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Abstract

In this paper we derive central limit theorems for two di�erent types of Maha-

lanobis distances in situations where the dimension of the parent variable increases

proportionally with the sample size. It is shown that although the two estimators

are closely related and behave similarly in �nite dimensions, they have di�erent

convergence rates and are also centred at two di�erent points in high-dimensional

settings. The limiting distributions are shown to be valid under some general mo-

ment conditions and hence available in a wide range of applications.

Keywords: Mahalanobis distance, increasing dimension, weak convergence,

Marcenko-Pastur distribution, outliers, Pearson family.

JEL Classi�cation: C 55, C 38, C 46

1. Introduction

The Mahalanobis distance (MD) (Mahalanobis, 1936; Anderson, 2003; Mardia

et al., 1980) appears in various statistical contexts such as in outlier detection, clus-

ter analysis or in assessment of distributional properties of random vectors. While
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the properties of the sample MD are fairly well established in �nite dimensions (i.e.

when the dimension p of the random vector of interest is a �xed number), some care

needs to be taken in cases when p increases together with the sample size n such

that as p/n→ c (0, 1) as n→∞, p→∞. Some important matters were discussed

in Dai, Holgersson and Karlsson (2014), where it was shown that the standard MD

estimator has a too low range relative to the true unobservable MD and that the

leave-one-out MD estimator, derived by excluding a speci�c observation from the

estimation of the mean vector and covariance matrix on which the MD depends,

is asymptotically biased. In this paper we derive some asymptotic distributions of

Mahalanobis distances in high-dimensional settings as de�ned above, since such

results do not appear to be available in the literature. Limiting distributions will

in turn be important for making inference of, for example, a potential single outlier

or other inferences requiring a distribution. Speci�cally, we apply recent �ndings

of limiting spectral distributions (Bai and Silverstein, 2009; Bai et al., 2007) which

apply directly to the sample MD.

2. Mahalanobis distances

This paper is concerned with the MD de�ned by the scaled distance between an

individual observation and its expected value, sometimes referred to as individual

Mahalanobis distances. Formally, we make the following de�nition:

De�nition 1. Let Xi : p × 1 be a random vector such that E [Xi] = µp×1 and

E
[
(Xi − µ) (Xi − µ)′

]
= Σp×p for i = 1, ..., n. Then we make the following de�-

nition:

Dii := (Xi − µ)′Σ−1 (Xi − µ) . (1)
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The Dii statistic measures the scaled distance between an individual observa-

tion Xi and its expected value µ, which is frequently used to display data, assess

distributional properties and detect in�uential values. Estimators of (1) may be

obtained by simply replacing the unknown parameters with appropriate estima-

tors. In case both µ and Σ are unknown and replaced by the standard estimators

we get the well-known estimators de�ned below:

De�nition 2. Let X̄ = n−1X′1 and S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
. Then we

make the following de�nition:

dii :=
(
Xi − X̄

)′
S−1

(
Xi − X̄

)
. (2)

Further discussion of the statistic (2) is available in Mardia (1977) and Mar-

dia et al. (1980) Dai, Holgersson, Karlsson (2014). Note that although the in-

verse sample covariance matrix is sometimes expressed using a di�erent divisor

(for example n-p-1 instead of n), the statistic (2) is unbiased in the sense that

E [dii] = E [Dii] = p.

Alternative estimators are available through leave-one-out estimators, obtained

by omitting a speci�c observation from the estimation of the sample mean vector

and the sample covariance matrix, and thereby avoiding correlations between the

components within the MD estimator. Formally, this is done as follows:

De�nition 3. Let X̄(i) := (n− 1)−1
∑n

k=1,k 6=i Xk and S(i) :=

(n− 1)−1
∑n

k=1,k 6=i
(
Xk − X̄(i)

) (
Xk − X̄(i)

)′
. Then the following alternative esti-

mator of (1) is de�ned:

d(ii) :=
(
Xi − X̄(i)

)′
S−1(i)

(
Xi − X̄(i)

)
. (3)

3



Note that in case of independently identically normally distributed data the

sample mean vector and the sample covariance matrix are independent and hence

all components within the estimator (3) will be mutually independent, which re-

sults in estimators whose distributional properties di�er from that of (2) and are

also robust to a single outlier in the sense of not contaminating the estimators of

µ and Σ−1. They will hence be included for further investigations in the paper.

The MD distances has mainly been used in empirical works and very few results

are available about their behavior in high-dimensional settings, i.e. in cases where

the sample size n is proportional to the dimension of the random vector p. The

reminder of this section is therefore concerned with the asymptotic distributions

of (2) and (3) under such settings.

Proposition 1. Let Xi
iid∼N (µp×1,Σp×p) where sup

l
{λl}pl=1 ≤ r <∞ and inf

l
{λl}pl=1 ≥

r′ > 0 where λl are the eigenvalues of Σp×p. Moreover, suppose we have a sample

{X1, ...,Xn} such that p/n→ c where 0 ≤ c < 1. Then,
√
p
√

2

(
p−1Dii − 1

) `→N (0, 1) as n→∞, p→∞. (4)

Proof. Since Dii is invariant to linear transformations of the type Xi 7→ A+BXi

we may assume Xi (0, I). Hence Dii ∼ χ2
(p) and Proposition 1 follows. �

The asymptotic distribution obtained in Proposition 1 may easily be derived

under some general moment restrictions of the parent variable Xi and relax the

normality assumption. In real applications, however, the (inverse) covariance ma-

trix is unknown and has to be estimated, a problem which in turn bares on the

distribution of Xi. We will keep the normality assumption of Proposition 1 in the

derivation of the asymptotic properties of sample Mahalanobis distances in order

to access known �nite-sample properties, and later on relax this assumption.
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Theorem 1. Let Xi be distributed as in Proposition 1. Then,

√
p
√

2

(p−1dii − 1)√
(1− c)

`→N (0, 1) as n→∞, p→∞. (5)

Proof. Let G = (dij) be the matrix of sample Mahalanobis distances as de�ned

in De�nition 2 and let Hp = I− n−111′ where 1 is a vector of ones of appropriate

dimension. Following Mardia (1977) we have that

n−1H−1/2r GrH
−1/2
r ∼ Br

(
1

2
p,

1

2
(n− p− 1)

)
, (6)

where Gr and Hr are principal submatrixes of order r from G and H respec-

tively and Br has a matrix r × r Type I Beta distribution. We then have that

n−1H
−1/2
1 G1H

−1/2
1 = n−1(1− n−1)−1/2g11(1− n−1)−1/2 = g11/(n− 1) = M11, say,

which is distributed as a univariate type-I Beta distribution. Speci�cally, Mii ∼

BI (α, β) where α = p/2, β = (n− p− 1)/2. A convenient re-parameterization

(Mielke Jr, 1975; Balding and Nichols, 1995) is given by setting ν = α + β =

(n− 1)/2 and µ = α/(α + β) = p/(n− 1) which yields the moments,

µ = E [Mii] , (7)

σ2 = V [Mii] = µ (1− µ)/(1 + ν), (8)

γ1 =
E[Mii − µ]3

(V [Mii])
3/2

=
2 (1− 2µ)

√
1 + ν

(2 + ν)
√
µ (1− µ)

, (9)

γ2 =
E[Mii − µ]4

(V [Mii])
2 − 3 =

6

3 + ν

(
(1− 2µ)2 (1 + ν)

µ (1− µ) (2 + ν)
− 1

)
(10)

In other words the mean, variance, skewness and excess kurtosis ofMii are given

by µ, σ2, γ1 and γ2 respectively as de�ned above. Substituting n and p into µ, σ2,

γ1 and γ2 and taking limits it is found that lim
n,p→∞

µ = c, lim
n,p→∞

σ2 = 2c (1− c)/n,

lim
n,p→∞

γ1 = 0, lim
n,p→∞

γ2 = 0 and hence the beta distributed Mii limits a normal

distribution in the Pearson chart (Ord, 1972) determined by the plane of γ21 and

γ22 . Finally, noting that γ1 and γ2 are invariant to linear transformations of the
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type Mii 7→ a + bMii (so that centering and scaling does not a�ect the skewness

or kurtosis coe�cients) the proof is complete.

�

Remark 1: The assumption inf
l
{λl}pl=1 ≥ r′ > 0 of theorem 3 and 4 is neces-

sary to ensure that Σ is of full rank, which in turn (assuming p < n + 1) implies

full rank of S and hence existence of the unique inverse S−1. The second assump-

tion, sup
l
{λl}pl=1 ≤ r <∞, appears to be necessary due to the eigenvalue relation

λ(j) (Σ−1) =
(
λ(j) (Σ)

)−1
where λ(j) (A) denotes the j th ordered eigenvalue of A

since, if the largest eigenvalue λp is allowed to increase unboundedly as p → ∞,

then λ(p) (Σ−1) limits zero in which case S−1 will limit a singular matrix which in

turn means that the sample MD is not uniquely de�ned.

Remark 2: Note that when c = 1 the distribution in Theorem 1 becomes

degenerate since when n = p the statistic S−1 does not exist and hence dii is un-

de�ned.

Below we will drive a CLT similar to that of Theorem 1 for the leave-one-out

MD, which limits a di�erent point than the standard MD and hence requires a

di�erent formulation. Speci�cally, we have the following:

Theorem 2. Let Xi be distributed as in Proposition 1. Then,
√
p
√

2

√
(1− c)

(
p−1 (1− c) d(ii) − 1

) `→N (0, 1) as n→∞, p→∞.

Proof. Firstly, we note that dii is invariant to linear transformations Xi 7→ µ +

Σ1/2Xi for any positive semi-de�nite Σ. Hence we may assume that Xi
iid∼N (0, I)

and therefore
(
Xi − X̄(i)

)
∼ N

(
0,

(
n

n− 1

)
I

)
.
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Moreover, (n− 2) S(i) ∼ Wishart (n− 2, I) (Bilodeau and Brenner, 1999).

Noting that

(
n− 1

n

)1/2 (
Xi − X̄(i)

)
∼ N (0, I) it follows that d(ii) =

(n− 2)−1
(
n− 1

n

)(
Xi − X̄(i)

)′
S−1(ii)

(
Xi − X̄(i)

)
∼
(

(n− 2) p

n− p− 1

)
F(p,n−p−1) (Mar-

dia et al., 1980). Hence, p−1d(ii) ∼
(

n− 2

n− p− 1

)
F(p,n−p−1)

`→
(

n

n− p

)
F(p,n−p) =(

1

1− c

)
F(p,p(c−1−1)) or (1− c) p−1d(ii)

`→F(p,p(c−1−1)).

The expected value, variance, skewness and excess kurtosis of this distribution

are given Johnson et al. (1995) below:

µ = E
[
F(d1,d2)

]
=

d2
d2 − 2

,

σ2 = V
[
F(d1,d2)

]
=

2d22 (d1 + d2 − 2)

d1(d2 − 2)2 (d2 − 4)
,

γ1 =
(2d1 + d2 − 2)

√
2 (d2 − 4)

(d2 − 6)
√
d1 (d1 + d2 − 2)

,

γ2 = 12
d1 (5d2 − 22) (d1 + d2 − 2) + (d2 − 4) (d2 − 2)2

d1 (d2 − 6) (d2 − 8) (d1 + d2 − 2)
.

where d1 = p and d2 = n− p− 1. Therefore, lim
n,p→∞

E
[
(1− c) p−1d(ii)

]
= 1 and

lim
n,p→∞

V
[
(1− c) p−1d(ii)

]
= 2/p (1− c). The limits lim

n,p→∞
γ1 = 0, lim

n,p→∞
γ2 = 0 are

established in Appendix. It is well known (Ord, 1972) that the F-distribution is a

particular example of the Beta prime distribution, which belongs to the Pearson

type VI distribution. And since the skewness and excess kurtosis both limits

zero, the standardized d(ii) asymptotically converges to a normal distribution and

Theorem 2 is established.

�
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Although Theorems 1 and 2 above assume a Gaussian distribution of the par-

ent variable X, one may expect a limiting Gaussian distribution to be valid under

more general distributional properties of X. Below we will show that this is indeed

the case. Firstly, we will state a useful identity:

Remark 3: Duality between dii and d(ii):

Set W = nS and W(i) = (n− 1) S(i). Then we have that
∣∣W(i) + YiY

′
i

∣∣ =∣∣W(i)

∣∣ (1 + Y′iW
−1
(i) Y

)
and |W −YiY

′
i| = |W| (1−Y′iW

−1Y) and so∣∣W(i) + YiY
′
i

∣∣∣∣W(i)

∣∣ = 1 + n−1d(ii) and
|W−YiY

′
i|

|W| = 1− n−1dii.

Hence (1− cp−1dii)
(
1 + cp−1d(ii)

)
= 1 from which we get the identities p−1dii =

p−1d(ii)
1 + cp−1d(ii)

and p−1d(ii) =
p−1dii

1− cp−1dii
. Moreover, since 1 ≤

(
1 + cp−1d(ii)

)
it fol-

lows that 0 ≤ cp−1dii ≤ 1, or equivalently 0 ≤ p−1dii ≤ c−1, which explicitly shows

how the range of p−1dii is restricted by c. In particular, p−1dii will have a too

low range relative to p−1Dii for large values of c (for example, if Xi is normally

distributed then p−1d(ii) ∼ p−1χ2
(p), which is not bounded above).

Theorem 3. Let Xi be iid distributed with E[(Xij − µj)/σj]4 ≤ ν < ∞, j =

1, ..., p, i = 1, ..., n and p/n→ c where 0 < c < 1. Then,
√
p
√

2

√
(1− c)

(
(1− c) p−1d(ii) − 1

) `→N (0, 1) as n→∞, p→∞

Proof. From Jonsson (1982); Bai et al. (2007), we have that
√
p√
2

(
p−1tr

(
S̃−1(i)

)
− (1− c)−1

)
converges weakly to a normal distribution with zero

mean and variance∫
1
z2
dFc (z)−

(∫
1
z
dFc (z)

)2
where dFc (z) = 1

2πzc

√(
(1 +

√
c)

2 − z
)(

z − (1−
√
c)

2
)

is the standard Marcenko-Pastur distribution (Marchenko and Pastur, 1967; Bai
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et al., 2007). It may be shown that
∫

1
z
dFc (z) = (1− c)−1 and that

∫
1
z2
dFc (z) =

1
(1−c)3 (Arharov, 1971; Serdobolskii, 2000; Glombek, 2014) so that

V
[√

p√
2

(
(1− c) p−1d(ii) − 1

)]
→
(

1
1−c

)
which completes the proof.

�

Theorem 4. Let Xi be distributed as in Theorem 3. Then
√
p
√

2

(p−1dii − 1)√
(1− c)

`→N (0, 1) as n→∞, p→∞

Proof. From Theorem 3, we know that

√
p
√

2
(1− c) p−1d(ii)

`→N

(√
p
√

2
,

1

1− c

)
as n→

∞, p→∞ or

√
p
√

2
p−1d(ii)

`→N

(√
p
√

2

1

1− c
,

1

(1− c)3

)
. Since

√
p√
2
p−1dii =

√
p
√

2

p−1d(ii)
1 + cp−1d(ii)

is a simple measurable function we can apply Cramer's theorem (Ferguson, 1996)

to get
(
g
(
p−1d(ii)

)
− g (µ)

) `→N

(
0, ġ2 (µ)

1

(1− c)3

)
where µ =

√
p
√

2

1

1− c
and

g

(√
p
√

2
p−1d(ii)

)
=

√
p
√

2
p−1d(ii)

1 + c

√
p
√

2
p−1d(ii)

is a function of

√
p
√

2
p−1d(ii) so that g (µ) =

µ

1 + c

√
2
√
p
µ

= g

(√
p
√

2

1

1− c

)
=

√
p
√

2

1

1− c

1 + c
√
p√
2

√
2
√
p

1

1− c

=

√
p
√

2

1

1− c
1 + c

1

1− c

=

√
p
√

2
. Then

we �nd that ġ2 (µ) = (∂g (µ)/∂µ)2 =

[
∂

(
µ

1 + cµ

)/
∂µ

]2
=

1

/(
1 + c

√
2
√
p
µ

)2
2

,

or in terms of µ =

√
p
√

2

1

1− c
, ġ2

(
1

1− c

)
=

1

/(
1 +

√
2
√
p
c

√
p
√

2

1

1− c

)2
2

=

1

/(
1 +

√
2
√
p
c

√
p
√

2

1

1− c

)4

= (1− c)4. Therefore we get that
√
p
√

2

(p−1dii − 1)√
(1− c)

`→N (0, 1) as n→∞, p→∞. �
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Remark 4: Note that, although Theorems 3 and 4 are more general in the

sense that they don't require a normal distribution of the parent variable Xi, or

even existence of all moments, Theorems 1 and 2 are still relevant since they say

a little bit more than Theorems 3-4, namely that the normalized MD distribution

limits the normal distribution within the Pearson (γ1, γ2) plane (i.e. within the

Pearson family of distributions) and hence possess all Pearson family properties

for any pairing (n, p) such that p < n+ 1.

3. summary

In this paper central limit theorems are derived for two types of individual Ma-

halanobis distances in cases where the dimension of data increases proportionally

with the sample size. It is shown that the type of MD estimator obtained by omit-

ting a single observation from the estimation results in an asymptotic distribution

di�erent to that of the standard estimator. Moreover, an explicit link between the

leave-one-out estimator and the standard estimator is given which in turn can be

used to derive various properties of the MD estimator. The limiting distributions

derived in the paper only require a �nite fourth order moment restriction and will

be useful for making inference of a single outlier or other applications requiring a

sampling distribution. While some type of inferences, for example of linear combi-

nations or vector-valued statistics of Mahalanobis distances, may be of relevance

such problems will be challenging in several senses and is left for future research.

10



Appendices

A.

γ1 =
(2d1 + d2 − 2)

√
2 (d2 − 4)

(d2 − 6)
√
d1 (d1 + d2 − 2)

=
(2p+ n− p− 1− 2)

√
2 (n− p− 1− 4)

(n− p− 1− 6)
√
p (p+ n− p− 1− 2)

=
(n+ p− 3)

√
2 (n− p− 5)

(n− p− 7)
√
p (n− 3)

=

(
1 + p

n
− 3

n

)√
2
(
1− p

n
− 5

n

)
(
1− p

n
− 7

n

)√
p
(
1− 3

n

) .

Hence,

lim
n,p→∞

γ1 = lim
n,p→∞

(1 + c)
√

2 (1− c)
(1− c)

√
cn

→ 1√
n

(1 + c)
√

2 (1− c)
(1− c)

→ 0

Also,

γ2 = 12
d1 (5d2 − 22) (d1 + d2 − 2) + (d2 − 4) (d2 − 2)2

d1 (d2 − 6) (d2 − 8) (d1 + d2 − 2)

= 12
p (5 [n− p− 1]− 22) (p+ n− p− 1− 2) + (n− p− 1− 4) (n− p− 1− 2)2

d1 (n− p− 1− 6) (n− p− 1− 8) (p+ n− p− 1− 2)

= 12
p (5n− 5p− 5− 22) (n− 3) + (n− p− 5) (n− p− 3)2

p (n− p− 7) (n− p− 9) (n− 3)
.

Hence,

lim
n,p→∞

γ2 = lim
n,p→∞

12
5p (n− p)n+ (n− p) (n− p)2

p (n− p) (n− p)n

→ 12
5np (n− p) + (n− p)3

np(n− p)2

→ 12
5p/n+ (1− p/n)2

p (1− p/n)

→ 12
5c+ (1− c)2

p (1− c)
→ 0.
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