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ABSTRACT 

A longstanding research tradition assumes that endogenous technological development increases 

regional productivity.  It has been assumed that measures of regional patenting activity or human 

capital are an adequate way to capture the endogenous creation of new ideas that result in 

productivity improvements. This process has been conceived as occurring in two stages. First, an 

invention or innovation is generated, and then it is developed and commercialized to create 

benefits for the individual or firm owning the idea.  Typically these steps are combined into a 

single model of the “invention in/productivity out” variety. Using data on Gross Metropolitan 

Product per worker and on inventors, educational attainment, and creative workers (together with 

other important socio-economic controls), we unpack the model back to the two-step process and 

use a SEM modeling framework to investigate the relationships among inventive activity and 

potential inventors, regional technology levels, and regional productivity outcomes.  Our results 

show almost no significant direct relationship between invention and productivity, except 

through technology.  Clearly, the simplification of the “invention in/productivity out” model 

does not hold, which supports other work that questions the use of patents and patenting related 

measures as meaningful innovation inputs to processes that generate regional productivity and 

productivity gains.  We also find that the most effective measure of regional inventive capacity, 

in terms of its effect on technology, productivity, and productivity growth is the share of the 

workforce engaged in creative activities.  
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1. Introduction 

The claim that knowledge creation and knowledge spillovers are the twin engines of 

economic growth has become something of a truism within the economics profession (Romer, 

1986, 1987, 1990). The process by which knowledge creation leads to prosperity has been 

conceived as occurring in two stages. First, an invention or innovation is generated, and then it is 

developed and commercialized to create benefits for the individual or firm owning the idea.  The 

underlying logic can be succinctly summarized as “innovation in, productivity gains out.” Lucas 

(1988) explicitly identified the role of human capital―the stock of competences, information, 

skills and experiences embodied in individuals―in the generation of knowledge creation and 

technological change. Jones and Romer (2010) recent review of our current understanding of the 

sources of economic growth highlight the crucial role of individuals generating and sharing ideas 

(that is, knowledge).   

Building on Romer’s work, and that of Jane Jacobs (1969, 1984), Lucas drew attention to 

the positive externality effects of human capital clustering, and the role of cities as centers for the 

integration of human capital and incubators of invention. As Glaeser (1996, 2000) has pointed 

out, the perspective that growth hinges on the flow and exchange of ideas naturally leads to 

recognition of the social and economic role of urban centers in furthering intellectual cross-

fertilization. A wide range of empirical studies have documented the role of human capital in 

regional growth. Barro (1991), Mankiw, Romer and Weil (1992), Rauch (1993), Simon and 

Nardinelli (1996) and Simon (1998) all substantiate the relation between human capital and 

growth at a national level. Ullman’s (1958) work on regional development noted the role of 

human capital (before the term was in vogue). Andersson (1985a, b) stressed the importance of 

knowledge, culture, communications, and creativity in stimulating creativity in cities and 



regions. Feldman and Florida (1994), Bhatta and Lobo (2000), Glaeser (2000), Florida (2000b), 

among many other studies, document the association between human capital and regional (sun-

national) economic development. 

Reminiscent of the difficulties in detecting knowledge-spillovers, human capital is easier 

to theorize about than to actually measure. The standard approach, dating from Becker’s work 

(Becker, 1964) for measuring human capital is educational attainment, usually the share of a 

population with a bachelor’s degree and above.  Recent studies, however, show that this measure 

does not fully capture an individual’s accumulated experience, nor their creativity, 

innovativeness, and entrepreneurial capabilities. One line of research (Florida, 2002) suggests an 

alternative measure for human capital, based on the occupation, specifically a set of occupations 

that make up the “creative class” including science, engineering, arts, culture, entertainment, and 

the knowledge-based professions of management, finance, law, healthcare and education. 

Andersson (1985a, b) suggested a similar occupational based measure in the 1980s, to better 

account for regional human capital levels.  Comparative studies show that the creative class 

measure outperforms conventional human capital measures in accounting for regional 

development in the U.S. (Florida, Mellander, and Stolarick, 2008), Sweden (Mellander and 

Florida, 2006), the Netherlands (Marlets and Van Woerken, 2004), and others.  

Another measure of human capital is implicit in the work centered on elucidating the 

determinant of metropolitan patenting. Despite many important caveats, patents have become a 

widely used metric in studies of the “knowledge economy” and technological change (e.g., Acs 

and Audretsch, 1989; Griliches, 1990; Jaffe et al., 1993; Jaffe and Trajtenberg, 2002). Patent 

analysis has therefore become a well-established framework for investigating locational and 

spatial aspects of technological advance with much effort having been devoted elucidating the 



determinants of urban patenting productivity (see, for example, Acs, Anselin and Varga, 2002; 

Bettencourt, Lobo and Strumsky, 2007; Hunt, Carlino and Chatterjee, 2007; Knudsen et al., 

2008; Lobo and Strumsky, 2008). Patents are generated by inventors: to study locationally-

specific invention (proxied by patents) is to study the agglomeration of one type of skilled and 

creative individuals, namely inventors. As argued by Hall, Jaffe, and Trajtenberg (2001), patents 

have numerous advantages as data for the study of innovation and technological change: (1) 

patents contain highly detailed information on the innovation itself, but also about the inventor, 

the originating technological area(s) and industry, etc; (2) there is both a very large “stock” and 

“flow” of patents, so a wealth of data is available for research; and (3) patent count data reaches 

back at least 100 years, making available a very long time series of data.  Of course, simple 

patent count data also have serious limitations.  First, not all inventions or innovative ideas are 

patented or patentable.  Second, patented inventions vary enormously in their technological and 

economic importance and simple patent counts are seriously insufficient in capturing this 

underlying heterogeneity. Assessing the economic quality of patented inventions would require 

the means to track their commercialization or licensing success, data for which is neither 

comprehensibly nor reliably available. One way of measuring the intellectual quality of patents is 

through patent citations, that is, the citations made by a patent to other patents. The idea behind 

using patent citation counts as a measure of quality is that a patent cited by many later patents is 

likely to contain useful ideas or technologies upon which later inventors are building (see, e.g., 

(Trajtenberg, Hall, Jaffe and Trajtenberg, 2001, 2005). All in all, we should heed Trajtenberg’s  

caution and consider patent counts as an indicator of the input side of the innovative process, as 

in R&D expenditures.   



Educated, creative or inventive individuals: who are more likely to engender the sort of 

innovation that fuels economic prosperity? We recognize, of course, the difficulties in 

empirically differentiating their effects: the inventive and creative are most likely to be highly 

educated, many employed in creative occupations are likely to be working in industries in which 

patenting is important (and encouraged), but patenting is irrelevant to many economically 

significant creative activities. To try  and disentangle these issues we present a stage-based 

general model of regional productivity. In the first stage, we examine how various alternatives 

for measuring regional innovative individuals affect regional technological outcomes.  In the 

second stage, we look at how both innovative individuals and regional technology impact 

productivity levels and growth.  This stage-based model structure enables us to isolate the direct 

and indirect effects of these factors in the overall system of regional productivity development.  

We use structural equations and path analysis models to examine the independent effects of 

patent inventors, human capital, the creative class, technology diversity and concentration, and 

other factors identified in the literature on both regional productivity levels (regional GDP per 

capita) and productivity growth. We examine these issues via multiple cross sectional analyses of 

361 metropolitan regions in the United States, and explicitly control for the effects of regional 

size.   

The theory underpinning the present study is a progression from the recent literature 

examining the geographic determinants of innovation.  This literature is, in part, based upon the 

“knowledge production function” approach introduced by Griliches (1979).  The typical 

economic production function examines the effects of particular inputs on the production of 

outputs.  In this vein, the knowledge production function considers the effects of such typical 

inputs as R&D expenditures and human capital on such outputs as economic growth, 



productivity, or innovation.  Griliches (1979, 92-93) regards “…total output or total factor 

productivity as a function of past R&D investments (and other variables).  Here all productivity 

growth (to the extent that it is measured correctly) is related to all expenditures on R&D and an 

attempt is made to estimate statistically the part of productivity growth that can be attributed to 

R&D (and sometimes, also, to its components)”.   

 

Our modeling approach is designed to address a significant weakness of previous studies 

of the effects of patenting and human capital on regional productivity.  Most of these studies use 

a single equation regression framework to identify the direct effects of invention and other 

factors on regional development. The findings of these studies, not surprisingly, indicate that 

human capital and regional patenting outperform other variables. But that does not mean that 

other variables do not matter.  First of all, alternative, perhaps more general, measures of 

regional inventive capacity are available.  As has been discussed, both human capital and patents 

as measures have limitations.   It may well be that some variables that have not performed well 

in other studies exert influence by operating through regional technology and thus indirectly 

effect regional productivity, or that certain variables operate through different channels. By using 

a system of equations our model structure allows us to parse the direct and indirect effects of key 

variables on each other as well as on regional development. The staged model more accurately 

reflects the underlying situation.  Furthermore, our model is based on a strong a priori theory of 

the relationships between and among key variables as they shape regional productivity. 

The discussion is organized as follows. The next section derives a measure for 

metropolitan total factor productivity (TFP) starting from a Cobb-Douglass production function 

for urban economies. The data and variables used in the statistical modeling are described in the 



third section while section four presents the OLS and Structural Equation Model (SEM) 

regression results which constitute the core of our findings. Section five concludes.  Anticipating 

our main result we find that once industry structure is controlled for, measures of human capital 

do not have a discernible effect on metropolitan productivity; however, the distribution of human 

capital does affect industry structure (composition) which does significantly affect productivity. 

 

2. Metropolitan Total Factor Productivity 

We begin with a variation of the “growth accounting exercise” (Solow, 1956, 1957; Abel, 

Dey and Gabe, 2010). We treat the metropolitan areas of the United States as open economies 

among which capital and labor can move freely. We assume further that the generation of 

metropolitan output can be modeled by a Cobb-Douglass production function so that output (Y) 

is given by:  

 1

, , , , ,i t i t i t i tY A K L   (1) 

where A is Hicks-neutral technology (often referred to as “total factor productivity” or “TFP”), K 

is physical capital, L is the amount of labor available in a metropolitan area, α is an economy-

wide production parameter, and i and t index place and time, respectively. The choice of a Cobb-

Douglas production function, with the concomitant assumption of constant returns to scale to the 

factors of production, is justified by the fact that the ratio of metropolitan labor income to 

metropolitan total income (1 – α) has remained about 0.7 for all metropolitan areas over the past 

forty years for which data is available. 

 Data on metropolitan stocks of physical capital are not readily available; we address this 

data scarcity by first deriving the rental price of capital and then using the derived capital-

demand function to substitute the factor price for the factor quantity. Solving equation (1) for the 



marginal product of capital in a metropolitan area, and equating it to the rental price of capital, 

gives: 

 1 1

, , , , .i t i t i t i t

Y
r A K L

K

   
 


 (2) 

Substituting (1) into (2) yields the following expression for r: 

 1

, , , ,i t i t i tr Y K   (3) 

from which the following capital-demand function can be obtained: 
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Equation (4) can then be used to substitute for the amount of physical capital in the production 

function (1): 
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Solving equation (5) for Y results in equation (6), a production function in which metropolitan 

output is the result of location-specific technology and labor, multiplied by a constant term ( ) 

consisting of capital’s share of output and the rental price of capital:  
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Assuming free mobility of capital allows us to in turn assume, not to heroically, that the rental 

price of capital is everywhere the same or nearly the same; the  ,/ i tr  can thus be treated as a 

constant. An expression for output per worker can be obtained by dividing both sides of equation 

(6) by total metropolitan employment: 
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1
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From equation (8) we can therefore conclude that metropolitan TFP is approximated by output 

per worker. 

We hypothesize that metropolitan TFP is a simple multiplicative function of location-

specific socio-economic and demographic characteristics: 

 , , ,
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where j indexes the variables representing the determinants of metropolitan productivity. We are 

particularly interested in elucidating the effects of different types of human capital on 

metropolitan output per worker. 

 

3. Metropolitan Variables 

Our spatial units of analysis are the 361 Metropolitan Statistical Areas (MSAs) of the 

continental United States. MSAs, which are defined by the U.S. Office of Management and 

Budget, are standardized county-based areas having at least one urbanized area (with 50,000 or 

more population) plus adjacent territory with a high degree of social and economic integration 

with the core as measured by commuting ties. Metropolitan areas are in effect unified labor 

markets.  

3.1 Dependent variable 

For measuring metropolitan productivity (i.e., output per worker), we avail ourselves of the data 

on Gross Metropolitan Product (GMP) provided by the Commerce Department’s Bureau of 



Economic analysis (BEA). GMP is the metropolitan counterpart to national Gross Domestic 

Product (GDP), and it’s a comprehensive measure of the value of the goods and services 

produced within metropolitan areas (Panek, Baumgardner and McCormick, 2007). Real GMP is 

reported using chained-weighted 2005 dollars. Dividing GMP by metropolitan total employment 

(defined by the BEA as encompassing the number of full and part-time jobs) we get a measure of 

metropolitan output per work: Gross Metropolitan product per worker (GMPpw). We utilize two 

temporal variants of GMPpw as dependent variable: a level measure, averaged over the 2007-

2009 period, and a change measure between the 2001-2003 and 2007-2009 periods. (Table 1 

illustrates the descriptive statistics for all variables.) 

3.2 Independent variables 

 Our analytical purpose is to elucidate whether three distinct ways of measuring the 

presence in metropolitan areas of skilled individuals―through the proportion of the work force 

who are engaged in invention, have a college education, or are engaged in creative 

employment―are statistically distinguishable with regards to their effects on the productivity of 

urban areas. We first describe the three principal independent variables.  

Inventors per worker. We use data on patents granted by the United States Patent and 

Trademark Office (USPTO). Every granted patent lists the inventors’ names and home towns; 

patents do not, however, provide consistent listings of inventor names or unique identifiers for 

the authors, so matching procedures were used to uniquely identify inventors across time and 

locations (the matching procedures are discussed in Marx, Strumsky and Fleming (2009)). By 

identifying individual inventors and their place of residence at the time the application for the 

patent was filed, each patent and inventor is assigned to a metropolitan area. (We restrict our 

analysis to patents whose authors are U.S. residents.) For purposes of calculating metropolitan 



patent counts, a patent with multiple authors is allocated to of each of the distinct locations in 

which the authors reside (if several authors reside in the same MSA that location gets its patent 

count increased by just one).  We follow the by now standard convention of counting patents on 

the year the patent was successfully applied for so as to measure inventive activity as close as 

possible to the moment of invention. Metropolitan inventors per worker is defined as the total 

number of metropolitan-based inventors, in a given application year, divided by the MSA’s total 

employment in that given year. The variable inventors is measured per 10,000 workers. 

Educational attainment measures the presence of skilled individuals as the percentage of 

metropolitan adult (25 and older) workers with a Bachelors degree or higher—thereby implicitly 

equating possessing high skill levels with a college education. The data is for 2001 and is from 

the U.S. Census. 

Creative employment. Creative employment is measured as the share of the labor force 

whose work tasks include complex problem solving. Included are occupations such as computer 

and math; architecture and engineering; life, physical, and social science; education, training, and 

library positions; arts and design work; and entertainment, sports, and media occupations—as 

well as other “creative professionals,” akin to classical knowledge workers, including 

management occupations, business and financial operations, legal positions, healthcare 

practitioners, technical occupations, and high-end sales and sales management. The definition is 

based on Florida (2002) and due to data restrictions the variable is for the year 2005, that is, for a 

later time period that the other explanatory variables. However, regional occupational structure 

can be considered a relatively slow variable, in other words, we do not expect it to change 

rapidly.
1
 

                                                 
1
 A year to year correlation analysis for the same creative employment variable for the year 2006 to 2009 illustrates 

the slow change over time, with correlations of approximately 0.8-0.95 (Stolarick and Currid, 2011). 



 The econometric estimations also include other variables meant to control for salient 

socio-economic features of metropolitan areas which can influence the productivity-enhancing 

effects of human capital. These additional control variables are described next, starting with 

measures for the quality and productivity of inventive (i.e., patenting) activity.  

Patent citations. We hypothesized that the contribution to aggregate productivity made 

by a metropolitan area’s inventive work force is modulated by the quality of its inventive efforts. 

Assessing the economic quality of patented inventions would require the means to track their 

commercialization or licensing success, data for which is neither comprehensibly nor reliably 

available. One way of measuring the intellectual quality of granted patents is through patent 

citations, that is, the citations made to a patent by other patents. (The USPTO requires that 

authors of patent applications disclose any relevant “prior art”, that is, any intellectual material, 

such as previous patented inventions patents and scientific literature, that is pertinent to the 

determination of novelty patentability. References to previous patents are recorded as patent 

citations.) The idea behind using patent citation counts as a measure of quality is that a patent 

cited by subsequent patents is likely to contain useful ideas or technologies upon which later 

inventors are building.
2
 Citations made to a granted patent by subsequent patents are counted up 

to the end of the period covered by our database (December 31
st
, 2010). The measure patent 

citations is constructed by counting the citations received, from the application year onwards, by 

granted patents assigned to a metropolitan area, and the dividing that count by the number of 

patents generating the citations. (It takes time for a patent to accumulate a large number of 

citations from later patents, but most citations are accumulated within eight years of a patent 

being granted.) 

                                                 
2
 Studies have established a strong positive relationship between highly cited patents and technological importance, 

stock market valuations, and firm profitability (Albert, Avery and McAllister, 1991; Hall, Jaffe and Trajtenberg, 

2001, 2005; Trajtenberg, 1990; Trajtenberg, Henderson and Jaffe, 1997). 



Patents per inventor. This variable, defined as the total number of patents generated by 

metropolitan-based inventors divided by the number of inventors, is meant to capture how 

productive a metropolitan inventive community is. A high value for this productivity measure 

can be an indication of the quality of the inventors residing in an urban area. 

 We also control for agglomeration economies, market size and industry structure by 

means of these variables. 

Population. Among the many possible determinants of location-specific productivity, 

agglomeration economies―a set of phenomena ultimately dependent on the size and density of 

urban populations―have been among the most extensively studied (see, for example, Shefer, 

1973; Sveikauskas, 1975; Segal, 1976; Carlino, 1979; Moomaw, 1981, 1988; Rosenthal and 

Strange, 2004; Bettencourt, Lobo and Strumsky, 2007; Hunt, Carlino and Chatterjee, 2007; Puga, 

2010). Population size also serves to measure the size of an urban area´s market. We therefore 

include a control for the population size of a metropolitan area.  

Population density. The opportunities for both coordinated and serendipitous information 

flows, and for knowledge spillovers to occur, are considered greater in denser areas (Carlino, 

Chatterjee and Hunt, 2007; Knudsen et al., 2008). Our estimations included two measurements 

for metropolitan population density: the one, which divides total population by the total area 

represented by an MSA´s constituent counties, and a weighted-measure, in which the 

contribution of a county´s area is weighted by its share of total population.   

Establishments per Worker. We needed a measure of a local area’s market structure so as 

to test whether knowledge spillovers, which foster patenting, are greater if an MSA is more 

competitive.  The total number of establishments (i.e., work places) per worker in an MSA is 



used as a measure of market structure, i.e., an MSA is taken as locally competitive if it has more 

firms per worker. 

Large Firms Share. Since large firms tend to spend proportionately more on private R&D 

than do smaller firms, the percentage of an MSA’s firms with 1,000 or more employees is 

included to capture the effects of large firms on patenting activity. 

High Tech Concentration.  We include a technology variable to account for the effects of 

technology on regional productivity. This technology variable is based on the “Tech-Pole Index” 

published by the Milken Institute (Devol et al., 2001). This index scores metropolitan areas 

based on: (1) high-tech industrial output as a percentage of total U.S. high-tech industrial output; 

and (2) the percentage of the region’s own total economic output that comes from high-tech 

industries compared to the nationwide percentage.  The numbers are updated using the U.S. 

Census County Business Patterns and are from 2006. 

Technology Diversity. The Patent Office classifies all patents into 481 technological 

classes, for example, class 437 (Semiconductor Device Manufacturing: Process) and 977 

(Nanotechnology).
3
 To control for the technological heterogeneity and diversity within each 

metropolitan inventive community, we calculated a Technology Herfindahl index for an area’s 

patent applications using the U.S. Patent Office’s technology classes. In the analysis we employ 

the inverse of the Hirfindahl index, which implies that higher values mean more diversity. 

 

 

(Table 1 about here.) 

 

 

                                                 
3
 For a listing of the USPTO technology classes go to www.uspto.gov/go/classification/selectnumwithtitle.htm. 



Table 1: Descriptive Statistics 

  N Minimum Maximum Mean 

Std. 

Deviation 

Dependent Variables:      

Av GRP 07-09 per worker 361 39514 125562 61812 12472 

GRP per worker change 01-03 to 07-09 (%) 361 -0.2188 0.9489 0.049538 0.0893 

      

Tech Variables      

High Tech Concentration 334 0.0002 8.5273 0.2447 0.848 

Tech Diversity 360 0.0089 1.000 0.0931 0.116 

      

Explanatory Variables*:      

Av Patent Applications per Worker 361 0.186 116.515 5.413 9.614 

Av Patent Citations per Worker 361 1.261 9.916 3.604 1.134 

Patents per Inventor 360 .2985 1.1833 .5091 .1207 

Human Capital (%) 361 0.1033 0.5445 0.2104 0.0708 

Creative Employment Share (%) 341 0.11 0.44 0.2682 0.04845 

      

Control Variables      

Av Population 361 54311 18583811 661260 1521039 

Av Population Density 361 6.00 9242 319.5 626.7 

Av Weighted Population Density 361 6.00 17330 476.5 1063.9 

Employees per Establishment 361 6.28 22.45 15.414 2.755 

Large Establishment Share 361 0 0.0059 0.0015 0.0008 

* all explanatory variables are expressed as averages for the year 2001-2003, except for creative employment 

(2005) 

 

Before turning our attention to the regression results, we present and discuss the 

correlations among the various metropolitan variables in an attempt to tease out the bivariate 

relations among them. Since we expect to find an increase in productivity as market size 

increases, we also use partial correlations with a population control to rule out the possibility that 

the relations are driven purely by urban size. (Results are shown in Table 2). Correlations were 

calculated for both Gross Metropolitan Product per worker (GMPpw) and the percent change in 

output per worker from the 2001-2003 to the 2007-2009 windows (denoted by %∆GMPpw). 

 

(Table 2 about here.) 



Table 2:  Bivariate and Partial Correlations 

 Bivariate Correlations Partial Correlations 

 GMP per worker 

2007-2009  

GMP per worker 

Change  

GMP per worker 

2007-2009  

GMP per  

Worker Change  

Productivity:     

GMP 2007-2009 - .301*** - .367*** 

GMP Change .301*** - .367*** - 

Market Size:     

Population .602*** .024 - - 

Technology     

High Tech Concentration .641*** .198 .248*** .014 

Tech Diversity .414*** .030 -.005 -.014 

Inventors:     

Patent Applications per Worker .320*** .214*** .137** .221*** 

Patent Citations per Worker .265*** .102* .097* .108** 

Patents per Inventor -.276*** -.072 -.065 -.018 

Educated:     

Human Capital .321*** .137*** .176*** .148*** 

Creatives:     

Creative Employment .396*** .224*** .161*** .240*** 

Other:     

Population Density .435*** -.037 .028 -.065 

Weighted Population Density .498*** -.032 .063 -.076 

Large Establishment Share .135** .030 -.013 .015 

Employees per Establishment .231*** .043 .047 .006 

***indicate significance at the 0.01 level, ** at the 0.05 level, and * at the 0.1 level.  

All variables are logged except change in GMP. 

 

From Table 2 we see that, as expected, GMPpw tends to be higher in regions with higher 

levels of population (0.602). However, we find no significant relation between %∆GMPpw 

change and population, in other words, productivity levels have not increased faster in bigger 

regions. We find a positive and significant relation with high tech concentration and GMPpw 

(0.641), which also stays significant in the partial correlations (0.248), but is insignificant to 

changes in GMPpw. Technology diversity is also significantly related to GMPpw, and higher 

levels of diversity implies higher levels of GMPpw (0.414). The relation becomes insignificant in 

the partial correlations, and is not significantly related to changes in GMPpw.  

The correlation between patenting and GMPpw is positive and significant, both in terms 

of inventors per worker (0.320) and patent citations (0.265). There is also a positive, but slightly 

weaker significance, between inventors and productivity change (0.214 vs. 0.102). These 



relations also hold when we control for population size in the partial correlations, but become 

somewhat weaker. However, the relation between patents per inventor and GMPpw is negative 

and significant (-0.276), This relation becomes insignificant once regional size is controlled for.  

Neither is there a significant relation between patents per inventor and %∆GMPpw.    

We find a similar pattern for educational attainment as we do for inventors. Metropolitan 

areas with higher shares of human capital also have higher levels of productivity (0.321), and 

have seen a larger increase in productivity over the last decade (0.137). These relations also hold, 

once regional size in terms of population is controlled for in partial correlations. Creative 

employees generates a similar result, with positive and significant relations to GMPpw (0.396) 

and change in GMPpw (0.224), and is somewhat more strongly related to GMPpw and 

%∆GMPpw than both inventors and educated. The relation between creative employees and 

productivity also stays significant in the partial correlations.  

We find that the variables measuring population density, industry structure, share of 

larger firms and employees per establishment, are positively correlated with metropolitan 

productivity. However, they are not significantly correlated with the percent change in output per 

worker. Furthermore, the positive relations between these variables and productivity becomes 

insignificant once population size is controlled for. In other words, productivity increases due to 

density and industry establishment size effects may well be a proxy for bigger market places. 

Generally speaking, we find a positive and significant relation between inventors, educated and 

creatives, and regional productivity, both in absolute terms and in terms of changes over time, 

but also significant market size effects.  

 



4. Regression Results 

We now turn to the multivariate regression analysis so as to study the relationship 

between metropolitan productivity (levels and percent change), and the educated, the creatives 

and the inventive. We ran estimations using the inventors, educated, and creatives measures, 

individually and also with all three in combination, since they are overlapping, but not identical 

proxies for regional talent levels.
4
   We subsequently used structural equation modeling (SEM) to 

examine alternative structural relationships between inventors, educated and creatives in relation 

to metropolitan productivity while taking into account industry (i.e., economy) structures into 

account.  

Utilizing data on Gross Metropolitan Product does impose a significant constraint on the 

analysis’ temporal coverage as the data is only reported for the 2001-2009 period. Due to data 

constraints, we will estimate this as cross-section, and not a panel over time. To decrease 

endogeneity problems, we will use lagged explanatory variables (averages for 2001 to 2003) to 

explain our dependent variable Gross Metropolitan Product per worker (average for 2007-2009) 

and change in Gross Metropolitan Product per worker (change between the per worker average 

in 2001-2003 and the average in 2007-2009). While our models will assume a one-way causality, 

we admit that in the long run, one can expect feedback loops in such a structure, with both 

selection and sorting issues.  It is important to note that by using 2009 data  we capture regional 

productivity in a post-crisis U.S.   

 Structural Equation Modeling (SEM) can be thought of as an extension of regression 

analysis, expressing the interrelationship between variables through a set of linear relationships, 

based upon their variances and covariances (for further technical description see Jöreskog, 1973: 

                                                 
4
 The correlation between the three are; .576 (inventors and educated), .447 (inventors and creatives), and .484 

(educated and creatives).  



Kline, 2010). The parameters of the equations are estimated by the maximum likelihood method. 

We graph our assumed relations in Figure 1 below. Structural equation modeling is commonly 

used when one or several included variables are latent. It is not a necessary condition however to 

include latent variables in order to use structural equation modeling. In our analysis, all included 

variables are observable.  The causality in the graphic figure is completely based on theoretical 

assumptions, since SEM expresses direct and indirect correlations, and not actual causalities. In 

other words, the parameters we estimate provide information about the relation among the set of 

variables. The relative importance of the regression coefficients is expressed by standardized 

path coefficients, while the unstandardized path coefficients are expressed as elasticities (when 

only logged variables are employed). We do not assume any causality between inventors, 

educated and creatives but will treat them as correlations.  

From the relationships depicted in Figure 1, we estimated the following versions of 

equation (9), estimating both indirect effects (equation 10 and 11 below) as well as direct effects 

(equation 12 and 13 below) from the inventive, educated, and creative, together with market size 

and industry structures, in order to explain GMP per worker and change in GMP per worker:  

(Figure 1 about here.) 

The first two sequences determine industry structures in terms of technology diversity 

and concentration; 
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Figure 1:  Two Stage Model of Innovation, Technology, Productivity 

 

In the third and last sequence, explanatory and dependent variables from equation 10 and 11 will 

all be used as explanatory variables in order to explain (1) GMP per worker, and (2) change in 

GMP per worker, and thereby take into account both indirect and direct effects; 
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Before turning to the sequential regression modeling, we will employ a traditional OLS 

regression model to later be able to compare results. 

4.1. OLS Results 

 We begin with the findings from the OLS regressions, which are based on equations (10) 

and (11), that is, without indirect effects taken into account. The first set of regression results 

Inventors 

Technology 

Diversity 

Technology 

Concentration 

Gross 

Metropolitan 

Product 

Creative 

Educated 

Population 



(Table 3) use GMP per worker as dependent variable with columns 1 to 3 showing the results 

from utilizing each of the three measures one at a time, while column 4 shows the results from an 

estimation done using all three variables. 

(Table 3 about here.) 

Table 3: OLS regressions for GMP per Capita 

 1. Inventors 2. Educated 3. Creatives 4. Combined 

Inventors .016* 

(.010) 

- - .012 

(.010) 

Educated - .035 

(.034) 

- .006 

(.036) 

Creatives - - .066 

(.052) 

.055 

(.053) 

Tech Concentration .029*** 

(.007) 

.029*** 

(.008) 

.026*** 

(.008) 

.023*** 

(.014) 

Tech Diversity -.031** 

(.014) 

-0.025* 

(.013) 

-.023* 

(.012) 

-.032** 

(.014) 

Population .080*** 

(.014) 

.079*** 

(.014) 

.077*** 

(.013) 

.084*** 

(.015) 

R2 .467 .464 .460 .463 

R2 Adj. .460 .457 .453 .452 

N 332 332 317 317 

 

 

Table 3 illustrates a clear relationship between industry structures and GMP per capita. 

Regions with high technology concentration and low technology diversity have higher levels of 

GMP per capita. Market size, in terms of population, is also consistently strong, positive and 

significant. Turning to the three different talent variables, it is only inventors that seem to have a 

significant relation with GMP per capita, and then only at the 10 percent level. When combined 

with educated and creative it looses its weak significance and become insignificant. The OLS 

results would suggest that talent, in terms of inventors, educated, and creatives have little to do 

with regional productivity, but that this is mainly a result of industry structure. 



 Next, we run the same set of regressions, but now employ change in GMP per worker as 

dependent variable. 

(Table 4 about here.) 

Table 4: OLS regressions for Change in GMP per Capita 

 1. Inventors 2. Educated 3. Creatives 4. Combined 

Inventors .008 

(.005) 

- - -.003 

(.016) 

Educated - -.037* 

(.019) 

- -.041 

(.021) 

Creatives - - .052* 

(.030) 

.065** 

(.030) 

Tech Concentration .016*** 

(.004) 

.023*** 

(.005) 

.015*** 

(.004) 

.019*** 

(.005) 

Tech Diversity -.017** 

(.008) 

-0.007 

(.013) 

-.011 

(.007) 

-.006 

(.007) 

Population -.013 

(.008) 

-.023*** 

(.008) 

-.016*** 

(.007) 

-.023*** 

(.008) 

R2 .077 .081 .079 .092 

R2 Adj .065 .070 .067 .074 

N 332 332 317 317 

 

 

Also in this case, we find a strong and positive relation between technology concentration 

and change in GMP per capita. Technology diversity is in principal insignificant. Only in 

regression 1, in combination with inventors, is it significant and negative. Population is negative 

and significant in regression 2-4, indicating that bigger market places have experienced less 

GMP per capita growth over the last decade. Both inventors and educated are insignificant in all 

four regressions. However, creatives are weakly positive and significant in regression 3, and 

even stronger when combined with inventors and educated in regression 4. This indicates that 

higher levels of creative workers affect growth in GMP per capita positively. Still, industry 

structure determines more of productivity growth than different forms of talent.  



 Overall, the results from Tables 3 and 4 suggest that industry structures play a far more 

important role than the regional distribution of talent labor. To further explore these relations, we 

suggest that talent labor may play a more indirect effect, and that inventors, educated and 

creatives may each do so differently. We therefore leave the more simplified OLS regressions 

and move to a structural framework, where talent labor is allowed to play an indirect role for 

productivity as determinants for industry structures.  

4.2. Structural Equation Modeling  

We begin with the findings from the GMP per Worker regressions. Table 5  illustrates the 

results for all three regressions, taking both unstandardized and standardized coefficients into 

account. Given the close relation between patent applications and patent citations, we will only 

employ patent applications as a proxy for inventors in the multivariate regression analysis. (We 

also re-ran all regressions including patent citations per worker alongside patent applications. 

The variable turned out insignificant in all versions of the model.) Further, we will employ the 

“Combined” model as our baseline model, in other words, where we include all three labor 

variables (inventors, educated, and creatives). However, we will also run one SEM where they 

are employed one at a time, to be able to compare the results, and avoid that the results are 

driven by multicollinearity problems.  

The first regression in the “Combined model” for Tech Diversity the strongest 

explanatory variable is population, with a standardized coefficient of .601. This is followed by 

inventors (.382) and educated (.157). All three variables significantly add to an increased 

technology diversity, and together they explain approximately 60 percent of the variation. 

However, creatives is insignificant in relation to tech diversity.  

 



(Table 5 about here.) 

Table 5: Regression Results for GMP per Worker SEMs for Inventors, Educated, Creatives and 

Combined 

INVENTORS (1) Tech Diversity (2) Tech Concentration (3) GMP per Worker 

Inventors 0.360/.422*** 

(0.028) 

0.535/.282*** 

(0.055) 

0.019/.110* 

(0.010) 

Educated 

 

- - - 

Creatives 

 

- - - 

Population 0.476/.556*** 

(0.029) 

1.393/.730*** 

(0.055) 

0.069/.396*** 

(0.014) 

Tech Concentration NA NA 0.033/.359*** 

(0.008) 

Tech Diversity NA NA -0.037/-.184*** 

(0.014) 

N 361 361 361 

Sq. Multiple Corr. .645 .750 .421 

EDUCATED (1) Tech Diversity (2) Tech Concentration (3) GMP per Worker 

Inventors 

 

- - - 

Educated 0.939/.320*** 

(0.104) 

2.403/.370 *** 

(0.167) 

0.051/.085 

(0.034) 

Creatives 

 

- - - 

Population 0.524/.611*** 

(0.029) 

1.362/.717*** 

(0.049) 

0.068/.392*** 

(0.015) 

Tech Concentration NA NA 0.033/.359*** 

(0.008) 

Tech Diversity NA NA -0.031/-.154** 

(0.013) 

N 361 361 361 

Sq. Multiple Corr. .582 .795 .424 

CREATIVES (1) Tech Diversity (2) Tech Concentration (3) GMP per Worker 

Inventors 

 

- - - 

Educated 

 

- - - 

Creatives 0.929/.310*** 

(0.208) 

3.351/.191*** 

(0.339) 

0.067/.068 

(0.055) 

Population 0.520/.607*** 

(0.036) 

1.289/.677*** 

(0.059) 

0.061/.353*** 

(0.014) 

Tech Concentration NA NA 0.033/.361*** 

(0.008) 

Tech Diversity NA NA -0.024/-.119** 



(0.012) 

N 361 361 361 

Sq. Multiple Corr. .515 .754 .417 

COMBINED (1) Tech Diversity (2) Tech Concentration (3) GMP per Worker 

Inventors 0.298/.382*** 

(0.033) 

0.181/.109*** 

(0.056) 

0.014/.087 

(0.010) 

Educated 0.420/.157*** 

(0.117) 

1.640/.287 *** 

(0.196) 

0.039/.068 

(0.034) 

Creatives -0.092/-.021 

(0.183) 

1.690/.178*** 

(0.303) 

0.038/.041 

(0.051) 

Population 0.471/.601*** 

(0.026) 

1.228/.734*** 

(0.044) 

0.075/.453*** 

(0.015) 

Tech Concentration NA NA 0.027/.275*** 

(0.009) 

Tech Diversity NA NA -0.040/-.190** 

(0.014) 

N 361 361 361 

Sq. Multiple Corr. .591 .767 .369 

unstandardized/standardized coefficient, standard errors within brackets. 

*** indicates significance at the 0.01 level, ** at the 0.05 level, and * at the 0.1 level 

 

The regression for tech concentration shows a similar pattern. Once more, population is 

the strongest variable, with a standardized coefficient of 0.734. But still, educated (0.287), 

creatives (0.178), and inventors (.109) add to the explanatory power, all significant at the 1 

percent level. The regression generates a squared multiple correlation of approximately 0.767, 

suggesting that close to 80 percent of the variation is explained by the included explanatory 

variables. It is worth noting that educated is relatively stronger than inventors, in the tech 

concentration regression, while the opposite is true in the tech diversity regression. Creatives are, 

in other words, only significantly related to tech concentration, and not tech diversity.  

In the final GMP per worker regression, population still plays a strong and significant 

role, as expected. The standardized coefficient is 0.453, which is the relatively strongest. Tech 

concentration is also strong and significant, with a standardized coefficient of 0.275. This 

indicates that bigger markets with higher levels of high tech concentration are more productive in 



general. Somewhat interestingly, we find a negative and significant relation from tech diversity 

and productivity, indicating that more diversity generates lower levels of productivity. This 

would imply that scale alone is a productivity enhancer, while diversity is not, in this context. 

The regression generates a squared multiple correlation of 0.369. Neither inventors, educated nor 

creatives have a significant relation with productivity levels, once technology structures and 

market size is taken into account. However, as the model structure suggests, they still play a 

crucial indirect role by its affect on the distribution of technology structures.  

When we compare the combined model with the regressions where our three different 

labor variables are employed one at a time, we note that inventors tend to provide the strongest 

explanatory power for technology diversity of the three, with a generated squared multiple 

correlation of 0.645 compared to 0.582 for educated and 0.515 for creatives. On the other hand, 

educated provides a stronger explanatory power in relation to technology concentration (0.795), 

compared to creatives (0.754) and inventors (0.754). In terms of direct effects on GMP per 

worker, only inventors remain significant (and then only at the 10 percent level), while neither 

educated nor creatives remain significant, when employed one at a time.  

To parse out the indirect, direct and total effects from inventors, educated and creatives, 

we isolate their results from the regressions. Table 6 illustrates this, both expressed as 

unstandardized and standardized coefficients in relation to GMP per worker. The top part of the 

table illustrates the results when inventors, educated, and creatives are employed one at a time, 

while the bottom part of the table is for our baseline combined model.  

 

 

 



(Table 6 about here.) 

Table 6: Indirect, Direct, and Total Effects on GMP per Worker 

 Unstandardized Standardized 

 Inventors Educated Creatives Inventors Educated Creatives 

One at a time       

Indirect .004 .050 .088 .024 .083 .089 

Direct .019 .051 .067 .110 .085 .068 

Total .023 .100 .155 .133 .169 .157 

Combined       

Indirect -0.007 0.028 0.05 -0.043 0.049 0.053 

Direct 0.014 0.039 0.038 0.087 0.068 0.041 

Total 0.007 0.066 0.088 0.044 0.117 0.094 

 

 

The unstandardized effects (left side of Table 6) illustrate the elasticities in relation to 

GMP per worker. For the combined model, a one percent increase in inventors implies a -0.7 

percent indirect and a 1.4 percent direct change in GMP per Worker. A 1 percent increase in 

educated implies a 2.8 percent indirect increase and a 3.9 percent direct increase in GMP per 

worker, and a 1 percent increase in creative generates a 5 percent indirect and a 3.8 percent direct 

increase in GMP per worker. If we look at the standardized coefficients (right side of Table 6), 

which no longer can be interpreted as elasticities, we see that educated and creatives are 

relatively stronger than the inventors variables, with total effects of 0.117 and 0.094. Educated 

has stronger direct effects on GMP per Worker (0.068 vs. 0.041), while creatives is relatively 

stronger in terms of indirect effects (0.053 vs. 0.049).  

 When inventors, educated, and creatives are employed one at a time, the coefficient 

values (both unstandardized and standardized) will be slightly increased, given that no other 

qualified labor control variable is used as control variable. Still, we find that the relative strength 

of the variables still hold, and are robust in relation to the combined model. Educated are still 

strongest in relation to GMP per worker (0.169), followed by creatives (0.157) and inventors 

(0.133). Inventors have the strongest direct effect on GMP per capita (0.110), while creatives 



have the strongest indirect effect (0.089). Educated are relatively constant with an indirect effect 

of 0.083 and a direct effect of 0.085. 

Next, we turn our attention to the change in GMP per Worker over time regression 

results. We keep the same initial structures with tech diversity and tech concentration, but 

substitute GMP per Worker with the Change in GMP per Worker. Once more, we will employ 

the “Combined” model as our baseline model, where all three labor variables (inventors, 

educated, and creatives) are included. Again, we will run SEMs where they are employed one at 

a time, to be able to compare the results, and be able to detect multicollinearity problems. Table 

7 illustrates the results for all three regression steps. 

(Table 7 about here.) 

The first two regressions in the “combined model” (tech diversity and tech concentration) 

generate similar results as in Table 7 above, as expected. Population is still highly related to tech 

diversity (.601), followed by inventors (.383) and educated (.156). Creatives is insignificant in 

relation to tech diversity. Tech concentration is still highly determined by population (.725), 

followed by educated (.289), creatives (.181), and inventors (.118). The third regression in the 

structure now has change in GMP per Worker, in other words productivity growth. Interesting 

enough, population is now negative and significant (-.343), indicating that bigger places have 

experienced lower levels of productivity increases. Neither is market size the strongest among 

the explanatory variables any longer. This is instead tech concentration with a standardized 

coefficient of .460. This indicates that smaller regions but with high tech concentration are 

regions with the strongest productivity increase. We also find a negative and significant relation 

 

 



Table 7: Regression Results for Change in GMP per Worker SEMs for Inventors, Educated, 

Creatives and Combined 

INVENTORS 

 

(1) Tech Diversity 

 

(2) Tech Concentration 

 

(3) GMP per Worker 

Change 

Inventors 0.360/.422*** 

(0.028) 

0.588/.292*** 

(0.055) 

0.016/.193*** 

(0.006) 

Educated 

 

- - - 

Creatives 

 

- - - 

Population 0.476/.556*** 

(0.029) 

1.390/.724*** 

(0.056) 

-0.022/-.264*** 

(0.009) 

Tech Concentration NA NA 0.021/.474*** 

(0.005) 

Tech Diversity NA NA -0.024/-.238*** 

(0.008) 

N 361 361 361 

Sq. Multiple Corr. .645 .751 .124 

EDUCATED 

 

(1) Tech Diversity 

 

(2) Tech Concentration 

 

(3) GMP per Worker 

Change 

Inventors 

 

- - - 

Educated 0.938/.320*** 

(0.104) 

2.471/.378 *** 

(0.169) 

-0.024/.-.082 

(0.021) 

Creatives 

 

- - - 

Population 0.523/.611*** 

(0.030) 

1.357/.710*** 

(0.049) 

-0.036/-.430*** 

(0.009) 

Tech Concentration NA NA 0.030/.672*** 

(0.005) 

Tech Diversity NA NA -0.010/-.100 

(0.008) 

N 361 361 361 

Sq. Multiple Corr. .582 .793 .116 

CREATIVES 

 

(1) Tech Diversity 

 

(2) Tech Concentration 

 

(3) GMP per Worker 

Change 

Inventors 

 

- - - 

Educated 

 

- - - 

Creatives 0.924/.190*** 

(0.208) 

3.440/.316*** 

(0.341) 

0.073/.150** 

(0.033) 

Population 0.520/.607*** 

(0.036) 

1.288/.673*** 

(0.059) 

-.027/-.322*** 

(0.008) 

Tech Concentration NA NA 0.019/.439*** 

(0.005) 



Tech Diversity NA NA -0.012/-.125* 

(0.007) 

N 361 361 361 

Sq. Multiple Corr. .514 .754 .110 

COMBINED 

 

(1) Tech Diversity 

 

(2) Tech Concentration 

 

(3) GMP per Worker 

Change 

Inventors 0.298/.383*** 

(0.033) 

0.197/.118*** 

(0.056) 

0.017/.195*** 

(0.006) 

Educated 0.418/.156*** 

(0.117) 

1.658/.289 *** 

(0.196) 

-0.041/-.140** 

(0.020) 

Creatives -0.090/-.020 

(0.183) 

1.731/.181*** 

(0.305) 

0.060/.123** 

(0.030) 

Population 0.471/.601*** 

(0.026) 

1.218/.725*** 

(0.044) 

-0.029/-.343*** 

(0.009) 

Tech Concentration NA NA 0.024/.460*** 

(0.005) 

Tech Diversity NA NA -0.021/-.190** 

(0.008) 

N 361 361 361 

Sq. Multiple Corr. .591 .766 .175 

unstandardized/standardized coefficient, standard errors within brackets. 

*** indicates significance at the 0.01 level, ** at the 0.05 level, and * at the 0.1 level 

 

between change in GMP per worker and tech diversity, which implies that tech diversity has a 

negative impact on change in GMP per worker. Contrary to the results for GMP per worker in 

absolute terms, both inventors and creatives have a direct, positive and significant relation to 

change in GMP per worker. In other words, they have both an indirect effect via tech 

concentration, and direct in relation to change in GMP. Educated, however, has a negative and 

significant direct effect on change in GMP per worker.  

When inventors, educated, and creatives are used one at a time, the results of the first two 

equations will remain unchanged (given that they in principle are identical with the first two 

regressions in Table 7 above). When we examine the direct effects from the three on change in 

GMP per worker, the results are much in line with when they are used combined. Inventors tend 

to explain relatively more and remains significant at the 1 percent level in the change in GMP 



per capita regression. Similarly, creatives is significant in the direct relation regression, while 

educated, which was negative and significant in the combined model, now is insignificant. There 

is in other words reason to believe that the negative sign for educated in relation to change in 

GMP is a multicollinearity effect. However, also when the used alone, it is still weaker in 

relation to change in GMP per worker than inventors and creatives. 

To once more capture the different effects from inventors, educated and creatives, we 

isolate the indirect, direct and total effects for these variables in relation to change in GMP per 

worker, based on the regression results (Table 8): 

(Table 8 about here.) 

 

Table 8: Indirect, Direct, and Total Effects on Change in GMP per Worker 

 Unstandardized Standardized 

 Inventors Educated Creatives Inventors Educated Creatives 

One at a time       

Indirect .003 .064 .055 .038 .222 .115 

Direct .016 -.024 .073 .193 -.082 .150 

Total .019 .041 .128 .231 .141 .265 

Combined       

Indirect -0.002 0.03 0.043 -0.018 0.103 0.087 

Direct 0.017 -0.041 0.06 0.195 -0.14 0.123 

Total 0.015 -0.011 0.103 0.177 -0.037 0.21 

 

Given that the regression is in a log-linear form, the unstandarized coefficients cannot be 

interpreted as elasticities. For the combined model, we notice a weak indirect effect, but a strong 

direct effect from inventors on change in GMP per worker. Educated have an opposite relation, 

where the indirect effect is relatively stronger. For creatives the direct effect is stronger than the 

indirect effect, and both effects are positive. From the standardized results, we see that creatives, 

followed by inventors have the strongest total effect on change in GMP per worker. In total, 

educated has a negative total effect on change in GMP per worker, even though the indirect 



effect is the strongest among all four variables. Inventors has the strongest direct effect, followed 

by creatives.  

 Once more we find robust and consistent results, when we instead employ inventors, 

educated and creatives one at a time. Due to lack of control variables, the coefficient values 

become higher, compared to the combined model, but the relative strength still hold between the 

variables. Creatives is the strongest variable in relation to change in GMP per worker (0.265) 

followed by inventors (0.231), but clearly inventors have a relatively stronger direct effect 

(0.193). Educated has the strongest indirect effect (0.222), but is the weakest in terms of indirect 

effects, and therefore also the weakest in terms of total effects. 

 Overall, all three – inventors, educated, and creatives – play significant roles in order to 

explain both GMP per capita and change in GMP per capita, but they do so in different, mainly 

indirect, ways. Industry structures on the other hand have far stronger direct effects on regional 

productivity and change in productivity. 

 

5. Discussion 

 We have investigated the regional relationship between innovation and productivity in a 

way that more closely approximates the actual situation – inventive people generate ideas that 

may improve regional technology outcomes which, in turn, helps to generate beneficial 

productivity outcomes.  This modeling is important for a variety of reasons beyond its closer 

correspondence to actuality.  First, it more clearly identifies the relationships among innovative 

individuals, regional technology, and productivity.  Second, it allows for a comparison of various 

measures of innovators.  Third, it emphasizes the importance of individuals to the innovative 

process which allows for recognition that the impact of innovation on productivity need not 



necessarily be endogenous.  While some innovation accrues locally, some is mobile.  Often, an 

invention can occur in one location while the development and commercialization that created 

productivity benefits accumulates in a different location.  There can be both “buzz” and 

“pipelines” (Bathelt, Malmberg and Maskell, 2004).  The results clearly show that some 

inventive activity does accrue locally, but the variation in the results and importance of 

innovation to technology outcomes reveals that the mobility of innovation is also an important 

consideration – something that is not allowed for when a more standard linear model is used to 

evaluate these relationships. 

 Both productivity levels and productivity growth outcomes were considered.  Clearly, 

regional technology, diversity and high-tech concentration, have significant relationships with 

productivity outcomes.  Concentration had a positive relationship while diversity was generally 

negative and significant to productivity.   Economies of scale are more important to regional 

productivity outcomes than industrial diversity.  Regional population is a significant factor and 

was found to be positively and significantly related to productivity levels and negatively and 

significantly related to productivity growth. 

 Inventive individuals were measured three ways:  patent applications, education levels, 

creative employment.  While related to each other and overlaps exist, they are not substitutes for 

each other.  They were evaluated both separately and jointly, and their direct impact on regional 

technology and direct and indirect impact on productivity was considered.  In terms of impact on 

regional productivity levels, little direct affect was found between innovators and productivity.  

However, innovators were found to positively impact both technology diversity and 

concentration and through that indirectly impact productivity.  Regional human capital and 

creative class workforce had stronger relationships and greater impact on productivity levels.   



Regional productivity growth was also primarily indirectly impacted by innovators through the 

direct impact on technology.  Regional patent inventors and creative workforce had stronger 

direct relationships and greater impact on productivity growth.  Regional human capital had 

some significant relationships and indications that it may have a negative relationship to regional 

productivity growth.  This could be a result of multicollinearity with the other innovative 

measures or population size.  Overall, creative class had the best and strongest direct and indirect 

results in predicting both productivity level and productivity growth at the regional level. 

A longstanding research tradition assumes that endogenous technological development 

increases regional productivity.  It has been assumed that measures of regional patenting activity 

or human capital are an adequate way to capture the endogenous creation of new ideas that result 

in productivity improvements. First, an invention or innovation is generated, and then it is 

developed and commercialized to create benefits for the individual or firm owning the idea.  We 

used a SEM modeling framework to investigate the relationships among inventive activity and 

potential inventors, regional technology levels, and regional productivity outcomes.  Our results 

show almost no significant direct relationship between invention and productivity, except 

through technology.  Clearly, the simplification of the linear “invention in/productivity out” 

model does not hold, which supports other work that questions the use of patents and patenting 

related measures as meaningful innovation inputs to processes that generate regional productivity 

and productivity gains.  We also find that the most effective measure of regional inventive 

capacity, in terms of its effect on technology, productivity, and productivity growth is the share 

of the workforce engaged in creative activities. 
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