
 
 

 
 

 

CESIS Electronic Working Paper Series 

 

Paper No. 362 

 

 

 

Estimating Individual Mahalanobis Distance in High-

Dimensional Data 

 

Dai D.  
Holgersson T.  

Karlsson P. 
 

 

 

 

May, 2014 

 

 

 

 

The Royal Institute of technology 

Centre of Excellence for Science and Innovation Studies (CESIS) 

http://www.cesis.se 



Estimating Individual Mahalanobis Distance in

High-Dimensional Data

Dai. D. 1 Holgersson. T. 1,2 Karlsson. P.1,2

Abstract

This paper treats the problem of estimating individual Mahalanobis distances

(MD) in cases when the dimension of the variable p is proportional to the sam-

ple size n. Asymptotic expected values are derived under the assumption p/n →

c, 0 ≤ c < 1 for both the traditional and the leave-one-out estimators. It is shown

that some estimators are asymptotically biased, but that biased corrected versions

are available. Moreover, a risk function is derived for �nding an optimal estimate

of the inverse covariance matrix on which the MD depends. This is then used to

identify the optimal estimate of the inverse covariance matrix which, unlike the

standard estimator, yields e�cient MD estimates over the whole range 0 ≤ c < 1 .

Keywords: Increasing dimension data, Mahalanobis distance, Inverse covariance

matrix, Smoothing

JEL Classi�cation: C 55, C 38, C 46

1. Introduction

The Mahalanobis distance (MD) is a fundamental distance measure originally

proposed by Mahalanobis (1936). It is used in various kinds of statistical problems

1Linnaeus university, SE 351 95, Växjö, Sweden
2Jönköping university, SE 551 11, Jönköping, Sweden
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in which marginal variables within random vectors are intercorrelated. MD may

be thought of as a studentized random vector, in the sense that the random vector

of interest is centered and pre-multiplied by an orthogonalizing matrix, thereby

transforming it to a new vector with asymptotically zero mean and uncorrelated

marginals. Important cases involve the distance between a sample mean vector

and a hypothesized mean value vector or that between sample mean vectors from

two independent samples. In this case, the MD is used for hypothesis testing or

the estimation of con�dence ellipsoids (Rao, 1945) and within discriminant anal-

ysis (Fisher, 1940). But the MD is also used for measuring the distance between

two individual observations of a random vector, frequently used in hierarchical

cluster analysis (Friedman, Hastie and Tibshirani, 2001), and for assessing the as-

sumption of multivariate normality (Mardia, 1974; Mardia, Kent and Bibby, 1980;

Mitchell and Krzanowski, 1985; Holgersson and Shukur, 2001). Other uses involve

the distance between individual observations of a random vector to its sample

mean value. This distance is commonly used in the search for multivariate outliers

(Wilks, 1963; Mardia, Kent and Bibby, 1980).

The above mentioned analyzes are usually fairly straightforward, and the asymp-

totical properties well established because of the relatively simple functional form

of the MD. Recent attention, however, has been brought to applications of the

MD where the sample size (n) asymptotically increase with the dimension of the

random vector (p) to a constant, say p/n → c, 0 ≤ c < 1. This case complicates

the situation considerably since the MD involves an estimator of the inverse covari-

ance matrix, which in turn may be inconsistent or badly behaved in other senses

when c > 0 . While estimation of the inverse covariance matrix alone has been

given some attention in the literature, such as in Serdobolskii (2000), Girko (1995)

and Ledoit and Wolf (2004), Jonsson (1982), Efron and Morris (1976), it has been
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given less attention in cases where it is used within a composite statistic, such as in

the MD. An exception is Holgersson and Karlsson (2012), who proposed a family

of additive ridge estimators for the MD in high-dimensional data. That method

proved to outperform the standard MD estimator in a wide range of settings, but

it depends on an unknown regularization coe�cient that must be estimated from

data, which in turn complicate its usage.

In this paper we consider a somewhat di�erent family of estimators for the

individual MD. We utilize a family of estimators of the inverse covariance matrix

originally developed by Efron and Morris (1976). A risk function speci�cally de-

signed for the MD is developed, and it is shown that any estimator of the inverse

covariance matrix which minimizes this risk function simultaneously minimizes

three di�erent types of MDs � and that there is hence no need to treat the special

cases individually. We also derive the optimal MD within the given family of es-

timators and compare it to the standard estimator through a small Monte Carlo

simulation.

In Section 2 the MDs used in the paper are presented and de�ned, and the

expected values of some standard MDs are derived under high-dimension asymp-

totics. Section 3 introduces a risk function used in the paper, while Section 4

derives the optimal estimator within this family. Finally, a brief summary is given

in Section 5. Some straightforward derivations appear in the appendix.
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2. Mahalanobis distances

There are several di�erent types of MDs that arise in di�erent applications, such

as in inference of location, diagnostic testing, cluster analysis, and discriminant

analysis. The distance measures usually involve either distances between sample

and population mean value vectors or distances between individual observations

and their expected values. This paper is concerned with the latter case. We de�ne

some speci�c MD measures and estimates thereof. Of particular interest are the

expected values of these estimators in high-dimensional settings � that is, in cases

where the dimension of data increases simultaneously with the sample size, since

this has not been considered previously in the literature. The three di�erent MDs

considered in the paper are de�ned below:

De�nition 1. Let Xi : p × 1 be a random vector such that E [Xi] = µ and

E
[
(Xi − µ) (Xi − µ)′

]
= Σp×p. Then we make the following de�nitions:

Dii = p−1(Xi − µ)′Σ−1 (Xi − µ) . (1)

Dij = p−1(Xi − µ)′Σ−1 (Xj − µ) . (2)

Ḋij = p−1(Xi −Xj)
′Σ−1 (Xi −Xj) . (3)

The Dii statistic measures the scaled distance between an individual observa-

tion Xi and its expected value µ, which is frequently used to display data, assess

distributional properties, and detect in�uential values. The Dij measures the dis-

tance between two scaled and centered observations. It is used in cluster analysis

and also to calculate the Mahalanobis angle between Xi and Xj subtended at µ,

de�ned by cosθ (Xi,Xj) = Dij

/√
DiiDjj . The third statistic, Ḋij , is related to

Dij but centers the observation Xi about another independent observation Xj and

is thereby independent of an estimate of µ . Estimators of (1) � (3) may be ob-

tained by simply replacing the unknown parameters with appropriate estimators.
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If both µ and Σ are unknown and replaced by the standard estimators, we get the

well-known estimators de�ned below:

De�nition 2. Let X̄ = n−1X′1 and S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
. Then we

make the following de�nitions:

dii = p−1
(
Xi − X̄

)′
S−1

(
Xi − X̄

)
. (4)

dij = p−1
(
Xi − X̄

)′
S−1

(
Xj − X̄

)
. (5)

ḋij = p−1(Xi −Xj)
′S−1 (Xi −Xj) . (6)

Further discussion of the statistics (4) � (6) are available in Mardia (1977) and

Mardia, Kent and Bibby (1980). There are, however, other possible estimators that

may be more useful. In particular, it will sometimes be desirable to circumvent

the dependence between {Xi,Xj} and
{
S−1, X̄

}
in the MD. This is conveniently

achieved by simply omitting {Xi,Xj} from the calculations of
{
S−1, X̄

}
. For-

mally, it is done as follows:

De�nition 3. Let S(i) = (n− 1)−1
∑n

k=1,k 6=i
(
Xk − X̄(i)

) (
Xk − X̄(i)

)′
, X̄(i) =

(n− 1)−1
∑n

k=1,k 6=i Xk, S(ij) = (n− 2)−1
∑n

k=1,k 6=i,k 6=j
(
Xk − X̄(ij)

) (
Xk − X̄(ij)

)′
and X̄(ij) = (n− 2)−1

∑n
k=1,k 6=i,k 6=j Xk. Then the following alternative estimators

of (1) - (3) are de�ned:

d(ii) = p−1
(
Xi − X̄(i)

)′
S−1(i)

(
Xi − X̄(i)

)
. (7)

d(ij) = p−1
(
Xi − X̄(ij)

)′
S−1(ij)

(
Xj − X̄(ij)

)
. (8)

ḋ(ij) = p−1(Xi −Xj)
′S−1(ij) (Xi −Xj) . (9)

The estimators in (7) � (9) are frequently referred to as �leave-one-out� (Mar-

dia, 1977) and �leave-two-out� estimators (De Maesschalck, Jouan-Rimbaud and
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Massart, 2000). They have several advantages over (4) � (6). In particular, if there

is a single outlier in the data set, it will not contaminate the sample mean value

or covariance matrix. In addition, in case of independently identically normally

distributed data, the sample mean vectors and the sample covariance matrix are

independent; hence all components within the MD will be mutually independent,

which in turn facilitates the derivation of their distributional properties. The es-

timators (7) � (9) thus provide interesting alternatives to the standard estimators

(4) � (6) and are included for further investigation here.

Since the MDs have mainly been used in empirical works and very few theoreti-

cal properties are available, little is known about their behavior in high-dimensional

settings � that is, in cases where the sample size n is proportional to the dimen-

sion of the random vector p. The reminder of this section is concerned with the

expected values of the statistics (1) � (9) in such settings.
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Proposition 1. Let Xi
iid∼N (µ,Σ) i = 1, 2, ..., n where sup

j
{λj}pj=1 ≤ r <∞ and

inf
j
{λj}pj=1 ≥ r′ > 0 j = 1, 2, ..., p, where λi are the eigenvalues of Σp×p. Then the

following holds:

(a) E [Dii] = 1.

(b) E [Dij] = 0.

(c) E
[
Ḋij

]
= 2.

(d) E [dii] = 1.

(e) E [dij] = − 1

n− 1
.

(f) E
[
ḋij

]
=

2n

n− 1
.

(g) E
[
d(ii)

]
=

n

(n− p− 3)
.

(h) E
[
d(ij)

]
=

1

(n− p− 4)
.

(i) E
[
ḋ(ij)

]
=

2 (n− 2)

(n− p− 4)
.

Proof: (a) � (c) and (g) � (i) are given in Appendix A, while (d) � (f) are

given in Mardia (1977).

We are interested in estimating Dii, Dij and Ḋij themselves rather than their

expected values. It is, however, important to develop MD estimators that are cen-

tered about the same point as the corresponding true MD � that is, they should

have the same (asymptotic) expected values. Possible biases may lead to �awed

analyzes in, for instance, cluster analysis and outlier detection analysis. The dif-

ferences between the expected values are listed below.
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Proposition 2. Let Xi
iid∼N (µ,Σ), where sup

j
{λj}pj=1 ≤ r < ∞, inf

j
{λj}pj=1 ≥

r′ > 0, where λi are the eigenvalues of Σp×p. Moreover, suppose we have a sample

{X1, ...,Xn} such that p/n→ c where 0 ≤ c < 1, and let ν ∈ R be a non-random

�nite constant. Then,

(a) E [νdii −Dii] = ν − 1.

(b) lim
n,p→∞

E
[
νd(ii) −Dii

]
=

ν

1− c
− 1.

(c) lim
n,p→∞

E [νdij −Dij] = 0.

(d) lim
n,p→∞

E
[
νd(ij) −Dij

]
= 0.

(e) lim
n,p→∞

E
[
νḋij − Ḋij

]
= 2 (ν − 1) .

(f) lim
n,p→∞

E
[
νḋ(ij) − Ḋij

]
= 2

(
ν

1− c
− 1

)
.

Proof: Follows directly from Proposition 1 by inserting the expected values

and taking limits.

Several interesting observations can be made based on Proposition 2. In par-

ticular, the constant ν may be set either to 1, which corresponds to estimating the

MD using the biased inverse covariance matrix estimator de�ned by S−1 , or al-

ternatively to ν = (n− p− 1)/n , which yields the well-known unbiased estimator

(n− p− 1)/nS−1 (e.g., Mardia, Kent and Bibby (1980)). Appropriate degrees-of-

freedom adjustments should be made for the leave-one-out estimator d(ii) and for

the leave-two-out estimator d(ij). Note, however, that no single choice of ν yields

asymptotically unbiased estimators for all six MD estimators simultaneously; it

must be set individually for each estimator. For example, if ν = 1 , then according

to Propositions 2 (a) and 2 (b), E
[
1 · d(ii)

]
= E [Dii] , but E [1 · dii] 6= E [Dii]; in

other words, 1 · dii is an unbiased estimator of Dii, whereas 1 · d(ii) is not. On the

other hand, setting ν = (n− p− 1)/n reverses the situation. Similar conclusions
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can be drawn from Proposition 2 (c) � (f). Using the unbiased estimator of Σ−1

within the MD estimator yields biased MD estimates in some cases and unbiased

ones in others. This is largely an e�ect of allowing for increasing-dimension asymp-

totics, since for a �xed p the constant ν = (n− p− 1)/n will limit 1 as n → ∞,

and hence the choice between S−1 and (n− p− 1)/nS−1 is immaterial. But when

c 6→ 0 the choice of ν becomes crucial. To clarify things, we list the appropriate

asymptotically unbiased MD estimates in Corollary 1.

Corollary 1. Let X1, ...,Xn be distributed as in Proposition 2. Then the following

properties hold:

(a) E [dii −Dii] = 0. (10)

(b) lim
n,p→∞

E
[
(1− c) d(ii) −Dii

]
= 0. (11)

(c) lim
n,p→∞

E [dij −Dij] = 0. (12)

(d) lim
n,p→∞

E
[
d(ij) −Dij

]
= 0. (13)

(e) lim
n,p→∞

E
[
ḋij − Ḋij

]
= 0. (14)

(f) lim
n,p→∞

E
[
(1− c) ḋ(ij) − Ḋij

]
= 0. (15)

Proof: Follows from Proposition 2.

We conclude from Corollary 1 that some MD estimators should involve S−1 ,

while others should involve ((n− p− 1)/n) S−1 in order to being unbiased. For

example, according to Corollary 1 (e) and (f), ḋij is asymptotically unbiased, while

ḋ(ij) has to be pre-multiplied by (1− c) to be unbiased, which is somewhat unex-

pected. Also note that the bias resulting from using an inappropriate estimator

may be substantial if c is close to 1.
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The �rst-order moments derived above give some insight into the high-dimensional

properties of the MD estimates, but the expected values are obviously not su�-

cient to describe the general usefulness of an estimator. Second-order moments

are important, too. In particular, there is the issue of how to develop improved

MD estimators that remain well-behaved in high-dimensional asymptotics. Con-

sidering the fact that the standard MD estimator (2.4) depends on two unknown

parameters which need to be estimated, µ and Σ, the question arises which of

the two is more important with respect to the MD estimate. Bai, Liu and Wong

(2009) argue that �although the sample covariance S is not a good estimator of the

true Σ when the dimension is large, the sample mean X̄ is still a good estimator

of µ .� One may hence expect that improved MD estimators should place focus on

the (inverse) covariance matrix rather than on the mean vector. This conjecture is

supported by the correlations in Proposition 3, which shows that the asymptotic

correlation between the true MD and the estimated MD with µ replaced by X̄

equals 1, whereas the correlation between the true MD and that estimated with

known µ and with Σ−1 replaced by S−1 will in turn not limit 1 unless (p/n)→ 0 .

Proposition 3. Let X1, ...,Xn be distributed as in Proposition 2, and let k =

n−1 (n− 1), Sµ = n−1
∑n

i=1 (Xi − µ)(Xi − µ)′ and di(µ,Sµ) = (Xi − µ)′Sµ
−1 (Xi − µ) =

Z′iS
−1
µ Zi. Then the following properties hold:

(a) Corr
[
Dii, di(µ,Sµ)

]
=

{
2p (n−p)

n+2

}
{√

2p
√

2p (n−p)
n+2

} =

√
(n− p)
n+ 2

→
n,p→∞

√
1− c.

(b) Corr
[
Dii, di(X̄,Σ)

]
=

2p
(
n−1
n

)2
√

2p
√

2p
(
n−1
n

)2 =

(
n− 1

n

)
→

n,p→∞
1.

(c) V ar
[
di(X̄,S)

]
=

2p (n− p− 1)

(n+ 1)
→

n,p→∞
2p (1− c) .
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Proof: First, we have that E
[
Di · di(µ,Sµ)

]
= E

[
tr
(
ZiZ

′
iS
−1
µ ZiZ

′
i

)]
, where

Zi ∼ N (0, I) and nSµ ∼ W (n, I). Write nSµ = n
(∑n

j 6=i ZjZ
′
j + ZiZ

′
i

)
=

n
(
Sµ,(i) + ZiZ

′
i

)
. Then

{
Z′iS

−1
µ Zi

}
and {Sµ} are independent (Srivastava and

Khatri, 1979). Hence,

E
[
tr
(
ZiZ

′
iS
−1
µ ZiZ

′
i

)]
= E

[
tr
(
S−1/2µ ZiZ

′
iS
−1/2
µ S−1/2µ ZiZ

′
iS
−1/2
µ · Sµ

)]
= E

[
tr
((

S−1/2µ ZiZ
′
iS
−1/2
µ

)2
Sµ

)]
= tr

(
E
[
S−1/2µ ZiZ

′
iS
−1/2
µ

]2
E [Sµ]

)
= nE

[(
Z′iS

−1
µ Zi

)2]
.

But nSµ =
(∑n

j 6=i ZjZ
′
j + ZiZ

′
i

)
∼
(
W(i) + Wi

)
, where W(i) ∼ Wishart (n− 1, I) ,

Wi ∼ Wishart (1, I), and the two terms are independent. We may then use the

identity 1 − Z′iS
−1Zi =

∣∣W(i)

∣∣∣∣W(i) + Wi

∣∣ =

∣∣S(i)

∣∣
|S|

, and it follows from Rao (2009)

that Z′inS−1Zi ∼ B

(
p

2
,
(n− 1)− p+ 1

2

)
, where B (α, β) is a Type I Beta dis-

tribution (Johnson, Kotz and Balakrishnan, 1995), and hence E[Z′iS
−1Zi]

2
=

p (p+ 2)

(
n

n+ 2

)
, and the expected value and variance are obtained similarly

from the Beta distribution, which proves (a). Next, we note that

E
[
Di · di(X̄,Σ)

]
= E

[
Z′iZi

(
Zi − Z̄

)′ (
Zi − Z̄

)]
= E

[
Z′1Z1Z

′
1Z1 − 2Z̄′Z1Z

′
1Z1 + Z′1Z1Z̄

′Z̄
]
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= E
[
χ2
(p)

]2 − 2n−1E

[
Z′1Z1Z

′
1Z1 +

(∑n

i 6=1
Zi

)′
Z1Z

′
1Z1

]
+ n−2E

[
Z′1Z1Z

′
1Z1 + (n− 1)E(Z′1Z1Z

′
iZi)i 6=1

]
=
(
p2 + 2p

) (
1− 2n−1

)
+ n−2

(
p2 + 2p

)
+ n−2 (n− 1) p2

= 2pk2 + p2k.

Next, E
[
di(X̄,Σ)

]
and V ar

[
di(X̄,Σ)

]
may be obtained from the property

di(X̄,Σ) =
(
Xi − X̄

)′
Σ−1

(
Xi − X̄

)
∼
(
Zi − Z̄

)′ (
Zi − Z̄

)
, where

(
Zi − Z̄(i)

)
∼

N (0, kI), where k is de�ned above, and E [Di] and V ar [Di] are obtained from

Di ∼ χ2
(p), which proves (b). Finally, the moments of di are given in Mardia

(1977), which yields (c).

Several important conclusions can be made from Proposition 3. First, in com-

parison with (a), where the mean value but not the covariance matrix is known,

and with (b), which reverses the situation, the correlation between the true and

the estimated MD does not limit 1 in (a), but it does limit 1 in (b). This veri�es

the conjecture that the covariance matrix is a concern in estimating the MD in

high-dimensional data, whereas the mean vector is not. Hence improved estima-

tors should involve alternative estimators of the (inverse) covariance matrix rather

than the sample mean vector. Second, the variance of the standard estimator

di does not limit the variance of the true MD, V ar [Di] = 2p , and hence the

range of di will typically not correspond to that of Di , meaning that they have

fundamentally di�erent limiting distributions. In the next section we develop an

appropriate risk function for the MD that may be used to develop estimators with

certain optimality properties. This includes estimators of a wider class than those

considered above.
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3. A new class of MD estimators

In this section we consider a wider family of estimators, of which those consid-

ered in Section 2 are special cases. Of particular interest is a family of estimators

proposed by Efron and Morris (1976), de�ned by

Σ̂−1a,b = aS−1 + b
(
p−1trS

)−1
I, (16)

where a and b are non-random constants (the original estimator by Efron and

Morris (1976) is de�ned slightly di�erently, but the format (16) is more convenient

for our purposes). This estimator is interesting from several points of view. A typ-

ical eigenvalue of Σ̂−1a,b is given by al−1j + b
(
l̄
)−1

, where lj is an eigenvalue of S and

l̄ its arithmetic mean. Hence, if a+b = 1 , the eigenvalues of Σ̂−1a,b are smoothed to-

wards l̄−1. In this sense, the estimator is a regularized estimator and may hence be

expected to perform better than the standard estimator S−1 in high-dimensional

settings. It may also be shown that p−1tr
(
Σ̂−1a,b

)
is algebraically smaller than the

�overestimated� p−1tr (S−1) and hence stochastically closer to p−1tr (Σ−1) (proof

omitted). Moreover, unlike other non-linearly regularized estimators, such as re-

solvent estimators (Serdobolskii, 2007) whose expected values are unknown, Σ̂−1a,b

has a closed, simple form which in turn facilitates its use within MD estimates.

Using the estimator (16) within the MD, we de�ne the following normalized esti-

mators of Dii, Dij and Ḋij:

De�nition 4. Let X̄ = n−1X′1, S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
and Σ̂−1a,b =

aS−1 + b(p−1trS)
−1

I, where a and b are non-random constants. Then we make the

following de�nitions:

eii = p−1
(
Xi − X̄

)′
Σ̂−1a,b

(
Xi − X̄

)
. (17)

eij = p−1
(
Xi − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)
. (18)

ėij = p−1(Xi −Xj)
′Σ̂−1a,b (Xi −Xj) . (19)
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The expected values of these estimators are given in Proposition 4.

Proposition 4. Let Xi
iid∼N

(
µp×1,Σp×p

)
i = 1, 2, ..., n, where sup

j
{λj}pj=1 ≤ r <

∞, inf
j
{λj}pj=1 ≥ r′ > 0 j = 1, 2, ..., p, where λi are the eigenvalues of Σp×p and

a and b are �xed non-random constants, and Σ̂−1a,b = aS−1 + b(p−1trS)
−1

I, where

S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
. Then the following holds:

(a) E [eii] = a+ b.

(b) E [eij] = − a+ b

n− 1
.

(c) E [ėij] = −2n (a+ b)

n− 1
.

Proof:

(a) Since the variables
(
Xi − X̄

)′ {
I(p−1tr (S))

−1
}(

Xi − X̄
)
are identically

distributed and
∑n

i=1

(
Xi − X̄

)′ {
I(p−1tr (S))

−1
}(

Xi − X̄
)

= (p−1tr (S))
−1
tr (nS) =

np, it follows that

E [eii]

= E
[
p−1
(
Xi − X̄

)′
aS−1

(
Xi − X̄

)]
+ p−1E

[(
Xi − X̄

)′ {
bI
(
p−1tr (S)

)−1}(
Xi − X̄

)]
= a+ b,

where the �rst term is given by Proposition 1(d). �
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(b) The terms
(
Xi − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)
are identically distributed, and hence

E [eij] = E
[
p−1
(
Xi − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)]
= p−1(n− 1)−1

∑n

i 6=j
E
[(

Xi − X̄
)′

Σ̂−1a,b
(
Xj − X̄

)]
= p−1(n− 1)−1E

[(∑n

i 6=j

(
Xi − X̄

)′)
Σ̂−1a,b

(
Xj − X̄

)]
= p−1(n− 1)−1E

[(∑n

i=1

(
Xi − X̄

)′ − (Xj − X̄
)′)

Σ̂−1a,b
(
Xj − X̄

)]
= p−1(n− 1)−1E

[
−
(
Xj − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)]
= −(n− 1)−1E [eii]

= − a+ b

n− 1
. �

(c) It holds that

E [ėij] = E
[
p−1(Xi −Xj)

′Σ̂−1a,b (Xi −Xj)
]

= E
[
p−1
((

Xi − X̄
)
−
(
Xj − X̄

))′
Σ̂−1a,b

((
Xi − X̄

)
−
(
Xj − X̄

))]
= E

[
p−1
(
Xi − X̄

)′
Σ̂−1a,b

(
Xi − X̄

)]
− 2E

[
p−1
(
Xi − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)]
+ E

[
p−1
(
Xj − X̄

)′
Σ̂−1a,b

(
Xj − X̄

)]
.

From Proposition 3.2 (a) and (b) it then follows that

E [ėij] = (a+ b)− 2

(
− a+ b

n− 1

)
+ (a+ b) =

2n (a+ b)

n− 1
. �

The expected values of Proposition 4 are interesting because they show that

under the constraint (a+ b) = 1, the expectations of the MD in (17) � (19) coin-

cide with those of the traditional MD estimates in Proposition 1 (d) - (f).

The �rst-order moment properties are, however, not su�cient to describe the

general usefulness of an estimator; second-order moments are also important.
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Hence, in order to derive optimal values of a and b, an appropriate risk func-

tion to be optimized is required. Moreover, such a function must be derived with

respect to the MD since an estimator optimal for estimating Σ−1 alone need not

necessarily produce an optimal estimator of the MD. In order to develop an ap-

propriate risk function, we start by considering the common MD estimate dii and

note that the expected value of the distance between this MD estimate and the

population counterpart Dii may be written as

E (dii −Dii)

= n−1
∑n

i=1
E (dii −Dii)

= n−1
∑n

i=1
E
{(

Xi − X̄
)′

S−1
(
Xi − X̄

)
−((

Xi − X̄
)
−
(
µ− X̄

))′
Σ−1

((
Xi − X̄

)
−
(
µ− X̄

))}
= n−1

∑n

i=1
E
(
Xi − X̄

)′ (
S−1 −Σ−1

) (
Xi − X̄

)
+ E

(
X̄− µ

)′
Σ−1

(
X̄− µ

)
.

The second term of this expression is positive w.p.1; hence, squaring (S−1 −Σ−1)

yields a strictly positive measure. The risk function normalized by p−1 hence be-

comes

R
(
S−1
)

= p−1n−1E
[∑n

i=1

(
Xi − X̄

)′(
S−1 −Σ−1

)2 (
Xi − X̄

)]
+

p−1E
[(
µ− X̄

)′
Σ−1

(
µ− X̄

)]
= p−1n−1E

[
tr
{(

S−1 −Σ−1
)2∑n

i=1

(
Xi − X̄

)′ (
Xi − X̄

)}]
+

p−1trE
[
Σ−1

(
µ− X̄

) (
µ− X̄

)′]
= p−1tr

{
E
[(

S−1 −Σ−1
)2

S
]}

+ n−1.

For an arbitrary estimator of the inverse covariance matrix, say Σ̂−1, and ig-

noring the constant n−1 term, we arrive at the following risk function:

R
(
Σ̂−1

)
= p−1tr

{
E

[(
Σ̂−1 −Σ−1

)2
S

]}
.

The risk measure (16) has been used earlier in Holgersson and Karlsson (2012)

and also coincides with a risk measure previously developed by Efron and Morris
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(1976), though the latter authors derived it from an empirical Bayes perspective

and for the purpose of estimating Σ−1 alone. Moreover, it may be shown that any

Σ̂−1 which minimizes (16) will minimize not only the di�erence (dii −Dii) but also

(dij −Dij) and
(
ḋij − Ḋij

)
(see Appendix B); hence there is no need to develop

separate covariance matrix estimates for dii, dij and ḋij individually. Once an es-

timator of Σ−1 that minimizes R
(
Σ̂−1

)
is identi�ed, it is simultaneously optimal

for dii, dij and ḋij . When it comes to developing an explicit estimator Σ̂−1a,b, we

will start with the constrained estimator Σ̂−1a,b=0 and derive the optimal value of

the scalar a within aS−1 through the risk function (17).

Proposition 5. Let X1, ...,Xn be distributed as in Proposition 4, and let p/n→ c,

where 0 ≤ c < 1 S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
. Then lim

n,p→∞
R
(
Σ̂−1a,b=0

)
is min-

imized when a = 1− c.

Proof: The risk function is given by

R
(
Σ̂−1a,b=0

)
= p−1tr

{
E
[(
aS−1 −Σ−1

)2
S
]}

= p−1tr
{
E
[
a2S−1 − 2aΣ−1 + Σ−2S

]}
= p−1tr

{
a2
(

n

n− p− 1

)
Σ−1 − 2aΣ−1 + Σ−1

}
= p−1

(
a2
(

n

n− p− 1

)
− 2a+ 1

)
tr
{
Σ−1

}
.

Taking the derivative of R (aS−1) w.r.t. a, equating at zero and solving yields

aopt =
n− p− 1

n
and so lim

n,p→∞
aopt = 1− c. �

In view of Corollary 1 (a) and (c), this is an interesting �nding because the

value of a yielding asymptotic unbiasedness for adii and adij is a = 1. Hence, the

leave-one-out estimator d(ii) de�ned in (7) is the only unbiased estimator which

17



minimizes the risk function and is from this point of view the only reasonable es-

timator of Dii to use in high-dimensional settings. Below the constraint in Propo-

sition 5 is reversed, and the optimal value of b is derived when a is constrained to

equal zero.

Proposition 6. Let X1, ...,Xn be distributed as in Proposition 4, and let p/n→ c,

where 0 ≤ c < 1 and S = n−1
∑n

i=1

(
X− X̄

)(
X− X̄

)′
. Then lim

n,p→∞
R
(
Σ̂−10,b

)
is

minimized when b=1.

Proof: Using the identity
1

Λ−1
E

[
(np− 2)

ntr (S)

]
=

1

Λ−1
E

[
tr (Σ−1S)

tr (S)

]
= ϕ (Efron

and Morris, 1976), where Λ−1 = p−1tr (Σ−1), we get

R
(
Σ̂−10,b

)
= p−1tr

{
E

[(
b

p−1tr (S)
I−Σ−1

)2

S

]}

= p−1tr

{
E

[
b2

p−2tr2 (S)
S− 2b

p−1tr (S)
Σ−1S + Σ−2S

]}
= Λ−1

{
E

[
b2

p−1 (pn− 2)n−1
· (pn− 2)

Λ−1ntr (S)
− 2b · tr (Σ−1S)

Λ−1tr (S)
+
p−1tr (Σ−1)

Λ−1

]}
= Λ−1

(
b2

p−1 (pn− 2)n−1
· E [ϕ]− 2b · E [ϕ] + 1

)
.

Taking the derivative of R
(
Σ̂−10,b

)
w.r.t. b, equating at zero, and solving for b

yields 2Λ−1

(
bopt

p−1 (pn− 2)n−1
− 1

)
E [ϕ] = 0⇒ bopt = 1− 2n−1p−1. As n, p→∞

we �nd that bopt → 1 �.

It is also possible to �nd the optimal values of a and b without constraining one

of them to equal zero. However, as shown in Efron and Morris (1976), the resulting

optimal value of a, or equivalently of 1− a, will depend on unknown parameters.

On the other hand, imposing the restriction that the MD estimator should be

unbiased, equivalent to the constraint a + b = 1, an asymptotically optimal and
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unbiased estimator is obtained by Σ̂−1(1−c),c. Propositions 5 and 6 then follow as

special cases when c = 1 or c = 0. Unbiased and asymptotically optimal versions of

the estimators (17) - (19) are hence available by substituting a = 1− c and b = c.

Unlike the bias-adjusted estimators in Corollary 1, the new MD estimators de-

�ned by eii = p−1
(
Xi − X̄

)′
Σ̂−11−c,c

(
Xi − X̄

)
, eij = p−1

(
Xi − X̄

)′
Σ̂−11−c,c

(
Xj − X̄

)
and ėij = p−1(Xi −Xj)

′Σ̂−11−c,c (Xi −Xj) are not only unbiased but also optimal

with respect to the risk function (16), even as p/n→ c when 0 ≤ c < 1. Moreover,

these proposed estimators are simple to conduct and depend on no estimated pa-

rameters other than the sample mean X̄ and the covariance matrix S, and since

they coincide with the standard estimators in classical asymptotics � that is, when

c = 0 � they should be useful in a wide range of applications. Moments and opti-

mal values of a and b for the leave-one-out estimators could be derived in a similar

way, but the process would be tedious and is hence omitted here.

4. Summary

In this paper the expected values of a number of individual Mahalanobis dis-

tances are derived in the case when the dimension p of the random vector increases

proportionally to the sample size n. It is shown that some types of standard es-

timators remain unbiased in this case, while others are asymptotically biased, a

�nding which is somewhat unexpected. Moreover, a new family of MD estimates

is proposed that utilizes an estimate of the inverse covariance matrix, which is an

ingredient within the MD, previously proposed in the literature. Since this new

family of estimators depends on two unknown constants a and b, their optimal

values need to be derived. The paper therefore derives a risk function speci�-

cally designed for the MD. This risk function in turn coincides with a previously

proposed risk function which conveniently links the properties of any inverse co-
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variance matrix to individual Mahalanobis distance, in the sense that any inverse

covariance matrix which is optimal with respect to minimizing the risk function

will simultaneously produce optimal MD estimates. Moreover, using this risk func-

tion in conjunction with a �rst-order moment restriction facilitates derivation of

closed-form optimal values for a and b. These optimal values are non-adaptive and

non-random; hence, an operational, unbiased, and asymptotically e�cient MD is

available. It is argued that the proposed new family of MD estimators should

be superior to the standard estimators in a wide range of settings involving low-

dimensional as well as high-dimensional data.
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Appendices

A.

Proof of Proposition 1 (g): Under the assumption Xi ∼ iidN (µ,Σ), we

have that (n− 1) S(i) ∼ W (n− 2,Σ) so that S−1(i) ∼ (n− 1)−1W−1 (n− 2,Σ),

where W−1 (, ) denotes the inverse Wishart distribution (see Siskind (1972), Mar-

dia, Kent and Bibby (1980), von Rosen (1988)), and we get that E
[
S−1(i)

]
=

(n− 1)

(n− p− 3)
Σ−1. Moreover, since

{
Xi,S(i), X̄(i)

}
are all mutually independent,

we get

E
[
d(ii)

]
= p−1E

[(
Xi − X̄(i)

)′
S−1(i)

(
Xi − X̄(i)

)]
= p−1E

[
tr
(
S−1(i)

(
Xi − X̄(i)

) (
Xi − X̄(i)

)′)]
= p−1tr

(
E
[
S−1(i)

]
E
[(

Xi − X̄(i)

) (
Xi − X̄(i)

)′])
= p−1

(n− 1)

(n− p− 3)
trE

[
Σ−1

(
(Xi − µ) (Xi − µ)′ +

(
X̄(i) − µ

) (
X̄(i) − µ

)′)]
= p−1

(n− 1)

(n− p− 3)
tr
([

Σ−1
(
Σ + (n− 1)−1Σ

)])
=

n

(n− p− 3)
. �

Proof of Proposition 1 (h): Noting that E
[
S−1(ij)

]
=

(n− 2)

(n− p− 4)
Σ−1 and

that
{

Xi,Xj,S(ij), X̄(ij)

}
are all mutually independent, we get
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E
[
d(ij)

]
= p−1E

[(
Xi − X̄(ij)

)′
S−1(ij)

(
Xj − X̄(ij)

)]
= p−1E

[
tr
(
S−1(i)

(
Xi − X̄(i)

) (
Xi − X̄(i)

)′)]
= p−1

(n− 2)

(n− p− 4)
tr
(
E
[
Σ−1

((
X̄(ij) − µ

) (
X̄(ij) − µ

)′)])
= p−1

(n− 2)

(n− p− 4)
tr
[
Σ−1

(
(n− 2)−1Σ

)]
=

1

(n− p− 4)
. �

Proof of Proposition 1 (i): Noting that E
[
S−1(ij)

]
=

(n− 2)

(n− p− 4)
Σ−1 and

that
{
Xi,Xj,S(ij)

}
are mutually independent, we get

E
[
ḋ(ij)

]
= p−1E

[
(Xi −Xj)

′S−1(ij) (Xi −Xj)
]

= p−1
(n− 2)

(n− p− 4)
tr
(
E
[
Σ−1

(
(Xi − µ) (Xi − µ)′ + (Xj − µ) (Xj − µ)′

)])
=

2 (n− 2)

(n− p− 4)
. �

B.

Derivation of the risk function for the Mahalanobis distance dij :

Noting that there are n-1 identically distributed dij terms for each i, where

i, j = 1, ..., n, the average distance (dij −Dij) equals the average of (di1 −Di1),

say, which in turn may be written as
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(n− 1)−1
∑n

i 6=1
(di1 −Di1)

= (n− 1)−1
∑n

i 6=1

(
Xi − X̄

)′ (
S−1 −Σ−1

) (
X1 − X̄

)
−
(
µ− X̄

)′
Σ−1

(
µ− X̄

)
.

By squaring (S−1 −Σ−1), normalizing with p−1, and taking expectation, we get

p−1(n− 1)−1E
[∑n

i 6=1

(
Xi − X̄

)′(
S−1 −Σ−1

)2 (
X1 − X̄

)]
+ n−1

= p−1(n− 1)−1E
[∑n

i=1

(
Xi − X̄

)′(
S−1 −Σ−1

)2 (
X1 − X̄

)
−
(
X1 − X̄

)′(
S−1 −Σ−1

)2 (
X1 − X̄

)]
+ n−1

= p−1(n− 1)−1E
[
0−

(
X1 − X̄

)′(
S−1 −Σ−1

)2 (
X1 − X̄

)]
+ n−1

= −p−1(n− 1)−1E
[
tr
(
S−1 −Σ−1

)2∑n

i=1

(
Xi − X̄

) (
Xi − X̄

)′]
+ n−1

= −p−1n(n− 1)−1E
[
tr
(
S−1 −Σ−1

)2
S
]

+ n−1. �

Derivation of the risk function for the Mahalanobis distance ḋij: :

Allowing for permutations, there are m = n (n− 1) terms of ḋij − Ḋij. De�ning

∆ := (S−1 −Σ−1) and normalizing with p−1, we have

p−1E
[
ḋij − Ḋij

]
=

p−1m−1E
[∑n

i=1

∑n

j=1,i 6=j

(
(Xi −Xj)

′(S−1 −Σ−1
)2

(Xi −Xj)

−p−1
(
µ− X̄

)′
Σ−1

(
µ− X̄

))]
= p−1m−1E

[{∑n

i=1,i 6=1
(Xi −X1)

′∆2 (Xi −X1)
}

+...+
{∑n

i=1,i 6=n
(Xi −Xn)′∆2 (Xi −Xn)

}]
− n−1.
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An arbitrary {} term may be expanded as,

∑n

i=1,i 6=a
(Xi −Xa)

′∆2 (Xi −Xa)

=
∑n

i=1
(Xi −Xa)

′∆2 (Xi −Xa)− (Xa −Xa)
′(S−1 −Σ−1

)2
(Xa −Xa)

=
∑n

i=1

(
Xi
′∆2Xi − 2X′i∆

2X1 + X1
′∆2X1

)
.

Substituting this into the above and omitting the last n−1 term, we get

p−1E
[
ḋij − Ḋij

]
= p−1m−1E

[{∑n

i=1
Xi
′∆2X

i
− 2nX̄′∆2X1 + nX1

′∆2X1

}
+

...+
{∑n

i=1
Xi
′∆2X

i
− 2nX̄′∆2Xn + nXn

′∆2Xn

}]
= p−1m−1E

[
n
∑n

i=1
Xi
′∆2Xi − 2nX̄′∆2nX̄ + n

∑n

i=1
Xi
′∆2Xi

]
= p−12m−1nEtr

[
∆2
(∑n

i=1
XiXi

′ − nX̄X̄′
)]

= p−12m−1nE
[
tr
(
∆2S

)]
= 2p−1(n− 1)−1E

[
tr
(
∆2S

)]
→ 2n−1p−1E

[
tr
((

S−1 −Σ−1
)2

S
)]

�
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