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Abstract 
In this paper, we use simulated data to investigate the power of different causality tests in a 
two-dimensional vector autoregressive (VAR) model. The data are presented in a non-linear 
environment that is modelled using a logistic smooth transition autoregressive (LSTAR) 
function. We use both linear and non-linear causality tests to investigate the unidirection 
causality relationship and compare the power of these tests. The linear test is the commonly 
used Granger causality  test. The non-linear test is a non-parametric test based on Baek and 
Brock (1992) and Hiemstra and Jones (1994). When implementing the non-linear test, we use 
separately the original data, the linear VAR filtered residuals, and the wavelet decomposed 
series based on wavelet multiresolution analysis (MRA). The VAR filtered residuals and the 
wavelet decomposition series are used to extract the non-linear structure of the original data. 
The simulation results show that the non-parametric test based on the wavelet decomposition 
series (which is a model free approach) has the highest power to explore the causality 
relationship in the non-linear models. 
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I.  Introduction 
 
In vector auto-regression (VAR) models, the causality or feedback relationship between 
subsets of the variables is always an attractive aspect for further analysis. The causality test is 
widely applied to explore this kind of relationship, and the Granger-type test has been most 
frequently used in previous studies. The main idea of the Granger causality test is to measure 
whether the past information of a set of variables contains information on changes in another 
set of variables and helps to predict them. It is carried out by checking if the variance of the 
prediction error of one set of variables at the present time is reduced by the incorporation of 
the past values from the other set of variables. The mean square error (MSE) is commonly 
used as a measurement for the prediction error and Granger causality is concerned with the 
minimized MSE predictor, which is the unbiased conditional mean. However, in Granger 
causality, the conditional mean is always set as a linear function of variables. Thus when we 
discuss Granger causality, it always implies that the past values of a set of variables help 
‘linear predict’ another set of variables. Therefore, although the Granger causality test 
performs well in linear models, when the data show non-linear properties, then factors such 
as the structural change or heteroscedasticity will affect the forecast error variance based on 
the linear model that influences the Granger causality test. In other words, the linear Granger 
causality test tests the significance of the linear coefficients of set of past values of variables 
in the model. If the underlying variables in the VAR system contain non-linear relationships 
and we use the test based on the linear model, the linear coefficients of the model may be 
insignificant, and as a result, the test can not explore any causality relationship and will loose 
power in the corresponding non-linear environment. 
 
Numerous empirical studies have showed that many economic variables display non-linear 
features and can only be modelled with non-linear models, such as the business cycle, 
structural swings, abrupt breaks or time varying coefficients. In order to investigate the 
causality relationship in non-linear dynamic models, a large number of studies have appeared 
in the field. Chen et al. [1] proposed a method that identifies non-linear dependence 
according to locally linear approximations and phase reconstructions, with a linear regression 
predictor employed for the local neighbourhood. The causality test checks if the time index of 
the neighbourhood points in the reconstructed space helps in predicting the future dynamics. 
Later, Ancona et al. (2004) pointed out that Chen et al. [1] required adequately high 
neighbourhood points in the local linear fitting. Instead, Ancona et al. (2004) first proposed a 
statistically independent condition that should be satisfied for their extended non-linear 
Granger causality method. They also described a class of non-linear models that satisfies this 
condition and proposed radial basis functions methods to choose those models. In addition to 
the above-mentioned parametric methods, Bell et al. (1996) proposed a non-parametric 
method that, using a back-fitting algorithm, first estimates underlying smooth functions to 
describe the relationship of the response and explanatory variables. Then the authors used  
statistics based on the residual sum of squares from the restrictive non-causal and the 
alternative causal related equations. Another type of non-parametric test was first proposed 
by Baek and Brock (1992) and later modified by Hiemstra and Jones (1994). This non-
parametric test can be viewed as a test of non-causality in density. It is based on the 
correlation integral that is the estimator of spatial probabilities over time. This non-
parametric test has the advantage of simple implementation with good size and power 
properties, and it is robust to the series being tested as it does not require a specified a priori 
model. It is therefore widely applied to exploit the non-linear causality relationships in non-
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linear vector time series , see e.g. Abhyankar (1998) and Huh (2002). Here in this paper, we 
will use this test to test the causality relationship in our non-linear VAR model. 
 
Among the many varieties of non-linear models, the logistic smooth transition autoregressive 
(LSTAR) model allows non-linear structures between the data regimes to be described by a 
logistic smooth regime transition function. This is of particular interest in fields that contain 
mass of units, where even if the decisions leading unit structure break are made discretely, 
the aggregated behaviour shows smooth regime changes (see Teräsvirta, 1994). It is natural 
to extend the univariate LSTAR model to a VAR system when the causality relationship 
among the variables varies with time smoothly, where the LSTAR model can be used to 
capture the time dependent characteristic, and the series in the VAR system are non-linear. It 
is also obvious that in this case, the traditional linear Granger causality test may loose power 
in exploiting time dependent varying dynamics. Thus, in this paper, we test the time varying 
causality relationships that can be modelled by a LSTAR type of model in a two variable 
VAR system, and we use both linear Granger test and the non-parametric non-linear test 
proposed by Baek and Brock (1992), and Hiemstra and Jones (1994) in order to compare 
their performances. The investigation of the finite samples properties of the tests has been 
done by means of Monte Carlo experiment where we use 5,000 replications for the size and 
power estimations, while for producing the critical values tables we use 10,000 replications. 
 
This paper is organized as follows. Section II presents the non-linear bivariate VAR model 
for the causality test. Section III introduces the simulated model and the data generating 
process (DGP) together with the size and power property result of the traditional linear 
causality test. In section IV, we present and apply the non-parametric non-linear test, while in 
section V the non-parametric test based on the wavelet decomposition series is introduced. 
The last section contains a short conclusion. 
 

II. The bivariate VAR model with LSTAR 

causality 
 
In this paper, we are interested in causality tests in the bivariate VAR system where the 
causality relationship from series { }tY  to series { }tX  is time varying, and this time dependent 
character is captured by a LSTAR model. Thus the resulting VAR model is as follows: 
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{ }tY { }tX( , , )F t cγThe transition function  implies that the causality relationship from  to  
changes smoothly as time evolves under the restriction of ( ,F t , )c2 0, 0β γ≠ ≠ . In , γγ  
determines the speed of transition from one extreme regime to another at time c , and the 
larger is γ , the steeper the transition function will be, leading to a faster transition speed. In 
Figure 1, we set c  fixed at halfway with γ  = 20, 10, 5. Then the smooth transition function 

 is a bounded continuous non-decreasing transition function with t  from 1 to 44. Y
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γ γ γ         Figure 1. Logistic smooth transition functions:  = 20 (dashed-dotted line),  = 10 (dotted line),  = 5 (solid line). 

 
It is obvious that the past information of { }tY  will help to predict { }tX  under the restriction 
of 2 0, 0β γ≠ ≠ . Moreover, with the causality relationship changing over time according to 
the logistic smooth transition function, { }tX  is also non-linear with smooth structural change. 

Thus in this two variables VAR model, we have a non-linear series { }tX  a  linear series 

{
nd a

}tY , with the non-linearity of { }tX  ed by the time varying causality dependence on 

{
caus

}tY  the following sections, we use both linear and non-linear tests to explore the 
causality relationship in equation (1). 

. In

 

III. The DGP process and the linear causality test 
 
Based on the procedure of the Granger linear test to test causality between { }tX and { }tY , we 

first regress { }tY  on its own past values and lag values of { }tX Lx with lag length , then 

regress { }tX  on its own past value and lag values of { }tY  with lag length . Then  test 
statistics is used to determine whether the coefficients of the past values of 

Ly

t

F
X  and  are 

zero, and insignificant coefficients imply non-causality or feedback relationship. Here for the 
testing procedure based on data from equation (1), as we already know the data generating 
process, we set  =  = 1. To test the unidirectional causality relationship from {

tY

}tYLy Lx  to 
{ }tX , the test procedure is based on the following linear VAR model: 
 

1 1 1 1 1 1

2 2 1 2 1 2

t t t

t t t

x u x y
y u y x
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t
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ϕ γ ε

− −

− −

= + + +

= + + +
 , (2)                    

1 2, ~ . . (0,1t t i i d Nε ε )

 

 - 5 -



0 1:H 0γ =Furthermore, the null hypothesis of non-causality is . The test statistic for the 
linear causality test is: 
 

( )
/( )

R u
linear

u

SSR SSR mF
SSR T K

−
=

−
/

 

 
 
, where SSRR and SSRU  are the sum of squared errors from the restricted and unrestricted 
models respectively,  is the number of restrictions,  is the number of observations, and 

 is the number of parameters in the unrestricted model. Under of non-causality, the test 
statistics  will follow a 

m T
0HK

linearF ( , )F m T k−  distribution. 
 
The simulated data from equation (1) are used to investigate the size and power properties of 
the causality test based on different parameter restrictions on the DGP. For both cases, we set 

1μ 2μ 1α = 0.02,  = 0.03,  = 0.5, 2α  = 0.5 in the linear part of the model. In order to 
investigate the size property of the  test statistic, we generate the DGP under the null 
hypothesis by setting 

F
 = 0, thus the simulated observations { }tX  and { }tY1β  = 2β  are mainly 

two independent series with non-causality. Here to produce the critical values for the size 
table, we set the number of Monte Carlo replication to 5,000. This means that we simulate 
{ }  and { }tYtX under null hypothesis 5,000 times and carry out the Granger causality  test 
to find out the proportion of the rejection times. Table 1 presents the size property of the 
linear test for the finite sample sizes: T =25, 50, 100, 250, 500 at the 5% significant level. 

F

 
   Table 1. Size property for the linear Granger causality test. 

T 25 50 100 250 500 

Size (T) 0.0495 0.0525 0.0546 0.0530 0.0512 

 

To judge the validity of the results, the estimated size of the test should lay between the 
approximate 95% confidence intervals of the nominal size 5%. With 5,000 replications, the 
confidence interval for the estimated size is:0.05 1.96 0.05(1 0.05)/5000 (0.0441,0.0559)± − = . Thus 
from Table 1 we can see that at the 95% confidence level, the linear Granger causality  test 
statistic has an unbiased size. However, the result is expected when 

F
1β 2β =  = 0, because the 

DGP is a pure linear independent modelled VAR system. What we are more interested in 
here is the power property of the linear test if the DGP is in a non-linear unicausality relation. 
In this situation, we need a DGP that satisfies the unicausality relationship. Thus in the linear 
part of equation (1), we still set 1μ 2μ 1α = 0.02,  = 0.03,  = 0.5, 2α  = 0.5, but in the 
nonlinear part we set 1γ = , , / 2c T= 1β 2β = 3 and  = 3. With these fixed parameters set, 
there exist a unicausality relationship from { }  to { }tY tX  and Figure 2 shows the structure of 

the simulated data { }t  and { }tYX  when T . 200=
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   Figure 2. VAR(1) system with LSTAR non-linear structure. 

 
Figure 2 shows that { }tX  has a structural break at the midpoint of the sample making the 
whole series show non-linearity, and this is due to the structural change point c  in the 
transition function is  . Thus the causality relationship from { }tY  to { }tXT / 2  shows 

different patterns in the two regimes before and after time point c . The other variable { }tY  is 
still a linear time series over the entire sample and it does not include any past information of 
{ }tX , which means the causality relationship is just from { }tY  to { }tX  . In this section, we 
will use the above linear Granger  test to investigate its power properties for the finite 
sample sizes. Here, with  m  = 1,  = 6 and different sample sizes , at the 5% significant 
level, we replicate the test procedure 5,000 times based on the DGP under restriction of 

F
K T

1μ  = 
0.02, 2μ  = 0.03, 1 2α α= γ = 0.5; 1= , / 2c T= , 1 2β β=  = 3, and we get the power table, 
Table 2 below, for the linear Granger test. 

 
Table 2. Power properties for the linear Granger causality test. 

T 25 50 100 250 500 

Power (T) 0.116 0.109 0.102 0.097 0.095 

 
Table 2 shows that the linear Granger test has very low power in testing the causality 
relationship when the lag value of { }tY  influences { }tX  according to a non-linear structure. 
This is not surprising as the non-linear structure will result in an insignificant parameter 1γ in 
equation (2), which reduces the power of the linear Granger  test. It proves that although 
the linear Granger causality test may perform well in testing linear prediction among the 
variables, if there are some factors that cannot be modelled by a linear function, the causality 
relationship may not be exposed by the linear causality test, because the linear coefficient of 
the lag value is not significant in the linear model. As we can see in our case, when there 
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exists a non-linear causality relationship, the linear test has very low power in exploring it, 
although one of the series { }tY  still shows linearity. 
 

IV. The non-parametric non-linear test 
 
For the STAR model, there is a parametric test for causality proposed by Dimitris and Miguel 
(2008) where they used the Taylor expansion method to test the time varying causality 
relationship between variables. It first tests the linearity of the variables, and if linearity is 
rejected, a  test statistic is proposed after the estimation of the non-linear parameters. 
Moreover, Li (2006) proposed a heteroscedasticity-robust Wald test. This joint test of the 
threshold and causality leads to a non-standard asymptotic distribution because of the 
nuisance parameters. These two test methods basically follow the logic of the minimal 
variance error of prediction, as in the linear Granger test. Here, we switch to the non-
parametric test that was first proposed by Baek and Brock (1964), and later modified by 
Hiemstra and Jones (1994). The main idea of the test is illustrated as follows: 

F

 
Consider two strictly stationary and weakly dependent time series  { }tX  and { }tY   that 

satisfy the ergodicity condition. Denote the -length lead vector of { }tm X ,m
tX Lx as  the -lag 

length vector of { }tX { }tY as , and the -length of Lx
t LX − x Ly  as Y Ly

t Ly− . For given values of , 

, , and , {
m

}t  does not strictly Granger cause { }tY X1Ly ≥Lx 0e >  will be expressed as: 
 
 

                        
Pr( , )

Pr( )

m Lx Lx Ly Ly
t t Lx s Lx t Ly s Ly

m Lx Lx
t Lx s Lx

m
s

m
t s

X X e

X X

X X e Y Y e

e X X e

− − − −

− −

− < − < − <

= − < − <
(3) 

 
Where  measures the probability and Pr( )⋅ ⋅  measures the vector distance, which is the 

maximum norm of the two vectors. Thus Pr( , )m m Lx Lx Ly Ly
t s t Lx s Lx t Ly s LyX X e X X e Y Y e− − − −− < − < − <  in 

equation (3) is the conditional probability that the distance of two arbitrary m -length lead 
vectors ,m

t
m
sX X  is within the distance e , given that the corresponding  and -length lag 

vectors of {
LyLx

}t  and { }tYX  are within distance of . e Pr( )m m Lx
t s s Lx

LxX t LxX e X X e− − −< − <  is 

the conditional probability without taking the lag vector of { }tY  into consideration. The test 
based on equation (3) is a non-causality test that implies for the given criteria measurement 
which is represented by the vector distance e , the -length of the number of lag values of Ly
{ }tY { }tX does not help predict the future period values of , given the -length of the 

number of lag values of 

Lx

{ }tX . Generally speaking, this non-parametric causality test tests for 
non-causality in density which is different from the Granger linear test, which tests non-
causality in mean. Non-causality in mean depends on the properties of the prior model, which 
needs stronger hypothesis. Thus, this non-parametric test is more robust to the data, and can 
be used to test the causality relationship when the data structure shows non-linearity. 
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For further construction of the test statistic we can rewrite equation (3) into the following 
equation: 
 
 

1 3

2 4

Pr ( , , ) Pr ( , ))

Pr ( , ) Pr ( )

m m Lx Lx Ly Ly m m Lx Lx
t s t Lx s Lx t Ly s Ly t s t Lx s Lx

Lx Lx Ly Ly Lx Lx
t Lx s Lx t Ly s Ly t Lx s Lx

X X e X X e Y Y e X X e X X e

X X e Y Y e X X e
− − − − − −

− − − − − −

− < − < − < − < − <
=

− < − < − <
                 

(4) 
 
Moreover, we can use the correlation integral estimators , , ,  as the estimators of 
probabilities , , , , where when we set 

1C

1 2( ,
2C

, )
3C 4C

I Z Z e1Pr 2Pr 3Pr 4Pr  as the index function of  
vectors 1, 2Z Z  within maximum norm distance , we have: e
 

1 3

2 4
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( 2) ( 2)
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( 2) ( 2)
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C I x x e I y y e C I x
n n n n
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= ∗ =
− −

= ∗ =
− −

∑∑ ∑∑

∑∑ ∑∑

)x e
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and equation (4) turn into : 

 
31

2 2

( ,( , , )
( , , ) ( , )

C m Lx eC m Lx Ly e
C Lx Ly e C Lx e

)++
= .(6) 

 
Thus the non-causality relationship implies that { }tY  and { }tX  should satisfy equation (6), 
and a natural test statistic is:  

 
31

2 2

( ,( , , )
( , , ) ( , )

C m Lx eC m Lx Ly et
C Lx Ly e C Lx e

)++
= − .  

 
{ }tY and{ }tXUnder  of non-causality between 0H , the asymptotic distribution of the test 

statistic is: 2(0, ( , , , ))
( , ,m Lx

Tt N m Lx Ly eσ→ . A detail derivation of the asymptotic distribution of 
the test statistic and estimator of  can be found in Baek and Brock (1992) and 
Hiemstra and Jones (1994). 

2 Lyσ , )e

 
Note that this non-parametric test is always implemented using the linear VAR model with 
filtered residuals of the original data, while what we are testing is the pure ‘non-linear 
predictive’ power of the causality. The logic is that the linear predictive element can be 
extracted by the pre-chosen linear VAR model and the residuals will retain the non-linear 
structure of the original series. However, this procedure requires caution as the filter 
processes depend heavily on the right choice of the linear VAR model. The reason is that a 
misspecified VAR model may withdraw ‘too much’ non-linear information or ‘too little’ 
linear information of the dependence relationship in the original data, and leave the residual 
not informative enough to illustrate the non-linear causality relationship, which might lead to 
lost power for this non-parametric test. Hiemstra and Jones (1994) showed that the 
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asymptotic distribution of the test statistics is the same when we use the original data or the 
VAR filtered residuals. As the asymptotic distribution needs further strict assumptions to 
ensure good power and size properties, here we only discuss the test properties for the finite 
samples. We now apply the test to both the original data and the linear VAR filtered 
residuals, and then compare the power properties. To carry out the tests in small samples, we 
first use the Monte Carlo experiment to generate the critical value table for the test in both 
situations using the DGP system satisfies the null hypothesis as follows: 
 

1 1

1 2

0.03 0.5
0.02 0.5

t t

t t

x x
y y

t

t

ε
ε

−

−

= + +

= + +
   where .  (7) 1 2, ~ . . (0,1t t i i d Nε ε )

 
 
The above DGP system simulates two independent series { }tY  and { }tX . Thus the critical 

values of the test statistic 31

2 2

( ,
)

Lx e
e

)( , , )
( , , ) ( ,

C mC m Lx Ly et
C Lx Ly e C Lx

++
= −  are constructed from the data 

generated by this DGP system which satisfies the null hypothesis of non-causality. Using a 
10,000 Monte Carlo replications, we get the following critical value table for the finite 
sample sizes T =25, 50, 100, 250, 500: 

 
Table 3. Critical values for the non-parametric test based on original data.  

T 99% 97.5% 95% 90% 10% 5% 2.5% 1% 

25 –0.9354 –0.7559 –0.6156 –0.4585 0.4249 0.5642 0.7002 0.8680 

50 –0.7793 –0.6168 –0.5058 –0.3816 0.3324 0.4347 0.5342 0.6437 

100 –0.6254 –0.5150 –0.4309 –0.3296 0.2945 0.3880 0.4750 0.5820 

250 –0.5416 –0.4639 –0.3868 –0.2944 0.2600 0.3375 0.4108 0.4805  

500 –0.5129 –0.4251 –0.3569 0.2751 0.2552 0.3310 0.3987 0.4770 

 
Table 3 shows that under , the test statistic in finite samples is distributed symmetrically 
around 0, which is the expected value based on the relationship from equation (4). Moreover, 
the QQ plot (not included here to save space) shows that the distribution of the test 
approaches to the normal distribution as the sample size grows. Since the size property of the 
test here is unbiased, we only need to examine the power property. When we perform the 
power investigation for the non-parametric test, we use the same DGP as in the power 
investigation procedure in section III, that is the data is from the non-linear LSTAR models in 
equation (1) under the restrictions 

0H

1γ = 1β 2β/ 2c T=, ,  = 3,  = 3 which leads to the 
unidirection causality from { }t { }tXY to . A significant positive test statistic suggests that 

{ }tY  helps in predicting { }tX  while a significant negative value implies that { }tY  confounds 

the prediction of { }tX , and hence we only use the right tailed critical values. Based on the 

5,000 simulated values from the DGP with unidirection Granger causality from { } { }tXtY  to  
and the critical values at the 5% significance level from Table 3, we obtain the power of the 
non-parametric test based on the original data. 
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Table 4. Power properties for the non-parametric causality test based on original data. 
T 25 50 100 250 500 

Power  0.142 0.228 0.358 0.6325 0.836 

 
Table 4 shows that for T =25, 50 and 100, the non-parametric test has low power. However 
when increases to 250 and 500, the power increases significantly. When comparing Table 4 
with Table 2, the non-parametric test shows an obvious power improvement, which proves 
that the non-parametric test performs better than the traditional linear Granger test when the 
series has a non-linear structure. 

T

 
We next apply the non-parametric test to the VAR model filtered residuals. A VAR model 
with one lag is considered as a reasonable pre-chosen model to extract the linear structure of 
the original data, although the same procedure can be applied to higher order VAR models. 
The filter procedure is as follows: we first use a linear VAR model with one lag to model the 
simulated data from the independent model based on equation (7), and each equation in (7) 
generates a series of residuals. Then we rescale the two series of residuals and use them to 
construct the test statistic. In the later step when we carry out the test to investigate the 
power, we use the linear filtered residuals as well. Then, based on the VAR model filtered 
residuals of data from equation (7), we get the following critical values table by Monte Carlo 
simulations with 10,000 simulations: 
 

Table 5. Critical values for the non-parametric test based on residuals.  
T 99% 97.5% 95% 90% 10% 5% 2.5% 1% 

–0.7676 –0.6150 –0.5057 –0.3799 0.3702 0.4896 0.5948 0.7189 25 

–0.5341 –0.4422 –0.3733 –0.2886 0.2793 0.3507 0.4244 0.5032 50 

–0.4233 –0.3592 –0.3039 –0.2361 0.2317 0.2950 0.3548 0.4256 100 

–0.3726 –0.3090 –0.2630 –0.2049 0.2013 0.2590 0.3117 0.3805 250 

–0.3575 –0.3051 –0.2514 –0.1975 0.1892 0.2424 0.2898 0.3504 500 

 
Table 5 shows the same distribution characteristics as Table 3 with the approach to normal 
distribution with expected value of zero and shorter interval for larger sample sizes. 
Furthermore, to investigate the power property, again we use the DGP from equation (1), 
under the restrictions of 1γ = 1β 2β, , / 2c T=  = 3, and  = 3 which leads to causality 
relationship from { }tY to { }tX , and using the rescaled residual after the linear VAR filtering, 
we get the following power table based on 5,000 Monte Carlo simulations :  
 

   Table 6. Power property for the non-parametric causality test based on residuals. 
T 25 50 100 250 500 

Power  0.0645 0.1045 0.167 0.35 0.593 

 
For small samples T=25 and 50, the test based on the residuals has even less power than the 
linear Granger test. Although the power increases for larger sample sizes and it exceed the 
power in linear test, it is still lower than the test based on the original data. This outcome may 
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be due to that when the sample is too small, the non-linear structure in the model is not 
obvious and a pre-chosen linear VAR model extracts all the dependency structure in the data, 
which leads to a low power if we use the residuals for the test. It shows that when we use the 
residuals in the test after the linear filter process, the pre-used linear VAR filter model may 
extract too much information about the dynamics between the variables and destroy their 
dependency, thus when we run the test based on the residuals, we get very weak power.  
 

V. The non-parametric test based on the wavelet 

multiresolution 
 
Section IV presents the non-parametric non-linear test based on the original data and the 
linear VAR model filtered residuals, with the first one performing much better (in terms of 
higher power) than the latter one for the larger sample size, which remind us that the residual 
based methods are sensitive to the specification of the pre-chosen linear filter model. 
However, if the residual is used to maintain the non-linear relationship of the original data, 
we can consider another alternative method of achieving this. This alternate method captures 
the non-linear characteristics of the original data using the wavelet multiresolution analysis 
(MRA). This frequency decomposition method has been widely used after its theoretical 
development in the 1980s (see e.g. Mallat 1989). In signal smoothing and spectrum analysis 
Chiann and Morettin (1998) showed how wavelet captures signals in different scales by 
wavelet spectrum decomposition. In economics, Schleicher (2002) also mentioned that the 
wavelet method can catch macroscopic behaviour as well as the microscopic detail in 
economic areas. In perspective of nonlinear models, the wavelet decomposition is an efficient 
method due to its ability of localizing the non-stationary structure which depending on time. 
Moreover, it is of particular use in the identification of non-linear models, see Coca and 
Billings (2001) who use wavelet multiresolution to process the nonlinear system in 
NARMAX models. Chang and Shi (2009) also use this methodology to identify time-varying 
properties of hysteretic structures, and a comprehensive elaborate of MRA can be found in 
Carl (2005). In our circumstance, we expect the low frequency wavelet smooth based on 
MRA to capture the main trend of the data, which is the non-linear LSTAR structure in the 
VAR system, leading to a better performance of the test. We use the maximal overlap 
discrete wavelet transform (MODWT) as it has no restriction on the sample size. We first 
start with a brief introduction of the MODWT transform and wavelet multiresolution, and 
more details are to be found in the cited references. 
 
For an  dimensional vector , the level  MODWT transform of { , 0,..., 1}tX t NΧ = = −N J Χ  
contains vectors 1+J 1,..., ,J JW W V  with the wavelet coefficient  corresponding to 

changes on scale , while the wavelet scaling coefficient 
jW

12 j−
jτ = JV  corresponds to average 

on scale . The dimension vectors and 2 j=Jλ N jW JV are computed by 

 where and ,wj j= ΧW J J=V v Χ jw Jv N N are × matrixes. Then the MODWT based 

MRA of  is defied as: , where  is the 
1 1

J J
T T
j j J J

j j

w v
= =

Χ = + =∑ W V jD +Χ JS∑ jD thj  level 

MODWT details containing the microscopic detail of JSΧ  and  is the level MODWT thJ
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smooth containing landscape characteristics of Χ . Thus the MODWT transformation and 
multiresolution can be viewed as a band-pass filter process of Χ , and based on different 
transformation matrices  and jw Jv , we have different choices of filters. For more 
information about the MODWT method and how to choose the suitable filter, we refer to 
Vidakovic (1999), Percival and Walden (2000), and Gençay et al. (2001). An important issue 
now is how to choose the wavelet filter. A central factor to use a particular wavelet is to 
match the characteristics of the series under consideration. The number in the name of the 
wavelet indicates the width of the filter. In general, the wavelets with small L are narrower 
and less smooth, while wavelets with large L, are relatively wide and smooth. However, in 
this paper we use the wavelet Least Asymmetric with L = 8, i.e. LA(8), since it has better 
band pass characteristics.  
 
Thus by MRA, the wavelet smooth JS  can capture the low frequency trend of the original 

data, which we use to capture the nonlinear and linear structures of { }tX  and { }tY

1{ }t

 for the 
nonparametric test, instead of using the VAR filtered residuals. Here, and to simplify the 
procedure, we simply let =1 and get the low frequency wavelet smoothes ,  of 

the original time series

S 2{ }tSJ

{ }t , { }tYX : 
1

1 1 m
0

,
L

t l t l
l

S g V
−

+
=

=∑
1
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0
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t l t l
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−
=
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21,l ll l
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=
∑
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−
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∑
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with the MODWT scale coefficients 

, while  is the scaling filter satisfying 

 and {  is the periodization of {  to circular 

filters of length . Since {  and {  are the low band pass filters, the resulting wavelet 
smooth maintains the low frequency structure of the original data which is the non-linear 
structure of 

{ lg

}l

}

}lgg

}

}tX  and the linear character of { }tY in our case. Thus, the corresponding 
wavelet smooth of the data presented in Figure 2 is now shown in Figure 3. 
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Figure 3. Wavelet scale coefficient of the VAR(1) system with LSTAR non-linear structure. 
 
Figure 3 shows that the wavelet smooth (which is the reconstructed signal from the wavelet 
coefficient) is smoother compared with original data in Figure 2 with a clearer non-linear 
structural in { }tX . Then if we use the wavelet smooth, we can keep the main structure of the 
original data, regardless of whether it is linear or non-linear. Especially if the original data 
have a non-linear structure, compared with the linear VAR filtered residuals, the wavelet 
smooth will maintain the non-linear information as well as the dependence relationship 
between { }t  and { }tYX . Now to carry out the non-parametric causality test, when creating 
the critical value table, we first simulate the same DGP process as in the last sections (i.e. 
equation 7) which satisfies the null hypothesis that is 1μ 2μ = 0.02,  = 0.03, 1 2α α=  = 0.5 
and 1β 2β=  = 0, but instead of using the original data or the linear filtered residuals, we use 
the wavelet smoothes  and  in the test.  1tS 2tS

The test statistic is now: 1 1 2

2 1 2

( , , ) 3 1

2 1

( ,
( , )

C m Ls e
C Ls e( , , )s

C m Ls Ls e
C Ls Ls e

+
=

)+t - , 

Where,  and  are the lag indices of  and , respectively, corresponding to 1tS 2tS1Ls 1Ls Lx  and 

 as the lag indices of { }tX  and { }tYLy  in the original test statistic in section IV. Then based 

on 10,000 Monte Carlo replications, we get the critical values table for the test based on  

and  as follows: 
1tS

2tS
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Table 7. Critical values for the non-parametric test based on wavelet smooth.  
T 99% 97.5% 95% 90% 10% 5% 2.5% 1% 

-0.6478 -0.5313 -0.4226 -0.3103 0.3657 0.4815 0.5803 0.7019 25 

-0.5425 -0.4473 -0.3593 -0.2696 0.2876 0.3767 0.4558 0.5396 50 

-0.4574 -0.3734 -0.3115 -0.2378 0.2352 0.3099 0.3889 0.4648 100 

-0.3844 -0.3087 -0.2590 -0.1983 0.2017 0.2599 0.3126 0.3894 250 

-0.3501 -0.2964 -0.2476 -0.1952 0.1855 0.2460 0.2914 0.3599 500 

 
Table 7 also shows symmetric, zero centred distribution which approaches the normal 
distribution as the sample size grows. This implies that the asymptotic distribution of the test 
statistic based on the wavelet smooth is still normal distribution. This is obvious because here 
in the wavelet environment we use the same form of the non-parametric test statistic 

 with the only difference is that we, instead of the original { }tX  and { }tY1 2 3/t C C C C= − 4/ , 

use  and  in . Thus the test statistic is: 1{ }tS 2{ tS iC}

3 11 1 2

2 1 2 2 1

( ,( , , )
( , , ) ( , )s

C m Ls eC m Ls Ls et
C Ls Ls e C Ls e

++
= −

)
,  

2
1 2(0, ( , , , ))sT t N m Ls Ls eσ→where its asymptotic distribution satisfies . A detailed 

explanation of  can be found in Baek and Brock (1992) and Hiemstra and 
Jones (1994).  

2
1 2( , , , )m Ls Ls eσ

 
For the finite sample size, and to investigate the power property, we still use the same DGP 
from equation (1) under the restrictions of 1γ = 1β 2β/ 2c T=, ,  = 3, and  = 3 to generate 
{ }tX  and { }tY  which satisfies nonlinear causality relationship, and using their wavelet 

smooth  and  to carry out the test. Based on the critical value at 5% significant level in 
Table 7 and 2,000 Monte Carlo replications, we get the power property of the non-parametric 
test in wavelet environment, see Table 8 below.  

1tS 2tS

 
 

Table 8. Power properties for the non-parametric causality test based on a wavelet smooth. 
T 25 50 100 250 500 

Power  0.166 0.358 0.657 0.975 1 

 
 

25T =Although the power is still low when the sample size , the power for other sample 
sizes are much higher comparing with Tables 4 and 6. When T  goes to 250, the power 
approaches almost one. Thus based on the power table, the wavelet smooth performs best in 
extracting the non-linear characteristics and the dependency relationship of the original data. 
Moreover, the wavelet method has the advantage of being easy to perform as it saves us the 
effort of choosing the correct specification of the VAR linear model, compared with the 
residual-based test. We can also asses its asymptotic distribution as we only need to put the 
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wavelet smooth, instead of original data, into the test statistic and we still retain the 
asymptotic normal distribution with zero mean value but with different variance.  
 
 
 

VI. Conclusion 
 
In this paper, we investigated the power properties of causality tests when the causality 
relationship is characterized by a LSTAR model. We compared power values from the linear 
causality test, the non-parametric test based on the original data, the VAR filtered residuals 
and the wavelet smooth based on MRA for which the best power property is obtained. The 
low power property in the residual-based test might be due to that the linear model we used 
for filtering extract too much information and thus destroy the dependency relationship that is 
supposed to be retained in the residuals. However, all the tests here use the data for the whole 
period for testing, although there are data breaks and the causality relationship may vary with 
time. Li (2006) proposed a test that can test causality before and after breaks, but with more 
complicated procedure. Thus for the VAR model with LSTAR non-linear characteristics, the 
non-parametric test can be used for a first examination of the causality relationship between 
the variables. Furthermore, when applying the non-parametric test, the simulation results 
show that when we try to identify the non-linear characteristics, the VAR filtered residuals 
should be used carefully, while on the other hand the non-parametric test based on wavelet 
multiresolution can capture the non-linear relationship well which leads to the best power 
property. 
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