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Abstract 
 

 

In innovation analysis the logit model used to be applied on available data when the 

dependent variables are dichotomous. Since most of the economic variables are correlated 

between each other practitioners often meet the problem of multicollinearity. This paper 

introduces a shrinkage estimator for the logit model which is a generalization of the estimator 

proposed by Liu (1993) for the linear regression. This new estimation method is suggested 

since the mean squared error (MSE) of the commonly used maximum likelihood (ML) 

method becomes inflated when the explanatory variables of the regression model are highly 

correlated. Using MSE, the optimal value of the shrinkage parameter is derived and some 

methods of estimating it are proposed. It is shown by means of Monte Carlo simulations that 

the estimated MSE and mean absolute error (MAE) are lower for the proposed Liu estimator 

than those of the ML in the presence of multicollinearity. Finally the benefit of the Liu 

estimator is shown in an empirical application where different economic factors are used to 

explain the probability that municipalities have net increase of inhabitants.   
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1. Introduction 

Consider the situation when the dependent variable is  iBe  , where
 

 

 

exp '

1 exp '

i

i

i

x

x





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where ix  is the ith row of X  which is an  1n p   data matrix with p explanatory variables, 

and   is a  1 1p    vector of coefficients. In this situation the parameters of the model 

should be estimated using the maximum likelihood (ML) method by applying the following 

iterative weighted least square (IWLS) algorithm: 

 

  zWX'XWX'βML
ˆˆˆˆ 1

 ,    (1.1) 

 

where ẑ  is a vector where the ith element equals  
 

ˆ
ˆˆ log

ˆ ˆ1

i i
i i

i i
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
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
 


 and Ŵ is a 

diagonal matrix with  ith diagonal element equals   ˆ ˆ1i i  . This estimator approximately 

minimizes the weighted sum of squared error (WSSE). However, several sources of instability 

for the ML estimator exists. One may have the problem of separation where a linear 

combination of the regressors is perfectly predictive of the dependent variable. This problem 

discussed by Albert and Anderson (1984) lead to non-existence of the ML estimator. The 

authors also showed that in case of almost perfect separation the ML estimates are instable. 

Another source of instability which is the focus of this paper arises when the regressors are 

collinear. In that situation the weighted matrix of cross-products, 'X WX , is ill-conditioned 

which leads to instability and high variance of the ML estimator.  

 

Shrinkage estimator is a commonly applied solution to the general problem caused by 

multicollinearity. For the linear model a lot of research has been conducted and Hoerl and 

Kennard (1970) suggested the well-know ridge regression estimator. This estimator has then 

been extended to the logit model by Schaeffer et al. (1984) and further developments were 

made by Månsson and Shukur (2011) where some different new ridge parameters for logit 

ridge regression were suggested. However, the disadvantage of this method is that the 

estimated parameters are complicated non-linear functions of the ridge parameter k which can 

take on values between zero and infinity. Therefore, Liu (1993) suggested another estimator 

where the parameters obtained from this estimator has the benefit of being a linear function of 

the shrinkage parameter d. Due to this advantage over the ridge regression, the Liu estimator 
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has been used by various researchers. Among them Akdeneiz and Kaciranlar (1995), 

Kaciranlar (2003) and Alheety and Kibria (2009) and very recently Kibria (2011) are notable. 

This estimator can also be extended to logit models. Now, by noting that the IWLS algorithm 

in equation (1.1) approximately minimizes the weighted sum of square error (WSSE), then 

one can apply the following estimator 

   
-1

ˆ ˆ ˆˆ ˆ' 'd ML MLX WX I X WX dI Z      .   (1.2) 

The purpose of this paper is to apply the Liu estimator in order to solve the problems caused 

by multicollinearity. The Liu estimator is assumed to perform better than ML when the 

regressors are highly inter-correlated since ML̂  is, on average, too long in that situation and 

ˆ
d  shrinks the length of the vector ML̂ . This paper will also suggest some methods of 

estimating the shrinkage parameter d. The performance of ML and the Liu estimator will be 

studied using Monte Carlo simulations where factors such as the number of regressors, the 

sample size and the degree of correlation are varied. In order to judge the performance of the 

estimator the mean squared error (MSE) and mean absolute error (MAE) are used. The result 

shows that the Liu estimator always outperforms ML in the presence of multicollinearity. The 

benefits of the Liu estimator will also be shown in an empirical application where different 

economic factors are used to explain the probability that municipalities have a net increase of 

inhabitants.   

This paper is organized as follows: In Section 2, the statistical methodology is described. In 

section 3, the design of the experiment and a result discussion are provided. Then in section 4 

an empirical application is provided. Finally, in Section 5, some concluding remarks are 

provided.  

 

2. Statistical methodology  

2. 1. The Statistical properties of the ML and Liu estimators 

 

The Liu estimator for the logit model is a biased shrinkage estimator and a direct 

generalization of the one proposed for linear regression model by Liu (1993). The shrinkage 

parameter d may take on values between zero and one and when d equals to one then 
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ˆ ˆ
d ML  . When d is less than one we have ˆ ˆ

d ML  . Since ML̂  is, on average, too long 

in the presence of multicollinearity, ˆ
d  is assumed to perform better than ML̂  in such 

situation. This may also be shown by studying the MSE properties of the two estimators. The 

MSE of the ML estimator equals: 

         
12

1

1ˆ ˆ ˆ' '
J

ML ML ML ML

jj

MSE E L E tr X WX    






       (2.1) 

where  j  
is the jth eigenvalue of the 'X WX matrix. When looking at the MSE it can easily be 

seen that it becomes inflated in the presence of multicollinearity since some eigenvalues will 

be small when 'X WX  is ill-conditioned. On the other hand, the MSE of the Liu estimator is: 
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 

     
 


   

 
 

  (2.2) 

where 2

j  is defined as the jth element of   and   is the eigenvector defined such that 

' 'X WX     where   equals  jdiag  . For the Liu estimator one wants to find a value of 

d so that the decrease of the variance (  1 d ) is greater than the increase caused by adding the 

squared bias (  2 d ). In order to show that such a value of d less than one exists so that 

   ˆ ˆ
d MLMSE MSE 

 
we start taking the first derivative of equation (2.2) with respect to d: 

 

 
 

 
 

2

2 2
1 1

' 2 2 1
1 1

J J
j j

j j
j j j

d
g d d

 

   


  

 
   

and then by inserting the value one in equation (2.3) we get: 

 
 1

1
' 2

1

J

j j j

g d
 





’    

(2.4)
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which is greater than zero since

 

0j  . Hence, there exists a value of d between zero and one 

so that    d MLMSE MSE  . Furthermore, the optimal value of any individual parameter 

jd  can be found by setting equation (2.4) to zero and solve for 
jd . Then it may be shown that  

2

2

1

1

j

j

j

j

d










,    (2.5) 

corresponds to the optimal value of the shrinkage parameter. Hence, the optimal value of 
jd
 

is negative when 2

j  is less than one and positive when it is greater than one. However, just as 

in Liu (1993) the shrinkage parameter will be limited to values between zero and one. 

 

2.2 Estimating the shrinkage parameter 

 

In order to estimate the optimal value of d in equation (2.5) several methods will be proposed. 

The idea behind these proposed estimators are obtained from the work of Hoerl and Kennard 

(1970), Kibria (2003) and Khalaf and Shukur (2005) where several different methods of 

estimating the shrinkage parameter for linear ridge regression have been proposed. As in 

those papers, the shrinkage parameter, jd , will be estimated by a single value d̂ . The first 

estimator which is based on the work by Hoerl and Kennard (1970) is the following: 

2
max

2
max

max

ˆ 1
1 max 0,

1
ˆ

ˆ

D





 
 

 
 

 
 

, 

where we define 
2

max̂
 
and 

max̂   to be the maximum element of 2ˆ
j  and ˆ'X WX  respectively. 

Replacing the values of the unknown parameters with the maximum value of the unbiased 

estimators is an idea taken from Hoerl and Kennard (1970). However, for the Liu estimator 

another maximum operator is also used that will ensure that the estimated value of the 

shrinkage parameter is not negative. Furthermore, the following estimators, which are based 

on the ideas in Kibria (2003), are proposed: 

2

2

ˆ 1
2 max 0,

1
ˆ

ˆ

j

j

j

D median





  
  

  
  

    
  

, 

2

2

ˆ 11
3 max 0,

1
ˆ

ˆ

J
j

j
j

j

D
p






 
 

 
 

  
 

 . 
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Using the average value and the median is very common when estimating the shrinkage 

parameter for the ridge regression and the D2 and D3 estimators have direct counterparts in 

equation (13) and (15) of  Kibria (2003). Finally, the following estimators are proposed:

 2

2

ˆ 1
4 max 0,max

1
ˆ

ˆ

j

j

j

D





  
  

  
  

    
  

, 
2

2

ˆ 1
5 max 0,min

1
ˆ

ˆ

j

j

j

D





  
  

  
  

    
  

. 

For these estimators other quantiles than the median is used which was successfully applied 

by Khalaf and Shukur (2005). 

 

3. The Monte Carlo simulation 

 

3. 1 The Design of the Experiment 

The main focus of this paper is to compare the MSE properties of the ML and Liu estimators 

when the regressors are highly intercorrelated. Hence, the core factor varied in the design of 

the experiment is the degree of correlation ( 2 ) between the regressors. Therefore, the 

following formula which enables us to vary the strength of the correlation is used to generate 

the explanatory variables: 

 

 
 1/2

21ij ij ipx z z   
 

ni ,...2,1 , 1,2,...j p   (3.1) 

 

where ijz  pseudo-random numbers from the standard normal distribution. We consider four 

different values of 2  corresponding to 0.75, 0.85, 0.95 and 0.99. The n  observations for the 

dependent variable are obtained from the  iBe   distribution where 

 

 

exp '

1 exp '

i

i

i

x

x








 .                (3.2) 

The parameter values of   are chosen so that ' 1   . We use 50, 75, 100 and 150 degrees of 

freedoms (df=n-p) and models consisting of two and four explanatory variables. The 

experiment is replicated 2000 times by generating new pseudo-random numbers. Then the 

MSE is calculated as follows: 
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   
2000

1

ˆ ˆ'

2000

iMSE

   


 




.                                         (3.3) 

and the MAE as: 

                                             

2000

1

ˆ

2000

iMAE

 







.                                                 (3.4) 

 

3.2 Result Discussion 

 

The simulated MSE and MAE for all of the estimators for different n and ρ are presenetd in 

Tables 1 and 2 for p= 2 and 4 respectively. From the tables, we can see at a glance that the 

degree of correlation inflates the MSE and MAE. This increase is particularly large for ML 

and it is more severe when applying MSE as performance criteria instead of MAE. For the 

Liu estimators, the inflation of the MSE and MAE is less severe than for ML. However, there 

is big difference between the peformance of the Liu estimatos depending on which shrinkage 

parameter is applied. The least robust option among the different proposed methods of 

estimating the shrinkage parameter is the D4. The performance of the D1 to D3 estimators are 

almost equaivalent. However, the most robust option is the D5 estimator. This shrinakge 

parameter has always either the lowest value of  both measures of performance or it is close to 

the estimator that minimizes the MSE and MAE. Moreover, one can see that as the number of 

explanatory variables increases the MSE and MAE increases. This increase is more sever for 

the ML than the Liu estimator and it is also larger if MSE is used to judge the performance of 

the estimator instead of MAE. Finally, when considering all of the results it is clear to see that 

increasing the sample size has a positive effect especially for ML. This is expected since ML̂  

is a consistent estimator. 

 

4. Empirical Application 

 

The different estimation methods will be illustrated using a dataset taken from the Statistics 

Sweden.
1
 A logit regression model is estimated where the dependent variable is defined as 

follows: 

 

                                                 
1
 The homepage is www.scb.se 
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1   if the net population change is positive in municipality i

0 otherwise
iy





= . 

 

This dependent variable is explained by the following regressors, the number of unemployed 

people (x1), the number of build appartments (x2), the amount of bankrupt firms (x3) and the 

population (x4), respectively. We will estimate a logit model for the full sample and for the 

urban regions in Sweden.
2
 The full sample consists of 290 observations and the subsample 

consists of 84 municipalitits. The bivariate correlation (for the full population) between the 

regressors can be found in Table 3: 

 

 

Table 3: Correlation matrix 

 x1 x2 x3 x4 

x1 1    

x2 0.8854 1   

x3 0.9426 0.9430 1  

x4 0.9663 0.9010 0.9367 1 

 

 

From Table 3 one can see that the bivariate correlations are high (all are greater than 0.88) 

and that we therefore might have a sever multicollinearity problem. The logit regression 

model is estimated in R using the IWLS algotirhm
3
 and the Liu estimators is applied with the 

shrinkage parameter D5 since this is the one that minimizes the estimated MSE and MAE. In 

order to estimate the standard errors of the different paramaters bootstrap technique is applied. 

The results can be found in Table 4. We can see that the number of unemployed people and 

bankrupt firms have a negative impact while the other two variables have a positive impact on 

the probability of a municipality to have a net increase of inhabitants. This is expected since a 

higher value of unemployed people and bankrupted firms indicate a poor economic 

                                                 
2
 The urban regions are defined as the municipalitites belonging to the Functional analysis (FA) regions 

Stockholm, Göteborg and Malmö. 
3
 We are using the function glm() in order to estimate the logit model which is part of the standard routines in R. 

However, any software will work fine since the Liu method does not require any changes of the existing routines 

of estimating the logit regression model. The Liu estimator only requires that one is able to extract the result the 

maximum likelihood estimators of the coefficients and the variance-covariance matrix which is defined as 

 
1

ˆ'X WX


.   
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performance. The positive effect of the population variable indicates that more people are 

moving to urban regions. The estimated standard errors is decreased for all variables, but the 

most substantial reduction can be found for x2 (i.e. the number of build appartments). For this 

variable the reduction of the estimated parameter is also substantial. This indicates that the 

multicollinearity problem leads to an estimated value that is lager than it should be. Hence, 

the positive impact of building new appartments is most likely exagerated when applying ML. 

When looking at the t-statstics one can see that these values using Liu method are larger than 

those for the ML which further shows the superiority of the Liu estimator since the p-values 

become lower. Once again it is for the variable x2 the largest increase of the t-statstic can be 

found.  

 

For the subsample compared with the full sample the sign of the variables x1 and x2 are 

changed. The positve impact of increasing the number of unemployed people may be due to 

the fact that many immigrants choose to settle down in the areas in the large cities with high 

unemployement rates. The negative impact of variable x2 may be explanied by the fact that 

not enough appartments are constructed where a lot of the people are choosing to move. 

When looking at the standard errors one can see a much larger reduction of the standard errors 

for the subsample than the full sample. The reduction of the bootstrapped standard errors is 

especially remarkable for variables x1 and x2. The increase of the t-statistics is also larger for 

the subsmaple than the full sample. In this case the increas of x4, may be noticed since this 

variable becomes statistcally significant when the Liu estimator is applied. 

 

Table 4: The results from the logit regression analysis 
 Full sample 

 ML 

 

Liu 

 x1 x2 x3 x4 x1 x2 x3 x4 

̂  -0.1990 3.3276 -0.4574 0.0149 -0.2098 1.1497 -0.3566 0.0150 

 ˆse   
0.1256 1.3760 0.6174 0.0043 0.1060 0.2506 0.4509 0.0037 

ˆt


 
-1.5844 2.4183 -0.7408 3.4651 -1.9792 4.5878 -0.7909 4.0541 

 Large city regions 

 ML Liu 

 x1 x2 x3 x4 x1 x2 x3 x4 

̂  2.2983 -1.2418 -0.0409 0.0184 0.2426 -0.1333 -0.1175 0.0162 

 ˆse   
15.904 31.149 0.9088 0.1078 0.3393 0.6864 0.1801 0.0062 

ˆt


 
0.1445 -0.0399 -0.0450 0.1707 0.7150 -0.1942 -0.6524 2.6129 

 



 

 11 

 

5. Some Concluding Remarks 

 

In this paper a new Liu estimator for the logit model has been proposed. The MSE and MAE 

of this new estimator and the traditional ML method are calculated by using Monte Carlo 

simulations. In the design of the experiment, factors such as the degree of correlation, the 

sample size and the number of explanatory variables are varied. The result from the 

simulation study clearly showed that the MSE and MAE of the ML method become inflated 

in the presence of multicollinearity. This problem is particularly severe when the sample size 

is small and the correlation between two explanatory variables is high. The results from the 

Monte Carlo study also evident that the new Liu estimator is much more robust to increase of  

correlation and it has superior MSE and MAE properties over the ML in all of the evaluated 

situations. The best option to estimate the logit model in the presence of multicollinearity is to 

apply the Liu estimator together with the shrinkage parameter D5. The benefit of this method 

is clearly shown in an empirical application where one can see a substantial decrease of the 

standard errors and an increase of the t-statistics, especially for the subsample. We hope the 

findings of the paper will be useful for the practitioners.  
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Table 1: The simulated MSE and MAE for different n and 2 and p=2 

 

Estimated MSE  Estimated MAE  

 ML D1 D2 D3 D4 D5 ML D1 D2 D3 D4 D5 

2
=0.75             

50 
1.041 0.452 0.341 0.341 0.478 0.301 1.087 0.695 0.629 0.629 0.711 0.605 

75 
0.639 0.327 0.286 0.286 0.338 0.270 0.865 0.612 0.582 0.582 0.618 0.572 

100 
0.442 0.258 0.237 0.237 0.262 0.230 0.725 0.551 0.534 0.534 0.554 0.530 

150 
0.280 0.189 0.181 0.181 0.190 0.179 0.582 0.477 0.470 0.470 0.478 0.469 

200 
0.205 0.150 0.147 0.147 0.150 0.147 0.498 0.428 0.426 0.426 0.429 0.426 

2
=0.85 

            

50 
1.913 0.748 0.575 0.575 0.882 0.443 1.454 0.824 0.735 0.735 0.881 0.669 

75 
1.003 0.420 0.352 0.352 0.453 0.312 1.104 0.685 0.640 0.640 0.706 0.615 

100 
0.810 0.383 0.337 0.337 0.400 0.312 0.978 0.654 0.623 0.623 0.664 0.609 

150 
0.465 0.256 0.240 0.240 0.261 0.233 0.749 0.551 0.539 0.539 0.554 0.535 

200 
0.350 0.212 0.205 0.205 0.213 0.204 0.652 0.509 0.504 0.504 0.510 0.503 

2
=0.95 

            

50 
5.453 1.785 1.433 1.433 2.803 0.815 2.525 1.177 1.075 1.075 1.497 0.787 

75 
3.057 0.980 0.806 0.806 1.352 0.541 1.940 0.928 0.852 0.852 1.085 0.703 

100 
2.530 0.900 0.721 0.721 1.152 0.509 1.753 0.892 0.819 0.819 0.997 0.709 

150 
1.438 0.522 0.456 0.456 0.601 0.379 1.315 0.708 0.672 0.672 0.749 0.628 

200 
1.093 0.407 0.363 0.363 0.443 0.326 1.165 0.669 0.643 0.643 0.691 0.620 

2
=0.99 

            

50 
27.40 9.476 8.969 8.969 18.441 4.505 5.636 2.491 2.573 2.573 3.975 1.476 

75 
15.38 4.934 4.767 4.767 9.245 2.550 4.363 1.863 1.885 1.885 2.815 1.157 

100 
12.14 4.014 3.587 3.587 7.219 1.860 3.875 1.685 1.644 1.644 2.472 1.028 

150 
7.660 2.389 2.097 2.097 4.172 1.098 3.114 1.325 1.275 1.275 1.851 0.853 

200 
5.391 1.620 1.414 1.414 2.616 0.833 2.608 1.109 1.047 1.047 1.454 0.766 
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Table 2: The simulated MSE and MAE for different n and 2 and p=4 

 

Estimated MSE  Estimated MAE  

 ML D1 D2 D3 D4 D5 ML D1 D2 D3 D4 D5 

2
=0.75             

50 
4.233 1.854 1.020 0.877 2.428 0.625 3.062 1.936 1.463 1.391 2.136 1.259 

75 
2.190 1.098 0.699 0.653 1.204 0.624 2.287 1.569 1.310 1.283 1.629 1.265 

100 
1.524 0.844 0.621 0.601 0.889 0.591 1.914 1.393 1.243 1.232 1.421 1.226 

150 
0.936 0.583 0.505 0.503 0.594 0.501 1.525 1.193 1.134 1.133 1.201 1.132 

200 
0.659 0.447 0.415 0.415 0.450 0.414 1.279 1.050 1.024 1.025 1.053 1.024 

2
=0.85 

            

50 
7.635 3.164 1.964 1.601 4.615 0.761 4.039 2.367 1.737 1.610 2.794 1.275 

75 
3.975 1.790 1.004 0.871 2.207 0.687 3.075 1.940 1.487 1.419 2.126 1.320 

100 
2.615 1.251 0.774 0.719 1.416 0.670 2.509 1.662 1.364 1.334 1.749 1.306 

150 
1.574 0.847 0.631 0.615 0.892 0.607 1.970 1.404 1.257 1.249 1.433 1.245 

200 
1.187 0.694 0.570 0.564 0.715 0.561 1.716 1.292 1.204 1.200 1.306 1.199 

2
=0.95 

            

50 
26.48 9.661 7.841 6.720 18.98 1.977 7.237 3.733 2.864 2.660 5.339 1.307 

75 
12.86 4.886 3.222 2.558 7.988 0.872 5.407 2.913 2.161 1.971 3.777 1.279 

100 
8.701 3.459 1.946 1.535 5.034 0.708 4.511 2.528 1.831 1.667 3.070 1.286 

150 
5.220 2.102 1.164 0.964 2.727 0.716 3.560 2.084 1.558 1.458 2.359 1.326 

200 
3.872 1.693 0.979 0.835 2.026 0.714 3.052 1.885 1.470 1.401 2.043 1.338 

2
=0.99 

            

50 
144.7 50.01 57.38 51.74 121.78 15.755 16.58 7.815 7.549 7.429 13.98 2.554 

75 
68.14 23.18 20.30 17.95 51.79 4.515 12.36 5.853 5.208 4.999 9.851 1.827 

100 
47.87 16.10 13.68 11.79 34.46 3.024 10.55 5.078 4.417 4.125 8.197 1.649 

150 
28.98 9.606 7.280 6.222 19.16 1.912 8.303 4.013 3.245 3.007 6.101 1.442 

200 
20.74 6.917 4.908 4.003 12.80 1.255 7.013 3.442 2.709 2.447 4.950 1.340 

 

 


