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Abstract 

Granger causality tests have become among the most popular empirical applications 

with time series data. Several new tests have been developed in the literature that can 

deal with different data generating processes. In all existing theoretical papers it is 

assumed that the lag length is known a priori. However, in applied research the lag 

length has to be selected before testing for causality. This paper suggests that in 

investigating the effectiveness of various Granger causality testing methodologies, 

including those using bootstrapping, the lag length choice should be endogenized, by 

which we mean the data-driven preselection of lag length should be taken into account. 

We provide and accordingly evaluate a Granger-causality bootstrap test which may be 

used with data that may or may not be integrated, and compare the performance of this 

test to that for the analogous asymptotic test. The suggested bootstrap test performs well 

and appears to be also robust to ARCH effects that usually characterize the financial 

data. This test is applied to testing the causal impact of the US financial market on the 

market of the United Arab Emirates.  
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1. Introduction 
Tests for causality in Granger’s (1969) sense are increasingly conducted in applied research 

when time series data are used. This is especially the case for empirical studies in economics 

and finance. Several new methods have been put forward in the literature for testing causality 

that can deal with different data generating processes; see among others Granger (1988) and 

Toda and Yamamoto (1995). Hacker and Hatemi-J (2006) investigated the size (Type-I error) 

properties of Granger causality testing using a Wald test both with a modification for 

integrated variables suggested in Toda and Yamamoto (1995) and without that modification, 

along with bootstrap version the Wald test (again with and without the Toda and Yamamoto 

modification). That paper showed through simulations that the Toda and Yamamoto (1995) 

methodology is an important tool in dealing with integrated data. It also showed that the 

bootstrapping provides improvements with small sample sizes.  

 

A common factor in all existing theoretical papers that we know of on this topic is that the lag 

length is assumed to be known a priori, which is not an appropriate assumption for most 

applications. It is a common practice in the empirical literature to select the optimal lag order 

based on the data each time tests for causality are conducted. However, the preselection of 

the lag order using the data may affect the distribution of the test statistic. This paper suggests 

we should take into consideration this preselection of the lag order, which we refer to as 

endogenous lag length choice, in investigating the size and power properties of Granger 

causality tests, including those using bootstrapping. 

 

We provide a bootstrap test based on the Granger causality Wald test that, when necessary, 

incorporates the Toda and Yamamoto (1995) methodology if integrated variables are 

considered to be present. This test was also provided in Hacker and Hatemi-J (2006). In the 

current paper, simulation results are provided which take into account endogenous lag length 

choice when comparing the performance of this bootstrap test to an analogous test using a 

chi-square distribution based on asymptotic theory.  This bootstrap methodology appears to 

have better size properties than its asymptotic-distribution counterpart and is robust to the 

existence of autoregressive conditional heteroscedasticity (ARCH). This latter property of the 

test seems to be useful because it is widely agreed in the literature, especially since the 

pioneering work by Engle (1982), that the volatility of many economic and financial 

variables is time-varying and ARCH effects usually prevail. We also investigate the power 
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properties in some situations which show that the bootstrap test has similar or better power 

properties compared to asymptotic test for the same actual size. 

 

The rest of the paper continues as follows. Section 2 defines Granger causality and discusses 

the Toda and Yamamoto (1995) methodology for testing it in the presence of integrated data. 

Section 3 focuses on the issue of choosing the optimal lag length and its implication for 

inference. Section 4 presents our bootstrap methodology. Sections 5 and 6 discuss the 

methods and results of the simulations, respectively dealing with the size and power of 

various Granger-causality test methodologies. An application on financial market integration 

is illustrated in Section 7, and the conclusions are given in the last section.  

 

 

2. Granger Causality Testing 

For the purpose of investigating Granger causality, we consider the following vector 

autoregressive model of order k, VAR(k): 

 

tktktt uyByBBy ++++= −− …110 ,    (1) 

 

where yt, B0, and ut are vectors with dimensions n×1 and Bi , i ≥ 1 is a parameter matrix with 

n×n dimensions. The error vector, ut, has a zero-expected value and it is assumed to be 

independent and identically distributed with a non-singular covariance matrix Ω that fulfills 

the E|uit|2+λ < ∞ condition for some λ > 0, with uit being the ith element of ut (this assumption 

is needed for appropriate testing conditions). There is non-Granger causality of the rth 

element of yt on the jth element of yt only if the subsequent statement is correct: 

 

H0: the element in Bi’s row j, column r is zero for i = 1,…, k.               (2) 

  

Toda and Yamamoto (1995) suggest that if one thinks that the variables in equation (1) are 

integrated of order d, then a legitimate way to proceed is to estimate the equation in (1) with 

d additional lags in the estimated VAR model (in addition to the k lags), and perform a Wald 

test with the null hypothesis constraints for no Granger causality applying on the Bi 

coefficient matrixes for only i = 1,…, k. Thus the coefficient matrixes for the last d lags in the 

estimated VAR model would be unconstrained under the null hypothesis. We refer to the d 
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additional lags as “augmentation lags” in this paper. The Wald test methodology is described 

in the appendix.1 That methodology is followed in our simulations. 

 

If the null hypothesis in a Wald test is true, then asymptotically the resulting Wald test 

statistic is χ2 distributed with the number of restrictions under the null providing the number 

of degrees of freedom. In the case of Granger causality testing with only two variables in the 

VAR model, the degrees of freedom is equal to the lag order k, regardless of whether the 

Toda and Yamamoto augmentation lags are included, since the coefficient estimates for those 

additional lags are unconstrained under the null hypothesis. 

 

3. Determination of Lag Length, and Its Effect on Inference 
Typically applied researchers do not know what the lag order k is and therefore use the data 

to help determine the “optimal lag order”. In this paper we assume for our simulations and for 

our bootstrapping the optimal lag order is determined by estimating the VAR(k) model in 

equation (1) for k = 0, …, K, where K is the maximum lag length considered, and finding that 

k which minimizes the multivariate version of the Schwarz Bayesian Criterion, SBC. This 

information criterion is defined as 

 

( ) ,det  SBC
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ω=

T
Tnkj

lnln
�

    (3) 

 

kΩ
�

det where is the determinant of the estimated variance-covariance matrix of error term 

vector ut when the VAR model is estimated using lag order k, and T is the number of 

observations (time periods) utilized to estimate the VAR model. 

 

The fact that applied researchers have finite sample sizes, and often reasonably small ones, 

calls into question whether using an asymptotic distribution for making inference with a test 

statistic (e.g. using the χ2 distribution for making inference from the Wald test statistic) is 
                                                 
1 Lütkepohl (1991) describes the methodology for performing a Wald test with linear constraints in a VAR 
model. He uses the example of Granger causality with none of the additional lags as suggested by Toda and 
Yamamoto (1995), but  the methodology can clearly be generalized to any set of linear constraints on the VAR 
system.  
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appropriate. This problem is compounded by the fact that these researchers also often resort 

to information-criterion minimization or some other data-driven technique to determine 

optimal lag order. Bootstrapping, the subject of the next section, can deal with these issues. 

 

 

4. The Bootstrapping Methodology with Endogenous Lag Length 

 We suggest that with reasonably small sample sizes, bootstrapping the two-stage process of 

researcher—first finding the optimal lag length and then finding a Wald statistic for testing Granger 

causality—can provide a decent distribution for considering the significance of a Wald statistic.2 In 

this section we describe explicitly the type of bootstrapping we are considering. 

 

 The first stage of that bootstrapping process involves the estimation of equation (1) using the optimal 

lag order k (determined by the methodology discussed in the previous section) without imposing any 

restriction implied by the null hypothesis of non-causality. Then, we generate the simulated data, 

denoted by , as the following:  ∗
ty

∗
−−

∗ ++++= tktktt uyByBBy ˆˆˆˆ
110 …  

 for the period t = 1, . . ., T, where the circumflex above a parameter matrix represents the estimate of 

that parameter matrix in the first step, and  is a vector of bootstrapped error terms. The set of T 

bootstrapped error-term vectors is found by drawing randomly with replacement from the vectors of 

modified residuals of the regression (defined below), with equal probability of drawing any of those 

vectors, and for each element in the error vector, subtracting the mean of the associated drawn 

modified residuals from each of those modified residuals (to make sure that the mean of the 

bootstrapped error term vectors is a zero vector). 

∗
tû

                                                 
2 The bootstrap approach, which is a data resampling method used to approximate the distribution of a test 

parameter, was popularized by Efron (1979). 
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3 The regression’s modified residuals are the raw residuals modified via leverages  to have constant 

variance (this modification can improve the bootstrapping under circumstances of heteroscedasticity). 

Further notation helps clarify the leverage modification. We define  to be  and 

 to be ’s ith row. Thus,  is defined as a row vector of yit’s lag P values during the 

sample period t = 1, . . ., T. Suppose also that  and 

PY−

iV

),,( 1 PTP yy −− "

),, ,1 kiY −′

PiY −, PiY −,PY−

( ,iY −′),,( 1 kYYV −− ′′= " = "  for i = 1,..., 

n. For the equation that generates y1t, the independent variable matrix is given by V1; this equation has 

the null hypothesis restrictions of non-Granger causality. V provides the matrix of independent 

variables for the equation generating y2t; this equation is not restricted by the null hypothesis of non-

Granger causality and it includes the lag values of all variables in the VAR model. Now we are in the 

position to define the T×1 leverages vectors for y1t and y2t as the following: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ′′=

−
VVVVl

1

2 diag⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′⎟
⎠
⎞⎜

⎝
⎛ ′=

−

1

1

1111 diag VVVVl , and . 

 

 These leverages are used to modify the residuals in order to take into account the effect of ARCH. 

The modified residual for yit is produced as 

 

it

itm
it l

u
u

−
=

1
ˆ

ˆ . 

 where the tth element of li is given by lit and the raw residual from the regression with yit as the 

dependent variable is given by . itû

 

                                                 
3 Leverages are suggested by Davison and Hinkley (1999) for univariate cases. Hacker and Hatemi-J (2006) 
generalized leverages to multivariate cases.  
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The bootstrap simulation is repeated M times and each time a Wald statistic is produced 

based on the Toda and Yamamoto (1995) methodology using the previously determined 

optimal lag order for the original data and an assumed order of integration. The resulting set 

of bootstrapped Wald statistics is referred to as the bootstrapped Wald distribution. 

Subsequently determined is the “bootstrap critical value” for the α-level of significance ( ), 

which is the lower boundary of the top α quantile of the bootstrapped Wald-statistic 

distribution. If the calculated Wald statistic is higher than the bootstrap critical value  then 

the null hypothesis of non-causality is rejected based on bootstrapping at the α level of 

significance.  

*
αc

*
αc

 

 

5. Simulations for Considering Size 

In this paper we present the results of two types of simulations—those for considering size 

properties of the various methodologies in testing Granger causality and those for considering 

the power properties of those same methodologies. This section discusses the simulation 

design for considering how well various methodologies perform in having actual size being 

close to nominal size, and presents the results from such simulations. The next section deals 

with the power properties of the various methodologies. 

 

The two-dimensional VAR(2) model below is used to consider the size properties: 

 

tttt yΠyΠy εν +++= −− 2211  (4) 

 

where yt = (y1t, y2t)′ with yit, i = 1, 2 being a scalar, v, and Πi are parameter matrixes, and εt is 

the error term vector, the generation of which is described later. In the simulated “true” 

model for considering size there is non-Granger causality in both directions between the 

variables, so the Π1 and Π2 matrixes are diagonal. 

 

In order to be clear about what order of integration is present for any particular parameter 

combination, we use the following equation for each variable yit in yt as the fundamental 

equation in which the parameters are expressed: 
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( )( ) itiitii yLcLa εν +=−− 11 ,       for i = 1, 2 (9) 

or equivalently 

( ) ( ) ititiiitiiiit ycaycay εν +−++= −− 21 ,   for i = 1, 2       (5) 

with L denoting the lag operator. How many times either |ai| or |ci| is equal to one indicates 

yit’s order of integration.  

 

Based on the fundamental equations above, the parameter matrixes in (4) are based on the 

parameters in (5) as shown below: 

 

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

22

11
1 0

0
ca

ca
Π   and . ⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

22

11
2 0

0
ca

ca
Π

 

 In our simulations the error terms are drawn from a normal distribution, but two types of error 

processes are considered—those which are homoscedastic and those which follow an ARCH(1) 

process. More specifically, the variance of each error term is generated by the following data 

generating process: 

 

[ ] 2
11 )1(| −− +−= itiiititVar εγγεε ,    (6) 

 

in which γ i takes on two possible values in our simulations: zero for the homoscedastic cases 

and 0.5 for the ARCH cases. Due to this formulation, in both cases the unconditional variance 

is 1, so the homoscedastic and ARCH simulations are comparable.  
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 In our simulations we consider various parameter combinations for a1, a2, c1, and c2 (the specific ones 

are discussed later), with their values varying between -1 and 1 to capture various situations of orders 

of integration. The parameter set for evaluating the size properties consists of the following: 

 

{ }
{ }
{ }
{ }.0.14.00.02.00.1

,0.14.00.02.00.1
,0.18.0  6.00.1
,0.14.0  2.00.1

2

1

2

1

−−=
−−=
−−=
−−=

c
c
a
a

 

 

One thousand simulations are performed with a sample size of 40 for each of these parameter 

combinations, once with homoscedastic errors and once with ARCH.4 There are 800 

bootstrap simulations associated with each of the 1000 Monte Carlo simulations. The test’s 

characteristics in terms of size accuracy are assessed for the conventional levels of 

significance (1%, 5%, and 10%).   

 

 Tables 1 and 2 present the simulation results for considering size properties. The columns of the tables 

are organized based first on how many augmentation lags are used and second on the order of 

integration of the two variables in the VAR model, with the following various combinations based 

upon the data-generating parameters (all of which do not show up in every table): “both I(2)” (both 

integrated of order 2), “both I(1)”, and “both I(0)”. It is important when reading these columns to 

consider if the number of augmentation lags is greater than, equal to, or less than the order of 

integration of the variables (due to the Toda and Yamamoto (1995) recommendations). Tables 1 and 2 

both present homoscedasticity and ARCH situations and differ primarily in the order of VAR model 

for the data generating process: VAR(1) for Table 1 and VAR(2) for Table 2.  

 

                                                 
4 With each of the 1000 Monte Carlo simulations there is 100 presample observations generated to remove the 
influence of start-up values. For the homoscedastic and ARCH simulations, the random number generator draws 
are the same from a standard normal distribution, but the ARCH simulations multiply the resulting random 
draws by a time varying numbers based on equation (6). By having the initial draws the same, the 
homoscedastic and ARCH simulations are more comparable and are more efficiently produced. 
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 At the bottom of each of these tables is given the number of parameter combinations involved in the 

calculations (in the row titled “# Cases”) and the percent of times one, two, or three lags is chosen.  

As is the case in all the results shown in the cells of these tables, the first number is that for the 

homoscedasticity situation and the second number, shown in parentheses, is that for the ARCH 

situation. The other rows present five categories of results for each of three nominal sizes: 1%, 5%, 

and 10%. The first and second categories show the percent (frequency) of rejection of the null 

hypothesis, using the asymptotic χ2 distribution and the bootstrap distribution respectively. The closer 

the simulated size is to the nominal size, the better the size performance of the test. The third and 

fourth categories show the simulated size’s mean absolute deviation from the nominal size, using the 

asymptotic χ2 distribution and the bootstrap distribution respectively. The last category is the percent 

of the cases (parameter combinations) in which bootstrapping performs better than the asymptotic χ2 

distribution in having the simulated actual size closer to nominal size. 

 

 We see from these tables that the most common problem is having actual size greater than the 

nominal size.  The worst results in terms of deviation of the actual size from nominal size occurs 

when the augmentation lag is less than the order of integration, i.e. when both the variables are I(1) 

and there is no augmentation lag or when both the variables are I(2) and there is no augmentation lag 

or only one augmentation lag. This is true whether we are using the asymptotic χ2 distribution or the 

bootstrap distribution. Such results correspond to what we expect (at least with the asymptotic χ2 

distribution) given the results from Toda and Yamamoto (1995).  

 

 We see also that the bootstrapping we have simulated tends to improve the size properties further. In 

comparing the numbers in parentheses and outside parentheses on Tables 1 and 2 and, it appears that 

ARCH tends to inflate the actual sizes, but that effect is smaller when using bootstrapping rather than 

the asymptotic χ2 distribution. In these tables the simulated size’s mean absolute deviation from the 

nominal size is lower when using bootstrapping rather than the asymptotic χ2 distribution. Also in 

almost every situation – with respect to VAR order, ARCH existence or not, number of augmentation 
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lags, order of integration, and nominal significance level – using bootstrapping outperforms using the 

χ2 distribution in the vast majority of parameter cases considered. 

Table 1: The size properties of the test statistics, T= 40, VAR(1) 
 No augmentation lag One augmentation lag Two augmentation lags 

Nominal 

Significance 
Level ↓ Both I(1) Both I(0) Both I(1) Both I(0) Both I(1) Both I(0) 

 

% rejecting the null hypothesis using χ2 distribution  

1% 5.1 (6.8) 1.9 (2.0) 1.6 (1.7) 1.5 (1.7) 1.9 (1.6) 1.4 (1.6) 

5% 14.2 (16.3) 6.7 (6.9) 6.1 (6.4) 5.7 (6.3) 6.1 (5.9) 5.2 (6.3) 

10% 23.1 (24.1) 12.2 (12.5) 12.3 (11.3) 10.9 (11.2) 11.7 (11.1) 10.9 (11.3) 

 % rejecting the null hypothesis using bootstrap distribution 

1% 1.8 (2.6) 1.3 (1.3) 1.0 (1.0) 1.2 (1.2) 1.2 (1.0) 1.2 (1.0) 

5% 7.6 (8.5) 5.8 (5.9) 5.2 (5.2) 4.7 (5.2) 5.1 (5.2) 4.3 (5.2) 

10% 14.0 (15.6) 10.9 (11.7) 10.9 (10.9) 9.7 (10.4) 10.2 (9.8) 9.7 (10.4) 

Mean absolute deviation using χ2 distribution  

1% 4.1 (5.7) 1.0 (1.0) 0.6 (0.7) 0.6 (0.7) 0.9 (0.6) 0.6 (0.6) 

5% 9.2 (11.3) 2.0 (1.8) 1.1 (1.6) 0.7 (1.2) 1.1 (1.2) 0.5 (1.3) 

10% 13.1 (14.1) 2.4 (2.5) 2.3 (1.6) 1.2 (1.2) 1.7 (1.3) 0.9 (1.2) 

 Mean absolute deviation using bootstrap distribution 

1% 0.9 (1.7) 0.5 (0.3) 0.3 (0.2) 0.5 (0.2) 0.3 (0.3) 0.5 (0.3) 

5% 2.6 (3.5) 1.2 (0.9) 0.7 (0.9) 0.5 (0.4) 0.5 (0.9) 0.7 (0.5) 
10% 4.0 (5.6) 1.2 (1.6) 1.2 (1.3) 0.4 (0.5) 0.8 (0.9) 0.8 (0.4) 

 % of cases in which bootstrapping performs better than χ2 
1% 100 (100) 75 (75) 75 (100) 75 (100) 100 (75) 75 (75) 

5% 100 (100) 75 (75) 75 (75) 25 (25) 50 (100) 75 (75) 
10% 75 (100) 75 (50) 50 (100) 100 (100) 75 (100) 75 (50) 

  

# Cases 4(4) 4(4) 4(4) 4(4) 4(4) 4(4) 

% 1 lag chosen 98.8 (94.9) 98.8 (96.7) 98.8 (94.9) 98.8 (96.7) 98.8 (94.9) 98.8 (96.7) 

% 2 lags 

chosen 
1.1 (4.7) 1.2 (3.3) 1.1 (4.7) 1.2 (3.3) 1.1 (4.7) 1.2 (3.3) 

% 3 lags 

chosen 
0.2 (0.4) 0.1 (0.1) 0.2 (0.4) 0.1 (0.1) 0.2 (0.4) 0.1 (0.1) 

Results shown outside parentheses are for the homoscedastic situations and those shown in parentheses are for ARCH situations.  
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Table 2: The size properties of the test statistics, T= 40, VAR(2) 
 No augmentation lag One augmentation lag Two augmentation lags 

Nominal

Signif-

icance  
Both I(2) Both I(1) Both I(0) Both I(2) Both I(1) Both I(0) Both I(2) Both I(1) Both I(0) 

Level ↓ 
% rejecting the null hypothesis using χ2 distribution  

1% 12.2 (13.7) 7.3 (7.6) 2.9 (2.2) 5.6 (6.1) 2.6 (2.3) 1.9 (1.8) 2.7 (3.0) 2.1 (2.2) 1.7 (1.8) 

5% 27.0 (28.4) 16.8 (17.4) 8.9 (7.3) 15.0 (15.6) 8.2 (7.4) 6.7 (6.4) 8.6 (8.7) 7.2 (7.0) 6.5 (6.3) 

10% 37.2 (38.5) 24.6 (25.3) 15.2 (12.5) 23.1 (23.5) 14.1 (12.9) 12.3 (11.6) 14.7 (14.5) 12.6 (12.2) 11.6 (11.3) 

 % rejecting the null hypothesis using bootstrap distribution 

1% 2.2 (3.1) 2.9 (3.2) 1.7 (1.6) 1.6 (1.9) 1.2 (1.3) 1.2 (1.3) 1.4 (1.6) 1.1 (1.3) 1.1 (1.2) 

5% 9.2 (10.5) 9.1 (10.0) 6.7 (6.0) 7.4 (7.8) 5.6 (5.6) 5.3 (5.4) 5.9 (6.0) 5.3 (5.5) 5.2 (5.3) 

10% 16.4 (18.1) 15.5 (16.8) 12.6 (11.1) 13.9 (14.1) 10.8 (10.8) 10.5 (10.5) 11.5 (11.5) 10.5 (10.5) 10.1 (10.2) 

Mean absolute deviation using χ2 distribution  

1% 11.2 (12.7) 6.3 (6.6) 1.9 (1.2) 4.6 (5.1) 1.6 (1.3) 0.5 (0.9) 1.7 (2.0) 1.1 (1.2) 0.8 (0.8) 

5% 22.0 (23.5) 11.9 (12.6) 3.9 (2.3) 10.0 (10.6) 3.2 (2.4) 1.2 (1.5) 3.6 (3.8) 2.3 (2.0) 1.5 (1.4) 

10% 27.3 (28.5) 14.8 (15.7) 5.4 (2.7) 13.1 (13.5) 4.2 (3.0) 1.3 (1.7) 4.7 (4.5) 2.7 (2.3) 1.7 (1.5) 

 Mean absolute deviation using bootstrap distribution 

1% 1.3 (2.1) 1.9 (2.2) 0.8 (0.6) 0.7 (0.9) 0.4 (0.4) 0.4 (0.4) 0.4 (0.6) 0.3 (0.4) 0.3 (0.3) 

5% 4.2 (5.5) 4.2 (5.2) 1.8 (1.3) 2.5 (2.8) 1.0 (1.0) 0.8 (0.8) 1.2 (1.1) 0.8 (0.8) 0.8 (0.8) 
10% 6.4 (8.1) 5.7 (7.4) 2.9 (1.6) 4.1 (4.3) 1.5 (1.4) 1.2 (1.1) 1.6 (1.6) 1.2 (1.0) 1.2 (0.9) 

 % of cases in which bootstrapping performs better than χ2 
 1% 100 (93.8) 95.8 (95.8) 87.5 (87.5) 93.8 (100) 85.4 (92.7) 84.4 (81.3) 100 (100) 87.5 (92.7) 75.0 (87.5) 

5% 93.8 (100) 93.8 (87.5) 93.8 (81.3) 100 (100) 86.5 (90.6) 87.5 (90.6) 90.6 (81.3) 81.3 (84.4) 93.8 (100) 
10% 93.8 (81.3) 100 (100) 84.4 (85.4) 81.3 (78.1) 93.8 (87.5) 92.7 (88.5) 86.5 (83.3) 78.1 (81.3) 100 (100) 

  

# Cases 16 (16) 96 (96) 32 (32) 16 (16) 96 (96) 32 (32) 16 (16) 96 (96) 32 (32) 

% 1 lag 

chosen 
0.1 (0.02) 22.3 (55.2) 59.2 (91.4) 0.1 (0.02) 22.3 (55.2) 59.2 (91.4) 0.1 (0.02) 22.3 (55.2) 59.2 (91.4) 

% 2 lags 

chosen 
96.6 (92.6) 75.2 (42.1) 39.9 (8.2) 96.6 (92.6) 75.2 (42.1) 39.9 (8.2) 96.6 (92.6) 75.2 (42.1) 39.9 (8.2) 

% 3 lags 

chosen 
3.3 (7.2) 2.5 (2.7) 0.9 (0.4) 3.3 (7.2) 2.5 (2.7) 0.9 (0.4) 3.3 (7.2) 2.5 (2.7) 0.9 (0.4) 

Results shown outside parentheses are for the homoscedastic situations and those shown in parentheses are for ARCH situations.  
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6. Simulations for Considering Power 

To investigate some power properties of the discussed methodologies for testing Granger 

causality, we first focus on the following VAR(1) model with various values for B1,12: 
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The parameter B1,12 is chosen from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0} and the error 

terms are drawn from a standard normal distribution (power is not investigated when ARCH 

effects are present). In these simulations both variables are I(0). For each parameter 

combination we perform 1000 Monte Carlo simulations, and for each of those 1000 

simulations there is an associated 800 bootstrap simulations. From these simulations we 

calculate the frequency in which the null hypothesis of no Granger causality of y2 on y1 is 

rejected. When B1,12 = 0, then this null hypothesis is true, otherwise it is false.  

 

The power table in Table 3 presents the results for the nominal size of 5% for the bootstrap. 

For chi-square the nominal size was adjusted so that its actual size matches the actual size of 

the corresponding bootstrap. This makes the powers for chi-square and the bootstrap 

comparable. As can be seen the powers for the two methodologies are very similar for chi-

square and the bootstrap. In the situations considered here, the process is stationary, so no 

augmentation lags are needed according to the Toda and Yamamoto (1995) 

recommendations. When moving from no augmentation lags to one augmentation lag and 

then two augmentation lags, the power is decreasing, as any augmentation lags greater than 

zero are unnecessary.  
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Table 3: Power Table, VAR(1), I(0), No ARCH 

B1,12 0 0.1 0.2 0.3 0.4 0.5 0.8 1 

Chi-Square no aug laga 0.056 0.107 0.251 0.496 0.706 0.883 0.999 0.999

Bootstrap no aug lag 0.056 0.104 0.253 0.503 0.707 0.880 0.998 0.999

Chi-Square one aug lag 0.064 0.087 0.193 0.398 0.588 0.790 0.985 0.990

Bootstrap one aug lag 0.064 0.090 0.192 0.398 0.598 0.797 0.985 0.998

Chi-Square two aug lags 0.059 0.087 0.173 0.356 0.560 0.768 0.983 0.998

Bootstrap two aug lags 0.058 0.088 0.173 0.351 0.556 0.761 0.983 0.998
aaug ≡ augmentation 

 

To investigate power properties when both of the variables are I(1), we focus on the 

following VAR(1) model with various values for B1,12: 
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The simulations are performed analogously to those which produced Table 3, and the results 

are shown in Table 4 and Figure 1. Here we see that when there is no augmentation lag (less 

than recommended), the bootstrap power is notably better than the power using the 

asymptotic distribution. When one augmentation lag or two augmentation lags are used the 

bootstrap power is slightly better than that with the asymptotic distribution. 

Table 4: Power Table, VAR(1), I(1), No ARCH 

B1,12 0 0.1 0.2 0.3 0.4 0.5 0.8 1 

Chi-Square no aug laga 0.143 0.106 0.352 0.601 0.832 0.927 0.996 0.999

Bootstrap no aug lag 0.143 0.224 0.536 0.753 0.92 0.972 0.997 0.999

Chi-Square one aug lag 0.06 0.086 0.199 0.327 0.541 0.742 0.979 0.997

Bootstrap one aug lag 0.06 0.092 0.214 0.351 0.559 0.755 0.98 0.997

Chi-Square two aug lags 0.06 0.082 0.205 0.297 0.511 0.717 0.967 0.994

Bootstrap two aug lags 0.06 0.085 0.21 0.312 0.523 0.717 0.969 0.994
aaug ≡ augmentation 
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Figure 1. Power Functions for VAR(1), I(1), No ARCH 

 

 

7. An Application in Finance 

The method suggested in this paper is applied to testing the causal effect of the US financial 

market on the UAE financial market using daily data during the period January 2, 2008 to 

April 8, 2009. We use the UAE Abu Dhabi Securities Market Index (AMF) and the Standard 

& Poors 500 Composite Index. Notably, the UAE dirham is fixed to the US dollar so there is 

no exchange rate risk with regard to the dollar in this particular case. The data are collected 

from the data-base Ecowin. The optimal lag order was selected to be two days based on 

minimizing the SBC with a maximum considered lag order of 40. An additional unrestricted 

lag was included in the VAR model in order to allow for one unit root. The residuals in the 

VAR model were tested for multivariate ARCH effects by using the test outlined in Hacker 

and Hatemi-J (2005). The results, not presented, showed that the null of no multivariate 

ARCH effects could be strongly rejected. Thus, applying the bootstrap-corrected test seems 

to be required in order to obtain more precise empirical results regarding the potential causal 

relationship between the underlying returns. The issue is important from a financial economic 
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perspective for two reasons. To find out whether the variables cause each other or not 

provides knowledge about: (i) The financial markets’ degree of integration, and (ii) The 

existence or non-existence of international portfolio diversification benefits between the 

markets. 

 

The results of the causality test are presented in Table 5. These results reveal that there is a 

strong causal impact of the US market on the UAE market. The implication of this empirical 

finding is that the UAE financial market is substantially integrated with the US market. Thus, 

there may not be a large amount of diversification benefits for the investors across the two 

markets.5 It should be mentioned that we did not test the opposite hypothesis because we do 

not believe that the UAE market would cause the US market.  

 

Table 5: The Results of Test for Causality Using the Bootstrap-Corrected test. 

THE 

ESTIMATED 

TEST VALUE 

1% 

BOOTSTRAP 

CRITICAL 

VALUE 

5% 

BOOTSTRAP 

CRITICAL 

VALUE 

10% 

BOOTSTRAP 

CRITICAL 

VALUE (WALD) 

20.085 9.478 6.495 4.805 
Notes: The null hypothesis is that the US financial market does not Granger cause the UAE 
financial market. 

 

   

8. Conclusions 

 The objective of many empirical studies is to investigate the causal relationship between the 

underlying variables. Significance tests are used to test whether a variable’s past values have 

explanatory power for another variable in a VAR model framework. This is basically testing for 

causality in Granger’s (1969) sense. There are several test methods available in the literature for this 

purpose. See among others Granger (1969, 1988), Toda and Yamamoto (1995) and Hacker and 

Hatemi-J (2006). In the existing literature it is assumed that the lag order in the VAR model is known. 

However, in empirical studies the lag order is not known and it has to be selected first and then test 

for causality can be conducted using the selected lag order. In this paper we investigate situations 

where the lag order is determined endogenously when the test for causality is conducted. 
                                                 
5 The sum of the estimated causal coefficients is positive. 
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 We conduct a battery of simulations to evaluate the size and power properties of the Wald test for 

testing the null hypothesis of non-Granger-causality for different data generating processes in small 

sample sizes. Our simulations indicate that bootstrapping with endogenous lag length choice works 

well, often outperforming the Wald test using the asymptotic chi-square distribution and having an 

actual size closely matching the nominal size when the number of augmentation lags (as suggested by 

Toda and Yamamoto, 1995) is equal to or greater than the integration order. The bootstrapping 

technique also appears rather robust to ARCH effects. The power of the bootstrapping technique 

appears to be at least as good, if not better, than the power using the asymptotic distribution for I(0) 

and I(1) variables in the homoscedastic cases we examined. 

 

 An application for testing the causal impact of the US financial market on the UAE financial market is 

provided. It is found that the US market strongly Granger causes the UAE market.  This implies that 

the UAE market has substantial integration with the US market, which in turn implies that 

international portfolio diversification benefits might not be large for the investors across these two 

markets. In order to check the generality of the empirical findings in this paper, there is a need for 

more studies in the future applying the suggested method.6   
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Appendix 
 
In order to express a Wald test statistic that can be used to test the null hypothesis defined by 

(2) in a compact way, we assume for each of the variables y-k+1,…, y0 there are available k 

presample values and define the following matrixes:  

( ) ( )TnyyY T         ,, = : 1 ×"  matrix, 

( )  ))(1  (    ,,, = : 10 nknBBBD k +×"  matrix, 

)( 1  ) 1(    

1

=  :

1

1 ×+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

− nk

y

y
y

Z

kt

t

t

t

#
 matrix, for t = 1, …,T, 

( ) ( TnkZZZ T   )(1     ,, = : ×+−10 " ) matrix, and 

( ) ( )TnT        ˆ,,ˆ = :ˆ
1 ×εεδ "  matrix. 

By using these notations, we are in a position to define the estimated VAR(k) model, written 

compactly as: 

δ +  = DZY .     (A1) 

UδThe next step is to estimate , the (n × T) matrix of residuals from the unrestricted 

regression (A1) when the null hypothesis is not imposed. Then the variance-covariance of 

these residuals is calculated as 
)1( nkT

Su
UU

+−
′δ δ ),,,( 10 kBBBvec "=β. Let us define  or =

)(Dvec=β , where vec signifies the column-stacking operator, and consider as the ordinary 

least squares estimate of β.  The Wald (W) test statistic for testing the null hypothesis that one 

of yt’s variables (a specific variable) is not Granger causing another of yt’s varables (another 

specific variable) is then written as 

β̂

 

( ) ( )( )[ ] ( )ββ ˆˆ 11 QQSZZQQW U

−− ′⊗′
′

= ,  (A2) 

 

where ⊗ is the Kronecker product that represents elements by all elements multiplication of 

matrixes, and Q is a k×n(1+nk) matrix. Each of Q’s k rows is associated with a zero 

restriction on one of β’s  parameters. Each element in each row of Q is given the value of one 
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 these compact notations, 

the null hypothesis of non-Granger causality can also be defined as 

 

if the associated parameter within the vector β is zero given the null hypothesis of non-

causality is true, and it is given a zero value otherwise.  By utilizing

0:0 =βQH .      (A3) 

number of restrictions under the null, which is equal to 

e lag order k in this particular case. 

 
 

 

Assuming the data is generated according to equation (1) with the null hypothesis being true; 

the Wald test statistic presented in equation (A2) is distributed asymptotically as χ2 with the 

degrees of freedom equivalent to the 

th
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