notes: The number of observations is smaller than tha@iaible 5 due to the inclusion of growth variables.

At the same time, the growth rates in efficiencarude and scale efficiency were relatively
moderate, ranging from -2.6 percent to 2.9 pereemt from -0.5 percent to 4.7 percent,
respectively. As a result, output-based TFP grovathes from -6.7 percent to 16.1 percent
for technology acquirers, while for non-acquiringfs it ranges from -2.2 percent to 13.3
percent. The average TFP growth rate was 1.2 penigimer for acquiring firms than for non-
acquiring firms during the sample period. Therethyy highest growth rate for technology
acquirers is in technical change, at 4.1 percenawmrage, whereas the highest growth for
non-acquiring firms occurs in efficiency change acdle economies, at 1.8 percent and 2.6
percent, respectively.

After assessing the aggregate productivity of aragye acquiring and non-acquiring firm,
we now focus our analysis on the post-acquisitibanges in innovative productivity. In
particular, we estimate the effects of externalhmetogy acquisitions on innovative
productivity, as described in Section 3.2.

First of all, we derive an appropriate counterfatiroup for technology acquiring firms
by estimating the propensity to outsource exteteahnology using a probit model. The
propensity to acquire is defined by the growth gate innovative productivity and overall

performance of firms. More specifically, the firmgrowth rates in efficiency change,
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technical change, and scale efficiency change, elsag in market share, capital intensity,
and export intensity, are included as determinahtacquisition probability. Moreover, we
include factors indicative of resource and capgbdonstraints to innovation. Note that the
determinants are lagged by two years to avoid eswkeity problems in the input-output
relationship. In addition, we include dummy varegbfor firm size classes.

The coefficient estimates of the probit model areven in Table A4 in the Appendix.
Firms with lower technical efficiency change andlsefficiency have a significantly greater
propensity to acquire technology externally. Herttmgerioration in innovative efficiency and
diseconomies of R&D scale appear to be the drivimges behind the acquisition of
disembodied technology. At the same time, firmseeigmcing greater technological change
are more likely to employ external knowledge foeithinnovation production. Given the
productivity determinants, we find that the likeldd of acquiring external knowledge is
higher for larger firms. While acquisition of disbodied technology is attracted by the firms
that have a scarcity of technological informatidhe firms identifying the high risk of
innovation for marketplace and the firms facingljppeons with qualified personnel do not use
external technology sourcing as a mean for ovemgntheir resource and capability
constraints.

As the next step, we apply nearest-neighbor magcbimthe predicted propensity scores
derived from the estimation described above. Thaiseach point in time, a technology
acquiring firm is matched with a non-acquiring firmthe same technology cluster and size
class, thereby reducing the possible bias relatednbbservable changes. Table A5 in the
Appendix displays the balancing outcome of our mmag procedure. We include in the
matching only variables on annual (e.g., biannahgnges. There are significant differences
between the growth variables of acquiring and noouaing firms across the whole sample,
while the differences of the same characteristicsatquiring and the matched control firms
are insignificant. The matching method thereforevjates a valid control group to which we
compare changes in the productivity growth of tedbgy acquirers.

We estimate for each of the outcome variables tveaeh specifications: one analyzing
overall effects on technology acquiring firms amter one accounting for firm size effects
of acquirers. The former analysis reveals that maesize and large firms have greater

innovative efficiency and that they engage mordeichnology acquisition than do small

13 Note, in this study, the primary aim of estimatihg probability function is to find an appropriatentrol
group of firms rather than to examine the determimi@f the decision to pursue external technolagyugsition,
which is a question worthy of a separate investigat
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firms.** To study the heterogeneity of the technology asitioh effects for different size
classes, we consider therefore the effects of tdobg acquisition by medium-size and large
firms in a separate model by including the acqgoisitdummies for both size categories
(ACQmepium and ACQarce). Furthermore, the annual (e.g., biannual) changesertain
firm-related variables, such as capital intens®APCH), export intensity (EXPCH), and
market share (MSCH), are included as well. In aoldjtwe account for unobserved constant
heterogeneity across technological regimes, asagafiotential external shocks, by including
both technology regime and fixed year dummies.hia tase, the OLS method with robust
standard errors fits our estimation model well.c8ithe panel data sample has a cadence of
two years, it allows accounting for technology ad#ipn and integration time after

technology sourcing.

Table 8. Effects of external technology acquisition on @éincy change, technical change and scale
change

EFFCF TECHCH SCALE
1) (2) 3) (4) (5) (6)
ACQ -0.0297** 0.0167 0.0390%*
(0.0038) (0.0289) (0.0031)
ACQuebium 0.0038** 0.0344 0.0458**
(0.0018) (0.0401) (0.0230)
ACQuarce 0.0070%* 0.044¢ 0.0419%*
(0.0032) (0.0487) (0.0183)
POST -0.0840** -0.0695**  0.0586**  0.0501%*  -0.0643*  -0.0301**
(0.0015)  (0.0049)  (0.0231)  (0.0029)  (0.0264)  (0.0019)
ACQ*POST 0.0071** 0.0014’ 0.0091%**
(0.0032) (0.0008) (0.0002)
ACQueoium*POST 0.0086*** 0.0021** 0.0072**
(0.0006) (0.0010) (0.0030)
ACQuarae*POST 0.0052** 0.001¢ 0.0094**
(0.0021) (0.0021) (0.0028)
CAPCH 0.0100 0.0835%*  -0.0626*  -0.0290*  -0.0420%*  -0.0602**
(0.0151)  (0.0244)  (0.0217)  (0.0280)  (0.0032)  (0.0029)
EXPCH 0.0764**  0.0431’ -0.280; -0.245! 0.0637%*  0.0887**
(0.0214)  (0.0270)  (0.3349)  (0.2996)  (0.00471)  (0.0036)
MSCH 0.0551*  0.0461* - 0.0087 -0.0499 -0.1360 -0.0947
(0.0201)  (0.0285)  (0.0137)  (0.0842)  (0.1765)  (0.1207)
Constar 0.0127%*  0.0582%*  0.0220*  0.0490**  0.0699***  0.0801***
(0.0006)  (0.0008)  (0.0102)  (0.0030)  (0.0048)  (0.0030)
Observation 766 642 766 642 766 642
Adjusted B 0.58 0.68 0.62 0.64 0.52 0.62

Notes: The models (1), (3) and (5) include all firms. Thedels (2), (4) and (6) include medium-size amgda
firms only. Technological regime arehy fixed effects are included.
Robust standard errors are in parsethet, **, *** significant at 10%, 5%; and 1%, r@sctively.

¥ n the last estimation sample (Table 8), we ha8@ teéchnology acquisitions in total, whereby 16, &td 44
percents of the acquisitions have been carriedbpsmall, medium-size, and large firms, respecyivel
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A number of interesting insights emerge from theew of the estimates on the effects of
technology acquisition in Table 8. The significgrasitive increase in efficiency change
suggests that in the second year following tectgyolquisition, the efficiency change of the
acquirers is 0.71 percent higher than that of naquaing firms with similar characteristics.
The increase in the average efficiency change istlgndue to the 0.86 percent increase in
efficiency change experienced by the medium-sizguiaers. The medium-size acquirers
show a low increase in technical change, whilel#inge acquirers do not differ from their
large non-acquiring counterparts with regard toaghoof technical change. This causes a low
technical change of 0.1 percent at a 10 percentfgignce level in the overall sample. Yet,
the results is not surprising since the acquiringg and control group have been matched
within their corresponding technology regimes.

The positive and significant values in the scaleafregression imply the presence of
increasing returns to scale and input expansiontdohnology acquirers after technology
adaptation in their R&D production. Both mediumesiand large acquiring firms have
experienced a significantly positive impact on tHe&D scale changes. After acquisition of
disembodied technology, the medium-size firms hageeased their returns to R&D scale by
0.72 percent, while the large firms had even higkairns to scale of 0.94 percent than large
firms which rely solely on their internal R&D.

In Table 9, we summarize the growth rates after years following external technology
acquisition. Total productivity growth (TFPCH) i®erived as the sum of the three growth
components, i.eeFFCH, TECHCH, and SCALE.

Table 9. Summary of post-acquisition growth rates of effiy change, technical change, scale
change, and total factor productivity change

ACQ ACQuepium ACQLarcE
EFFCF 0.007: 0.008¢ 0.005:
TECHCH 0.001: 0.0021 0.000(
SCALE 0.0091 0.0072 0.0094
TFPCH 0.0176 0.0179 0.0146
Observation/Acquisitio 383 152 169

We find that acquisition of disembodied technolaggreases the innovative productivity
of acquiring firms by 1.7 percent compared to thecome that these firms would have
experienced, on average, if they had not acquirddrmal technology. The growth in

innovative productivity is mostly driven by R&D deaefficiency change, whereas the
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contribution of the increase in technical changeordy moderate. At the same time, the
innovative productivity growth of the medium-sizedalarge firms is higher than that of their
non-acquiring counterparts; the differences betwdse two sizes of acquiring firms are
very slight. The 1.7 percent increase in innovapiveductivity for the medium-size acquirers
is due to the increase in efficiency change, while increase in the large acquirers’
innovative productivity of 1.4 percent is driven stly by R&D scale effects.

To sum up, given the continuous internal R&D, thgraded exploitation of resources, and
capabilities of technology acquiring firms by comibg internal and external R&D induce a
significant higher innovative productivity growthtrébuted by increasing returns of R&D
scale and innovative efficiency. Although no enwati evidence for this strong
complementarity between internal and external R&D the context of efficiency and
productivity in innovation exists so far, our finds are with line to those of Beneito (2006)
and Grimpe and Kaiser (2008). The former study diridat contracted R&D improves
innovative output performance (measured by patpptiGation) only when it is combined
with internal R&D, and the latter study providesd®nce that simultaneous use of contractual
and internal R&D efforts contribute to innovationcsess (measured in innovative product

sales).

6 Conclusions

The growing complexity, speed, and uncertaintyeghtological development is increasingly
forcing manufacturing firms to make adequate adagptsa to the technological changes and
quickly respond to the essential technological tseent — often through external
technology acquisition. In contrast to previousdss that investigate the effects of
technology acquisition on innovation exclusively time context of R&D success, in the
present paper we investigate whether and to whaénexan acquisition of external
disembodied technology affects the efficiency anadpctivity in innovation of technology
acquiring firms. The analysis in this paper, whiglkeonducted at the most disaggregated level
possible with respect to the interrelationship rofavative productivity, external technology
sourcing, and firm size, finds that licensing-indaR&D contracting matter innovative
efficiency and productivity.

Based on a stochastic frontier analysis approaud,empirical results reveal an R&D

inefficiency of 27 percent, on average, for Germnmaanufacturing firms during the period
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from 1994 to 2004. This inefficiency is mostly driv by those firms that rely solely on
internal R&D activity, while firms deploying exteah disembodied technology are, on
average, 13 percent less inefficient than non-acgufirms.

This study provides strong evidence of compleméwtdretween internal and external
R&D in innovation production, manifesting as incsigy returns to R&D scale and increasing
technical efficiency. The manufacturing firms theigaged in the acquisition of external
disembodied technology experienced a 1.76 percephtey increase in innovative
productivity than non-acquiring firms. In particuyldhe contribution of an increase in R&D
scale efficiency change had considerable effecttherproductivity growth increase of the
technology acquirers. Overall, the increase in vative productivity is driven more by
medium-size firms engaged in the acquisition ofemdl technology, highlighting that
medium-size firms are more capable of adaptingthed actually using external knowledge.
The analysis shows that with regard to firm sizen$ are distributed quite evenly across
different technological regimes, but that the textbgy regimes themselves show a great deal
of diversity in their tendency to acquire extertethnology. The results also suggest that
there are innovative efficiency differentials beémemanufacturing firms operating within
different technological regimes. Although we empbaghe type of technology used by
manufacturing firms by disaggregating the indusipssification into technological regimes,
it would be useful if future work on this topic ddibe based on a more refined analysis of
different technological regimes, something we waod able to accomplish due to data
limitations. Nevertheless, we believe the analpsesented in this paper provides a tractable
contribution to the understanding of the impacteaxal technology acquisition has on
innovative efficiency and productivity, and the uks provide encouraging step towards
future studies.
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Appendix

Table Al. Sample size and distribution of external technglagquisitions over years

1992 1994 199¢ 199¢ 200c 200z 200¢ Total/

Average
Number of 109 221 201 272 329 249 174 1,555
observations
Number of acquiring 43 77 96 123 44 43 426
firms
E’r?rrlge”t of acquiring 19% 38% 35% 37% 18% 25% 27%
Table A2. Application of Marsili’s typology (2001) of techlagical regimes
Technological Regime  Characteristics NACE Classification
Science based High technological opportunity; t@gtry 30, 31, 32, 33
barriers; high cumulativeness of innovation;
focus on product innovations.
Fundamental process Medium technological opportuhigh entry 10, 11, 12, 13, 14, 23, 24
barriers, strong persistence on innovation; focus
on process innovation.
Complex (knowledge) Medium to high levels of technological 29, 34,35
system opportunity; entry barriers and persistence on
innovation; high degree of differentiation.
Production engineering Medium to high levels ohtemogical 25, 26, 27, 28
opportunity, low entry barriers to innovation,
medium persistence on innovation; high
technological diversity, focus on product
innovation.
Contintous proces Low levels of technological opportunity, en 15, 16, 17, 18, 19, 20, 22, :
barriers and innovation persistence; 37

heterogeneous technology; differentiated
knowledge base.

Table A3. Maximum-likelihood estimates for parameters ofnslag distance function with
inefficiency effects model

Variable Parameter Estimated value t-statistic

Stochastic distance function

Constar ao 0.464: 6.2170***
XINEXF a1 -0.3384 -3.3881***
XLRrD o -0.2014 -5.6513***
Xu 03 -0.513: -2.3881**
Yinu!Yine p1 0.385( 3.3070**
(XINEXF)Z 011 0.1632 4.3661***
(Xiro) a2z 0.1897 6.2009%**
(XM ) 032 0.112: 8.126***
Xinexr XLrD a1z -0.012¢ -4.6280%**
XEXPIN XM 0132 -00423 '09702

37



Xirp Xm Oz -0.123( -0.3751***

(YINM/YINF)2 P -0.030¢ -5.9727***
Xinexe (Yinw/Yine) Y11 0.0704 2.7405%**
Xiro(Yinu/ Yine) V12 -0.1231 -3.1302***
XM(YINM/YINF) Y13 -0.006: -1.328(

T O 0.023¢ 5.3092***
T? o -0.1763 -0.8921
XiNexeT oy -0.2326 -4.0726***
XLRDT Ot2 0.194¢ 0.160¢
XuT 03 0.238( 4.4122%**
(Yinm/Yine) T Pu -0.0247 -0.1963**
POST W 0.2348 2.4087**
SE a 0.423: 3.4521**
Cs ® -0.3609 -6.7987***
PE @ 0.500¢ 2.3880**
FP o -0.4923 -1.5046
WEST n 0.19:0 4.1072***
Variance parameters of distance function

SIGMA [+ 02 0.6129 5.7830***
LAMBDA o,lo, 2.0468 9.1078***
GAMMA o? /(Juz +0'v2) 0.7841 8.0236***
Log likelihood -1433.412

Note: The translog distance function and inefficiendgets model are estimated simultaneously.
The estimation results of the ineffiadgreffects model are provided in Table 3.
All variables are in natural logarithmdsare normalized by their sample median.
The technology regime of continuous pescis the base case used for the comparison ameximgplogy
regimes. ** and *** significant at 5% dr1%, respectively.

Table A4. Propensity of acquiring external technology

Dependent variable: ACQ

Variable Estimated value
EFFCH -0.7480***
(0.0063)
TECHCH 0.8560**
(0.3216)
SCALE -1.0062*
(0.5229)
CAPCH -0.132:
(0.1992)
EXPCH 0.0924***
(0.0022)
MSCH 0.1495**
(0.0419)
SMALL -0.0692*
(0.0466)
LARGE 0.3983**
(0.1189)
RISK -2.3926***
(0.0613)
COS1 0.368:
(0.4051)
TECH 0.2200%**
(0.0042)
RIG 0.015%
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(0.0437

PERS -0.8613**

(0.4037)
MARKET 0.057¢

(0.0488)
Constant 0.104 1 ***

(0.0008)
Observation 1,160
Log likelihooc -1,029.9¢
Prob > ChiSq 0.0C

Notes: The number of observations is smaller than in @&bdlue to the lagged structure of the treatment
probability decision. The group of med-size firms is the base case used for the fize somparison.
Standard errors are in parentheses.

* xx Rk gignificant at 10%, 5%, and%, respectively.

Table A5. Balancing effect of the matching approach

NACQ ACQ CONTROL
EFFCH Mean 0.0181 0.0161 0.0172
t-statistic 4,271 ¢** -1.522¢
TECHCH Mean 0.0222 0.0414 0.0401
t-statistic -3.9781*** 0.9632
SCALE Mean 0.0262 0.0203 0.0212
t-statistic 2.781x -1.204:
CAPCH Mear 0.014: 0.021: 0.017:
t-statistic 6.4539%** 0.5742
EXPCH Mean 0.0212 0.0309 0.0278
t-statistic -4 AT ¢+ 1.759:
MSCH Mean 0.0197 0.0250 0.0212
t-statistic -2.5522** 1.1302
Observation 1160 383 383

Notes: ** and *** significant at 5% and 1%, respectively.
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