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Abstract 

 

In this paper we introduce an interesting feature of the Generalized Least Absolute Deviations 

(GLAD) method for Seemingly Unrelated Regression Equations (SURE) models. Contrary to 

the collapse of Generalized Least Squares (GLS) parameter estimations of SURE models to 

the Ordinary Least Squares (OLS) estimations of the individual equations when the same 

regressors are common between all equations, the estimations of the proposed methodology 

are not identical to the Least Absolute Deviations (LAD) estimations of the individual 

equations. This is important since contrary to the least squares methods, one can take 

advantage of efficiency gain due to cross-equation correlations even if the system includes the 

same regressors in each equation. This kind of methodology is useful say when estimating the 

factors that affect firms’ innovation investments across European countries.  
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1. Introduction 

The Generalized least squares (GLS) method of estimation for Seemingly Unrelated 

Regression Equations (SURE) models proposed by Zellner (1962) is considered as one of the 

most successful and efficient methods for estimating seemingly unrelated regressions. The 

proposed SURE model has stimulated a countless theoretical and empirical results in 

econometrics and other areas, (see Zellner, 1962; Rao, (1975), Brown and Payne, 1975; 

Srivastava and Giles, 1987; Chib and Greenberg, 1995). For example, the methodology is 

applicable to political behavior such as voting, biometric problems, allocation models, 

demand functions for a number of commodities (i.e., Almost Ideal Demand Systems, AIDS), 

investment functions for a number of firms, income or consumption functions for subsets of 

populations or different regions, to mention some. The efficiency of the GLS estimation over 

the Ordinary Least Squares (OLS) estimation of SURE models increases when the 

correlations between the error terms from the different equations included in the system also 

increase. However, in situations when the system contains the same regressors in each 

equation, the GLS estimation of SURE models collapses to the OLS estimation of SURE 

models which in turn is equivalent to the OLS estimation of individual equations. In this case 

there will not be any gain of efficiency from applying the GLS estimation even when the 

cross-equation errors are highly correlated.  

 

Shukur and Zeebari (2009) conducted a Generalized Least Absolute Deviations (GLAD) 

estimation method for SURE models which is more robust and more efficient than the usual 

GLS estimation method when the distributions of the error terms are not symmetric. The 

authors also showed that the properties of the GLAD estimations will not deteriorate 

compared to the GLS estimations of the SURE models when the distributions of the error 

terms are symmetric. Moreover, they found that even with no correlations between the 

equations, using GLAD estimations for SURE models instead of Least Absolute Deviations 

(LAD) estimations of single equation median regressions will not damage the estimations of 

the parameters. 

 

The most interesting feature of the GLAD estimators is that, contrary to the least-squares 

SURE formulation, if the system contains the same regressors in each equation the GLAD 

estimations do not collapse to the LAD estimations of individual equations. This will be of 

great importance when estimating conventional multivariate regression models with errors of 

the equations contemporaneously correlated to each other.  
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The aim of this paper is to further investigate and prove this issue by analytical results and 

Monte Carlo simulations. Moreover, we conduct an empirical example to illustrate our 

proposed methodology.  

 

The rest of the paper is organized as follows: In Section 2 we describe the methodology we 

used in this paper; Section 3 presents the Monte Carlo simulations and results; In Section 4 

we give description of the data and the model we used in our empirical example with the 

results from this part; Section 5, finally, gives conclusions and a summary of findings. 

 

2. Methodology 

 

Except the ease of mathematical tractability of the properties of conditional mean function 

estimators, one may not prefer the conditional mean function to the conditional median 

function. If the conditional mean function suffices to estimate the regression parameters when 

the error terms are symmetrically distributed, such as with the Gaussian distribution, with 

asymmetrically distributed error terms, other measures of central tendency, like median, could 

be taken as more suitable alternatives to the mean for location behavior of the errors. 

 

With a sample of n observations for the conditional median function of Y given x  in 

regression analysis, it is well known that we want a minimizer ˆ ˆ( , )Yβ β X  that minimizes the 

sum of absolute deviations, 

1
min

p

n

i i
i

y



β

x β
R

.    (2.1) 

 

Despite the huge available literature on univariate median regression there is relatively much 

less work on the multivariate context. Much more work has been done on the least squares 

estimation methods for the conventional multivariate linear regression analysis when there is 

a  system of linear regression equations. In the multivariate context, the problem is not only 

due to the computational difficulties with the LAD method of estimation, but also to the 

definition of multivariate median. 

 

The OLS method of estimating multivariate linear regression deals with each regression 

equation of the system separately, i.e., it gives the OLS estimations of the parameters of 

individual regression equations. However, there is a need of special care when the equations 
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are related to each other, since the OLS method does not take into account the correlations 

between the equations in the multivariate linear regression analysis. A special case is the 

existence of correlations between contemporaneous cross-equation error terms when the 

endogenous variable in each regression equation is only a function of the exogenous variables 

and the error term. Zellner’s introduced SURE model is of such case with a change in the 

structure of the design matrices. 

 

There are some special cases where the GLS estimation of the SURE models collapses to the 

OLS estimation of SURE models, which is in turn equivalent to the OLS estimation of 

individual regression equations (Srivastava & Giles 1987, page17). A widely used case in 

which the GLS estimates of SURE models are equivalent to the OLS estimates of the 

individual regression equations is the possession of the same values of regressors in each 

regression equation. Consequently, the correlations between cross-equation errors are not 

beneficial to the gain of efficiency in GLS estimations. 

 

Consider a general system of M  linear regression equations given by 

i i i i Y X β e ,  1,2, ,i M   (2.2) 

where, iY  is a 1T   vector of the dependent variables, ie  is a 1T   vector of random errors 

with  iE e 0 ,   2var i i Te I , iX  is a iT k  matrix of observations on ik  independent 

variables including a constant term and iβ  is a 1ik   vector of coefficients to be estimated. 

The equations in the system (2.2) can be combined into a  more comprehensive model like 

1 1 1 1

2 2 2 2

M M M M

       
       
        
       
              
       

Y X 0 0 β e

Y 0 X 0 β e

Y 0 0 X β e

.  (2.3) 

 

The above model can be rewritten compactly as  

 Y XΒ e      (2.4) 

where, Y  and e  are of dimension 1TM  , X  is of dimension TM k , and finally Β  is of 

the dimension 1k  , with 
1

M

i

i

k k


 . We also suppose that e  has a continuous finite mixture 
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distribution with  E e 0  and   TE   ee Σ I , where ij M M



   Σ   is positive definite 

and   is the Kronecker product. 

 

The following transformation is conducted due for the GLS estimation of the SURE models: 

* 1 2( )T
 Y Σ I Y  

* 1 2( )T
 X Σ I X  

* 1 2( )T
 e Σ I e , 

* * * Y X β e      (2.5) 

 * 1 2 1 2var ( ) ( ) ( )T T T TM
     e Σ I Σ I Σ I I .  

 

The GLS estimation of a SURE model is the OLS estimation of the transformed SURE 

model. Usually an estimation, S , of the unknown covariance matrix Σ is used in (2.5). 

 

In our method, instead of using the OLS method conducted on the transformed model, which 

gives us Aitken’s GLS estimates, we use the median regression and get the GLAD estimates. 

In the OLS method, the 2-norm (squared Euclidian distance) is used to minimize the distance 

between the observations and estimations, which after transformation is transformed to 

Mahalanobis distance, whereas in our method, the 1-norm (taxicab or city-block) distance is 

used and after the transformation, the distance is transformed to a new form of distance 

underlies the GLAD method. This enables us, while estimating, to take into account the 

information embedded in the correlations between the cross-equation errors. 

 

Shukur and Zeebari (2009) showed that, due to the structure of the SURE models, the GLS-

OLS association in some aspects is reflected in the GLAD-LAD association, unless the case 

when each equation has the same regressors. For instance, they showed that with no 

correlations between the equations, using GLAD estimation method instead of LAD 

estimations does not damage the estimations of the parameters, hence the harmless of GLAD 

method even in the lack of correlations between the equations. 

 

Another fact is that the OLS estimation of SURE models results in OLS estimations of 

individual equations. Shukur and Zeebari (2009) showed that the same argument holds when 
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applying LAD method on SURE model, i.e., it is the same as applying the LAD method on 

individual equations. This means that applying OLS or LAD method on SURE models 

abandons the information imbedded in the correlation matrix of cross-equation errors.  

 

The minimization problem (2.1) for the GLAD estimation method becomes as follows,  

* *

1
min

k

TM

i i
i

y



β

x β
R

,    (2.6) 

which can be simplified as  

 
1 2

1 2 1 1 1( , , , )
min

k k kM
M

M T M
im

mj mj m
i j m

y
     

 
β β β

x β
R R R

, (2.7) 

 where 
im  is the 

thim  element of 
1/ 2

Σ , and both of mjy  and mjx  are respectively the 
thj  

observation on the dependent variable and independent  variables of the 
thm equation,  for 

, 1, ,i m M . With the values of the explanatory variables identical in all equations, the 

objective function of (2.7) can be further simplified as 

 
1 1 1 1 1 1, 1,

( )
im imM T M M T M M

im ii
mj mj m ij j i mj j mii ii

i j m i j m m i m m i

y y y
 

 
         

           x β x β x β . 

      (2.8) 

Then, the minimizer ˆ
kβ  of the k

th
 equation in (2.8) will be as follows, 

ˆ ˆ ˆ( , )k k ku β β X γ ,    (2.9) 

where 

1

kmM

k mkk
m

u y




 
    

(2.10) 

and 

1,

ˆˆ
kmM

k mkk
m m k



 

 γ β .    (2.11) 

 

The formula (2.9) shows that generally the LAD estimation of the k
th

 individual regression 

equation ˆ( , )k kYβ β X  is different from the GLAD estimation of that equation ˆ
kβ . For 

calculating the LAD estimation of the k
th

 individual regression equation only the dependent 

variable of that equation is involved, whereas the GLAD estimation of the k
th

 equation is a 
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function of other equations’ dependent variables and a linear function of the GLAD 

estimations of other equations. A rare special case in which the two estimates could be equal 

is when ˆk k ku Y X  γ , for 1, ,k M , or when there is no correlation between cross-

equation errors. In Section 4, we show the inequality of GLAD and LAD estimation of SURE 

models through an example. 

 

Here, some questions may arise. Does the GLAD method of estimation result in any gain of 

efficiency when the values of regressors of all equations are the same? Is the GLAD method 

preferable to the OLS method even if the cross-equation errors have a symmetric distribution, 

like a multivariate normal? In the next section we perform a Monte Carlo simulation to 

answer those questions. 

 

3. Monte Carlo experiment 

 

In our Monte Carlo simulation, we change some factors that intuitively may change the 

efficiency of the estimators. These factors are: the number of equations ( M ), the sample size 

(T), the skewness of intra-equation errors, the correlations between cross-equation errors and 

the number of regressors (k). Fairly medium-sized systems with five equations and the 

smallest possible systems (with 2 equations) are included in our simulation (see Table 3.1). 

Samples of size 30, 100 and 1000 observations that cover small, modest and relatively large 

samples are generated for each combination of number of equations, number of regressors, 

skewness level and correlation level. 

 

Different levels of correlations between the equations have been imposed. Without loss of 

generality but just for simplicity, we suppose the same level of correlation between all pairs of 

equations. When generating the data, we also impose the same level of skewness of the errors 

for each equation. A proper choice of degrees of freedom, parameter of skewness and 

parameter of correlation of the multivariate skew t distributions enables us to generate data 

sets with the desired distributional properties. First, we generate the design matrix for each 

equation as shown in (3.1). Next, with the fixed design matrices in each of the 2000 

replications of the experiment, we generate a set of errors distributed with a proper 

multivariate skew t distribution with the desired properties. The data for the dependent 

variable of each equation is computed by the formula (3.2). 
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The relative efficiency of the GLAD estimator to the efficiency of GLS estimator, which is in 

turn reduced to OLS estimator, is computed through the generalized sample variance, total 

sample variance and the MSE of the estimators (see Table 3.3 to Table 3.4).  

 

The design matrix is generated as follows: 

*
T

T k

 
 

X 1 X ,    (3.1) 

where *
X  is a ( 1)T k   matrix, whose rows, 

*
jx , are vectors with the multivariate normal 

distribution  1 1,k kN  μ I , and 1,2, ,j T . For simplicity, we let  1(1, ,1) k μ 1 , with 

3,6k  . Also, we let 

 1ij j i ijy  x β ,    (3.2) 

where the  constant vector (1, ,1)i k β 1 , and ijy  and ij  are the 
thj  elements of the 

vectors iε  and iY , respectively.  From (3.2), we can say that 

( ) ( ) ( )i i i i   Y X β ε ,    (3.3) 

if we define  

( ) ( )i i i β β ε ,    (3.4) 

where, ( )i Y  is the value of iY  corresponding to the  th
 quantile of the error term iε , for 

0 1  , and iε ’s are together distributed with multivariate skew t distribution, for 

1,2, ,i M .  

Table 3.1 Values of factors that vary in different models 

Factor Symbol Value 

No. of Equations in the Model M 2, 5 

Sample Size T 30, 100, 1000 

Level of the Correlations ρ Low (0), Medium (0. 5), High (0.9) 

Level of Skewness γ Low (0), Medium (0.75), High (1.5 ) 

No. of Explanatory Variables (with intercept) k 3, 6 
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Let the two independent variables  , ,MSNZ 0 Ω α  and 2
( )vV   have multivariate skew 

normal and chi-square distributions, respectively. The vector of contemporaneous cross-

equation errors, defined as /V v ε Z ξ , has as a multivariate skew t distribution 

 , , ,MSt vε ξ Ω α . The pair of parameters Ω  and α  of the given multivariate skew t 

distribution can be expressed through another pair of parameters ψ  and λ  (see Appendix). 

 

In Table 3.2, with 5 degrees of freedom, 5v  , and Mξ 1  a vector of ones, we give the 

values of the parameters ψ  and λ  to obtain the desired skewness level of intra-equation 

errors and correlation level of cross-equation errors. Note that as we said before just for 

simplicity we suppose the same skewness parameter   and the same correlation parameter   

  for each pair of the components, as long as 
1( 1) 1M     .  

 

   

Table 3.2: Parameters of skew t distribution 
Correlation (ρ)   

0 0.5 0.9 Mean Median 

Skewness (γ) 

0 
λ 0 0 0 

1 1 

ψ 0 0.5 0.9 

0.75 
λ 0.6812335

7 

0.68123357 0.6812336 
1.53430 1.46394 

ψ -

0.2133002

4 

0.39334988 0.8786699

8 

1.5 
λ 1.5080071 1.5080071 1.5080071 

1.79092 1.66100 

ψ -

1.0452159 

-

0.02260794

2 

0.7954784

1 

Maximum magnitude of possible  λ 
M=2 1.4750284 2.5548241 6.4294996 

 

M=5 0.7375141

9 

1.8065334 5.0020646 

Maximum magnitude of attainable 

Skewness γ 

M=2 1.4764728 2.0081796 2.4400950 

M=5 0.8099441

0 

1.6889051 2.3746932 

 

From Table 3.2, we see that for 0   and 1.5   the correlation matrix will not be positive 

definite. The problem arises from the fact that the unrestricted skewness parameter   exceeds 

the upper bound of the allowable skewness parameter as defined in Appendix (A.19). To 

solve this problem for 0  , we can generate components of the multivariate skew t 

distribution independently of each other through univariate skew t distributions with the 

desired skewness parameter. 
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Table 3.3: Relative efficiency of the GLS estimation to the GLAD estimation of SURE Model parameters with 2 Equations 

2
 R

eg
re

ss
o

rs
 

S
am

p
le

 S
iz

e 
Ratio 

Correlation 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

30 

MSE 0.02060 0.01422 0.01221 0.01460 0.00954 0.00742 0.01043 0.00668 0.00629 

Determinant 7.1E-10 2.6E-10 2.2E-10 8.4E-10 3.4E-10 1.7E-10 2.2E-09 4.5E-10 4.9E-10 

Trace 0.0304 0.0297 0.0294 0.0241 0.0232 0.0174 0.0161 0.0147 0.0171 

100 

MSE 0.00412 0.00217 0.00161 0.00280 0.00129 0.00105 0.00205 0.00100 0.00082 

Determinant 1.8E-11 1.7E-11 8.1E-12 4.9E-11 9.9E-12 1.7E-11 1.8E-10 7.8E-11 9.8E-11 

Trace 0.0149 0.0164 0.0132 0.0143 0.0102 0.0101 0.0095 0.0088 0.0091 

1000 

MSE 0.00035 0.00016 0.00012 0.00021 0.00010 0.00008 0.00016 0.00007 0.00006 

Determinant 3.5E-12 1.5E-12 1.1E-12 4.0E-12 1.6E-12 1.6E-12 4.3E-11 1.7E-11 1.8E-11 

Trace 0.0114 0.0102 0.0080 0.0087 0.0070 0.0056 0.0063 0.0057 0.0047 

5
 R

eg
re

ss
o

rs
 

S
am

p
le

 S
iz

e 

Ratio 

Correlation 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

30 

MSE 0.00881 0.00671 0.00714 0.00698 0.00470 0.00401 0.00467 0.00441 0.00404 

Determinant 8.9E-25 5.6E-25 2.4E-24 3.1E-24 2.6E-25 7.1E-25 1.6E-23 1.2E-22 2.1E-22 

Trace 0.0106 0.0097 0.0128 0.0088 0.0071 0.0064 0.0056 0.0073 0.0079 

100 

MSE 0.00507 0.00348 0.00284 0.00371 0.00242 0.00186 0.00260 0.00177 0.00149 

Determinant 1.9E-25 1.9E-25 3.1E-25 4.2E-25 5.6E-25 7.7E-25 1.2E-23 1.6E-23 3.5E-22 

Trace 0.0087 0.0097 0.0101 0.0069 0.0079 0.0075 0.0045 0.0053 0.0064 

1000 

MSE 0.00066 0.00030 0.00023 0.00043 0.00020 0.00015 0.00034 0.00015 0.00011 

Determinant 9.2E-27 1.1E-26 3.0E-26 2.4E-26 3.6E-26 1.5E-25 1.6E-23 1.1E-23 6.4E-23 

Trace 0.0064 0.0070 0.0077 0.0050 0.0055 0.0059 0.0035 0.0039 0.0044 
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Table 3.4: Relative efficiency of the GLS estimation to the GLAD estimation of SURE Model parameters with 5 Equations 

2
 R

eg
re

ss
o

rs
 

S
am

p
le

 S
iz

e 
Ratio 

Correlation 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

30 

MSE 0.01873 0.01406 0.00373 0.00811 0.00497 0.00414 0.00500 0.00297 0.00268 

Determinant 2.6E-24 2.6E-25 4.1E-27 1.3E-25 2.5E-26 3.8E-26 2.3E-23 2.1E-25 2.4E-25 

Trace 0.0260 0.0270 0.0045 0.0141 0.0131 0.0115 0.0088 0.0078 0.0084 

100 

MSE 0.00431 0.00214 0.00173 0.00136 0.00063 0.00049 0.00079 0.00038 0.00031 

Determinant 1.7E-27 1.2E-28 2.8E-28 6.0E-28 4.0E-29 9.7E-29 5.1E-26 4.3E-27 3.7E-27 

Trace 0.0165 0.0136 0.0130 0.0076 0.0061 0.0045 0.0040 0.0036 0.0034 

1000 

MSE 0.00035 0.00016 0.00012 0.00010 0.00004 0.00004 0.00006 0.00003 0.00003 

Determinant 8.3E-30 1.2E-30 8.4E-31 7.1E-30 3.0E-31 6.4E-31 1.2E-25 6.6E-27 1.0E-26 

Trace 0.0108 0.0093 0.0077 0.0050 0.0037 0.0025 0.0028 0.0025 0.0021 

5
 R

eg
re

ss
o

rs
 

S
am

p
le

 S
iz

e 

Ratio 

Correlation 

Low Medium High 

Skewness Skewness Skewness 

Low Medium High Low Medium High Low Medium High 

30 

MSE 0.00848 0.00782 0.00736 0.00271 0.00347 0.00262 0.00216 0.00199 0.00182 

Determinant 1.3E-61 2.2E-61 3.2E-60 2.0E-63 1.5E-60 1.1E-60 3.1E-59 2.7E-58 1.3E-56 

Trace 0.0100 0.0116 0.0124 0.0032 0.0063 0.0047 0.0027 0.0034 0.0036 

100 

MSE 0.00494 0.00337 0.00287 0.00197 0.00118 0.00098 0.00110 0.00076 0.00060 

Determinant 9.8E-64 1.5E-63 3.5E-62 1.5E-62 1.4E-62 2.8E-60 2.4E-56 3.3E-56 7.6E-55 

Trace 0.0080 0.0087 0.0100 0.0040 0.0043 0.0048 0.0020 0.0024 0.0027 

1000 

MSE 0.00065 0.00030 0.00023 0.00021 0.00009 0.00007 0.00013 0.00006 0.00005 

Determinant 2.6E-66 4.1E-66 3.1E-64 4.2E-64 2.0E-64 1.3E-62 3.9E-53 4.4E-53 4.4E-51 

Trace 0.0062 0.0068 0.0078 0.0031 0.0031 0.0031 0.0015 0.0016 0.0020 
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From Table 3.3 and Table 3.4 we can see that the relative efficiency of GLAD estimations to 

OLS estimations, which are in turn equivalent to GLS estimations, increases with any 

increase in the level of skewness of intra-equation errors and/or the level of correlation 

between the cross-equation errors. The same argument holds with an increase in the sample 

size. It may not look reasonable to compare models of different sizes; like in our simulation, 

models with 2 equations and 5 equations or equations with 2 regressors and 5 regressors, for 

relative efficiency of GLAD method to the OLS method. For instance, the relative efficiency 

based on the generalized variance is a power of the dimension of the covariance matrix 

(number of equations and number of regressors). Nevertheless, under the same circumstances 

(level of skewness, level of correlation and sample size), the relative efficiency of GLAD 

method to the OLS method increases as the dimensions of the model become larger.  

 

4. Empirical example  

 

To illustrate our methodology, we take the example 7.25 from Johnson and Wichern (1998) 

page 454. The dependents variables and regressors are the followings. 

1Y  : Total TCAD plasma level (TOT) 

2Y  : Amount of amitriptyline present in TCAD plasma level (AMI) 

1X  : Gender, 1=female, 0=male (GEN) 

2X  : Amount of antidepressants taken at time of overdose (AMT) 

3X  : PR wave measurement (PR) 

4X  : Diastolic blood pressure (DIAP) 

5X  : QRS wave measurement (QRS) 

 

First, we model the example as a conventional multivariate linear regression model, like, 

1 2 1 2 1 2[ ] [ ] [ ] Y Y X β β ε ε    (4.1) 

and find the OLS estimates of the parameters (see Table 4.1). 

 

Table 4.1: OLS Estimates 
Dependent/ Independent Variable Intercept GEN AMT PR DIAP QRS 

TOT 

(1
st
 Equation) 

Coefficient -2879.478 675.651 0.285 10.272 7.251 7.598 

(Standard Error) (893.260) (162.056) (0.061) (4.255) (3.225) (3.849) 

AMI 

(2
nd

 Equation) 

Coefficient -2728.708 763.030 0.306 8.896 7.206 4.987 

(Standard Error) (928.847) (168.512) (0.063) (4.424) (3.354) (4.002) 
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When further investigating the data, we realize that the two dependent variables of the model 

have a very high correlation coefficient about 0.976 and very high skewness indices about 

2.416 and 2.478. These two reasons are enough to strongly recommend someone to express 

the example in the form of Zellner’s SURE model, like, 

1 1 1

2 2 2

0

0

Y X

Y X

 

 

      
       
      

    (4.2) 

and calculate the GLAD estimations of the parameters (see Table 4.2). 

 

 Table 4.2: GLAD Estimates 

Dependent/ Independent Variable Intercept GEN AMT PR DIAP QRS 

TOT 

(1
st
 Equation) 

Coefficient -3356.086 811.902 0.261 11.789 6.409 9.854 

(Standard Error) (779.796) (141.471) (0.053) (3.714) (2.815) (3.360) 

AMI 

(2
nd

 Equation) 

Coefficient -3257.014 1009.126 0.298 10.581 6.117 5.930 

(Standard Error) (810.861) (147.107) (0.055) (3.862) (2.928) (3.494) 

 

 

In (2.9), we showed that generally the GLAD estimations are different from the LAD 

estimations. Here, we are going to show it numerically through this example. The square root 

of the inverse of the covariance matrix,  
1 2

S , is the following. 

1 2 0.005879 0.00316

0.00316 0.005587

  
  

 
S  

 

The estimations of (2.11) are calculated as below. 

12

1 211
1753.0713, -543.15681, -0.16066845, -5.6953225, -3.2925598, -3.1918801ˆˆ ( )




 γ β

12

2 122
1900.8699, -459.85687, -0.14801917, -6.6773844, -3.6302638, -5.5811185ˆˆ ( )




 γ β  

1 -1603.0153, 268.74486, 0.10066724, 6.0939536, 3.1168634, 6.6618804ˆ( , ) (  )u X β
 

2 -1356.1444, 549.26897, 0.15048521, 3.9039008, 2.4869515, 0.34904501ˆ( , ) (  )u X β
 

 

Then, the functional relationship (2.9) can be easily verified. However, for the purpose of 

comparison, we present the LAD estimations of the individual regression equations (see Table 

4.3). Another noticeable issue is the relative efficiency of the GLAD estimations to each of 

the LAD and the OLS estimations. 
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Table 4.3: LAD Estimates 

Dependent/ Independent Variable Intercept GEN AMT PR DIAP QRS 

TOT 

(1
st
 Equation) 

Coefficient -3044.362 569.990 0.285 8.174 7.153 13.783 

(Standard Error) (1329.592) (241.215) (0.091) (6.333) (4.800) (5.729) 

AMI 

(2
nd

 Equation) 

Coefficient -3879.222 904.787 0.337 12.925 10.421 5.359 

(Standard Error) (1222.319) (221.754) (0.083) (5.822) (4.413) (5.267) 

 

 

Conclusions 

 

Contrary to the collapse of GLS estimations of SURE models to the OLS estimations of the 

individual equations with identical regressors, the GLAD estimations are not identical to the 

LAD estimations of the individual equations. Therefore, the problem of dealing with 

conventional multivariate linear regression models in which the equations, in some extent, are 

correlated, and when the OLS estimation of the parameters is aimed for, can be solved 

through converting the model into a SURE model and finding the GLAD estimations instead. 

The reason to do so is due to the gain of efficiency through the information embedded in the 

correlations between the equations. One can get even further efficiency at the presence of a 

slight skewness in the error terms.  
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Appendix 

We mention a definition of multivariate skew t distributions (Azzalini and Capitanio 2003) 

which is derived from the multivariate skew normal distribution. Then, we discuss how we 

control some properties of the distribution through the proper selection of its parameters. 

  

Azzalini and Dalla Valle (1966) introduced two methods of generating data for multivariate 

skew normal distributions; the conditioning method through a pair of parameters ( , )α Ω , and 

the transformation method through another pair of parameters ( , )λ Ψ . Moreover, they showed 

that the pair ( , )α Ω  is a function of the pair ( , )λ Ψ and that both pairs (methods) result in the 

same class of densities. We discuss how to control the process of generating the data through 

the transformation method. Suppose that  

1

1
~ ,

o
m

V
N 

    
    

    

0
0

0 ΨV
,    (A.1) 

where Ψ  is the full rank correlation matrix and m  is the dimension of the vector V . The 

vector of skewness parameter 1( , , ) m
m R   λ  is define through 

 2 2
1diag 1- , , 1 m  Δ  , and 

1( , , )m  δ , 

where 

21i i i     ,    (A.2) 

for 1, ,i m . Then, the new random vector .oV Z δ ΔV  has the multivariate skew 

normal distribution, denoted as  ~ , ,mSNZ 0 Ω α , with the probability density function 

     2 ;mf   Z z z Ω α z , , mRz α ,   (A.3) 

where  

1 1

11

 






Δ Ψ λ
α

λ Ψ λ

,   
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( ) Ω Δ Ψ λλ Δ .    (A.4) 

Consequently, from the formulae (A.4) we have 

2 2(1 )(1 )ij i j ij i j         , for , 1, ,i j m .  (A.5) 

 

A.1. Multivariate Skew t Distribution 

 

Let  , ,mSNZ 0 Ω α  be independent of 2
( )vV  . Then the vector /V v Y Z ξ  has a 

multivariate skew t distribution, denoted as  , , ,mSt vY ξ Ω α , with the pdf 

    1 1
2 ; ( ) ;

( ) ( )
m

v m
f t v T v m

v

 
   

    
Y y y α y ξ

y ξ Ω y ξ
,  (A.6) 

where   ;mt vy  is the multivariate t probability density function  

 

( ) 2
1

1 22

( )
( ) ( )2; 1

( )( )
2

v m

m
m

v m

t v
v v

v

 



   

   
 

y ξ Ω y ξ
y

Ω

 (A.7) 

and 1(  .  ; )T v m  denotes the univariate t distribution with v m  degrees of freedom.  

 

The moments of Y  are mathematically tractable since Z  and V  are assumed to be 

independent of each other. For the sake of simplicity in notation, let’s define 

  1 2

1

2 2
2

2

v

v
E V

v


 



 
 
 

 
 

 
 

.   (A.8) 

Then,  

 

1 2 1
( 2) ( )

2 2.
1 ( )

2

v
v

E
v








   

 

α Ω
Y ξ ξ δ

α Ωα
,  1v   (A.9) 

and  
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  2var
2

v

v
   


Y Σ Ω δδ ,  2v  .  (A.10) 

From (A.10), we can see that 

2

2
ij ij i j

v

v
     


  , 2v  .   (A.11) 

 

A.2. Parameter Selection 

 

Some properties of multivariate skew t distribution, like the covariance matrix and the 

marginal skewness indices of the components, in special cases can be controlled if we choose 

proper parameters. If we denote the correlation matrix of Y  by ij   ρ , from (A.11) and 

by substituting ij  with ij  as in (A.5), we get  

 

2 2 2

2 2 2 2

( ) 1 1
2 2

2 2

i j ij i j

ij

i j

v v

v v

v v

v v

     



   

   
 

 
 

  , 2v  . (A.12) 

 

The above formula means that we can have control over the correlation matrix ρ , through 

suitable parameters Ψ  and λ  (since λ  is a function of δ , as in A.2). But we should note that 

some combinations of Ψ  and λ  might result in negative definite matrices of ρ . For 

simplicity, we try to get the same correlation coefficient   between all mutual components of 

Y . Then, the correlation matrix ρ  is always positive definite as long as 
1(1 ) 1m    , 

where 1m   is the number of rows (or columns). To get the above correlation matrix we 

choose the same correlation coefficient   between all mutual components of Z  and the same 

skewness parameter   for all components of Z  defined in (A.1) and (A.2). 

 

The component-wise skewness of multivariate skew t distribution as given in Azzalini and 

Capitanio (2003) is as follows. 

3 22
2 2 2 2(3 ) 3

2
3 2 2

v v v

v v v


     

   
          

, 3v  . (A.14) 
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Substituting   by its function of  , as in (A.2), gives us a relation between the skewness 

parameter   and the skewness coefficient  , as shown below. 

 

 

2 2

3 2
2 2

2
3 [2 ( 2)( 3) ( 5)]

3

[ ( 2)]

v
v v v v v

v

v v v


 



 


    



  

,  3v  . (A.15) 

 

From (A.15), it appears that we have control over the coefficient of skewness through the 

parameter of skewness. To get a specific coefficient of skewness  , we should look for a 

suitable value of  . For this purpose, we try to define   as a function of  . If we square both 

sides of the relation in (A.15), it could be expressed in terms of an even function of   in the 

form of a sextic equation (polynomial of degree six), which could be reduced into a cubic 

equation of 
2 , of the form 

2 3 2 2 2( ) ( ) ( ) 0a b c d      . Also, it is well known that the 

discriminant of the cubic function is 
3 2 2 3 2 24 4 18 27b d b c ac abcd a d       .  

 

For 3v  , one can verify numerically or 

graphically in the ( v ,  , ) coordinate 

system that the discriminant is always 

negative. At least for 5v  , it can be 

verified easily (see Figure A.1). This 

means that there is only one real root, 

say r , for the cubic equation above. 

Consequently, there is a one-to-one 

correspondence between 
2  and 

2 . By 

glance at (A.15), one can easily notice 

that the sings of   and   are always the 

same, hence, 

sgn( ) r  .    (A.16) 

where r is the real root of the cubic polynomial of 
2 . 

 

Figur A.1: Discriminant for different Skewness Indeces 

with v=5. 
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For instance, taking the same level of skewness for all components of a random vector 

distributed as multivariate skew t distribution with degrees of freedom 5v   to get skewness 

coefficients 0  , 0.75   and 1.5   at different times, we choose the skewness 

parameter mλ 0 , ( 0.68123357 ) mλ 1  and (1  .5080071) mλ 1 , respectively. 

 

The chosen skewness parameter obtained from (A.16) then is used with the dependence 

parameter to get a specific correlation matrix, as given in (A.12). Now, Let us specify the 

correlation matrix ψ  for that purpose. From (A.12) we can get 

2 2 2
2 2

2 2

( 2) ( 2) ( 2)
1 1 1

1 1

ij i j i j

ij

i j

v v v

v v v

  
    


 

   
     

 


 

. (A.17) 

Substituting each i  by i , as in (A.1), and assuming the same skewness parameter   

corresponding to each component and the same coefficient of correlation   between mutual 

components, we can simplify (A.17) for each component   to the following relation 

2
2( 2)

(1 )[1 ]
v

v


   


    .   (A.18) 

 

From (A.3.10), it appears that the skewness parameter has effect on the choice of  . Some 

combinations of   and   may give us a correlation matrix Ψ  which is not positive definite. 

Since 
1

1
1m

  


 in order to have a positive definite Ψ , and since 
2 3




  for 3v  , 

using (A.18), the bounds of   could be obtained from the following inequality, 

2

2

[ ( 1) 1]

( 1)(1 )[ ( 2)]

v m

m v v




 

 


   
, 3v    (A.19) 

where m  is the dimension of the correlation matrix. 

We can find the vector of the medians of the component of  , , ,mSt vY 0 Ω α  by looking at 

each component as a univariate skew t distribution and finding numerically the root of the 

equation 
1

( ) 0
2

x

Yf y dy



  , for ( )Yf y  defined in (A.6) with 1m  . 


