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Abstract

This paper studies directed technical change and innovation in re-
newable energy. We construct panel data with micro- and macro ob-
servations from nearly 200 countries over a 20-year period and estimate
how energy prices, government subsidies, financial markets, spillovers,
and path dependence affect patenting in solar thermal and solar cells.
Carbon taxes, R&D subsidies to solar technology and own-knowledge
stocks have strong, significant positive effects on solar innovations.
Subsidies to fossil energy have the adverse effect. We find no com-
pelling evidence that the quality of financial markets and institutions
has any consistent impact on the patenting activities of innovators in
solar energy.
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1 Introduction

There is a need to better understand and manage nature’s constraints to

generate resources for the exponentially growing world production and to

absorb its negative external effects. This largely applies to supply of cheap

and reliable energy as an essential objective of socioeconomic development .

Scarcity of resources is at the heart of economics. The interest in dev-

astation of irreplaceable natural assets goes back to Hotelling (1931), which

emphasizes the need for regulations in order to prevent overexploitation of

finite resources.

Beginning with Nordhaus et al. (1973), the economic literature has in-

creasingly focused on the pivotal role of fossil resources for supplying the

economy with abundant energy at low costs and simultaneously address-

ing the climate change caused by our growing consumption of coal, oil and

natural gas.

There is a widespread view among economists that the primary mecha-

nism to reduce carbon emissions is through technical change and innovation

rather than via slower output growth. The challenge for green growth is to

create market conditions that provide incentives for profit-maximizing firms

to innovate in clean energy (Pizer and Popp, 2008).

Induced innovation from fossil fuels to renewables is often regarded as

a necessary step for accomplishing this shift. The concept of induced in-

novation, which dates back to Hicks (1932), has been further developed in

the past few decades. Recent theoretical advances in endogenous growth

theory have incorporated induced innovation and directed technical change

for analyzing sustainable development (see Acemoglu et al. (2012, 2016)

and Aghion et al. (2016)). A critical assumption in these models, which al-

low profit-maximizing firms to decide whether to innovate in environmental
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technologies, is that carbon-intensive technologies, due to path dependence,

benefit from an initial advantage.1 As existing infrastructure and the stock

of R&D capital represent prior investments in dirty technologies, marginal

investments in the incumbent (dirty) sector are more profitable than invest-

ments in the emerging (clean) sector. From a policy standpoint, renewable

sources will not replace dirty technologies without governmental interven-

tion. The prospect of future climate disasters may therefore justify and

require actions that aim at redirecting technological change and inducing

clean innovations. Policy actions should be temporary and may include

regulations and efficient price signals for phasing out wasteful consumption

of fossil fuels and subsidies that compensate for the negative externalities

associated with the production of clean energy.

Energy is needed for growth. The world economy is estimated to grow

by an annual rate of around 3.5% through 2040 (OPEC, 2017). In a scenario

based on existing policies and announced intentions, the International En-

ergy Agency (IEA, 2017) estimates that the corresponding growth of energy

demand will be close to 1% per year, with a continued increase of carbon

dioxide (CO2) emissions.

In order to be compatible with the goal of stabilizing global tempera-

ture, a large-scale shift from fossil-based economic growth is required. Solar

power, which currently accounts for less than 1% of the world energy supply,

has a key role in the IEA’s so-called Sustainable Scenario. The expectation

is that the current explosive growth of solar power will continue, and pro-

duce around 10% of the energy supply by 2040. Recent literature suggests

that such a shift of the global energy system may be challenging (Steves and

Teytelboym, 2013). There are at least three critical sources of inertia hinder-

1A third category, “grey”, that increases the efficiency of dirty technologies can also
be introduced.
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ing the transition: negative externalities, path dependence in the direction of

technical change, and the long life-cycle of infrastructure, all accommodated

by the endogenous models of a transition to clean technology.

Firms investing in fossil-energy technologies do not internalize the soci-

etal negative effects of climate change and may therefore choose to innovate

more in these technologies than they would if they had to bear all associated

environmental costs. Path dependence in the direction of technical change

is explained by a higher marginal rate of return on investment in fossil tech-

nologies compared to renewables.2 The existing infrastructure in the energy

sector is characterized by long lifetimes. Investments in fossil power plants

made today are likely to be operating and emitting CO2 for decades into

the future.

Despite significant inertia and obstacles, the solar industry has experi-

enced substantial growth and rapid technological development during the

last decades. Data from the European Patent Office (EPO) shows that the

solar industry has registered the greatest surge in renewable energy inno-

vation over the past two decades. The number of high-value, solar patents

increased by a factor of four between 2005 and 2010 (see Figure 1) and the

costs of new solar photovoltaic cells decreased by 70% between 2010 and

2017. Thee average costs for solar cells are estimated to be cut by a further

40-70% by 2040.3

[Figure 1 about here.]

[Table 1 about here.]

2Fossil-based technologies, production, consumption and infrastructure are closely in-
tertwined with the existing economic, financial, political and social system. They make
up a large proportion of jobs, wages, profits, stock market valuation and pension fund
assets (Ansar et al., 2013).

3See Reichelstein and Yorston (2013) for a comprehensive assessment of the cost com-
petitiveness of solar power.
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Aghion et al. (2016) were the first to conduct and empirical applica-

tion of the endogenous theoretical framework on directed technical change

and climate mitigation. They investigated the role of public intervention in

redirecting car-manufacturers’ innovation activities from internal combus-

tion engines (ICE) towards innovations in electric and hybrid automobiles.

Their results confirmed the ability of public intervention to direct innovation

towards clean technologies.

Relying on main building blocks from the automotive study, this pa-

per studies how directed technical change may affect innovation in solar

technologies. First we construct a panel dataset with micro observations

from nearly 200 countries over a 20-year period. We then apply count data

models for estimating how prices, governmental subsidies, financial markets,

spillovers, path dependence affect patenting in the solar industry. We also

introduce some deviations to the empirical approach suggested by Aghion

et al.. First, instead of a static weighting approach, we employ a dynamic

weighting scheme,4,5 with the implication that we can account for variation

in the relative importance of markets over time.6 Second, we accommodate

research spillovers, which do not necessarily depend on location but rather

on research efforts, i.e. knowledge flows that occur when a firm evaluates

other firms’ relevant inventions for its research purposes. Lastly, we use a

4Consider, for instance a company i whose patent portfolio consists of 10 patents in
year t = 0 (5 filed at the USPTO and 5 at the JPO), and 20 patents in year t = 10 (4
at the EPO, 6 at the USPTO and 10 at JPO). Whilst firm i’s exposure to the US and
Japanese market at t = 0, the last year of the “pre-sample” period, is the same (=0.5)
in both Aghion et al.’s and our approach, this would not hold true once we enter the
regression period. Aghion et al.’s approach would still derive 0.5 as i’s exposure to both
the US and Japanese market in t = 10, ignoring the “EPO” market. Our approach would,
however, calculate the exposure of firm i in year t = 10 to the US, Japanese and EPO
market to be 0.3, 0.5 and 0.2, respectively.

5It should be noted that firms might be able to anticipate national policies and alter
market exposures as response to decentralized environmental agendas. We address this
potential endogeneity problem in the empirical section.

6It is well documented that firms vary their international strategies over time (Hitt
et al., 1997; Milliman et al., 1991; Zahra et al., 2000).
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wider set of controls that are a fortiori relevant to determine innovation

intensity over time such as proxies for the technological frontier and size of

the market.

Our main findings is that carbon taxes, as proxied by energy prices, have

significant, sizable and positive effects on solar innovation. This is also the

case for R&D subsidies to solar technology and own-knowledge stocks in

both solar and other technologies. Subsidies to fossil energy have adverse

effects. We find no compelling evidence that the quality of financial markets

and institutions has any systematic impact on the patenting activities of

innovators in solar energy. We challenge the validity of our results with the

conclusion that they appear to be robust to model specification, estimation

techniques, choice of energy prices and lag structures, depreciation rates of

knowledge stocks, patent families, and weighting schemes.

The remainder of the paper is organized as follows. Section 2 presents

the data. Section 3 explains the construction of variables and conducts an

exploratory analysis of the data. Section 4 specifies the model and sets forth

the empirical strategy. Section 5 reports results and robustness checks, while

Section 6 concludes.

2 Data

There are three different data dimensions in our approach: organizations,7

inventors and countries. Organizations file patent applications in differ-

ent jurisdictions (i.e. patent offices, usually one per country) seeking legal

protection. Inventors create technological blueprints either for their own

exploitation or for some organization which remunerates this work. Coun-

7Organizations include state- and privately- owned firms, universities, research insti-
tutions, etc.
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tries provide legal protection for intellectual property by granting temporary

monopoly power to inventors and/or organizations through patent rights.

These dimensions enter the model in different ways, all of them provid-

ing a rich amount of information. Organizations generate a yearly pool of

technological breakthroughs, captured by the number of patents filed by

organization-year. Inventors make possible organizations’ patenting activi-

ties and also contribute, by their geographical location, to the diffusion of

knowledge. Countries alter firms’ incentives to innovate by implementing

different fiscal, industrial and environmental policies, and also by the way

in which institutions are regulated and intellectual property is protected.

2.1 Data Sources and Exploratory Analysis

2.1.1 European Patent Office (EPO)

Patent data come from the EPO’s Worldwide Patent Statistical database

(PATSTAT), which provides data at a highly-disaggregated technological

level for more than 100 patent offices, sometimes starting as early as the nine-

teenth century. PATSTAT is the most comprehensive database on patents as

it has almost full coverage and contains information regarding applications,

legal status, patent families, priorities, applicants, inventors, publications,

citations, and so on. To identify patents we use the Cooperative Patent Clas-

sification (CPC) system, which is an extension of the International Patent

Classification (IPC) that extensively disaggregates technological groups and

subgroups.8

We use the search strategies suggested by Haščič and Migotto (2015) for

identification of environment-related technologies, which rely on previous

work of the OECD and patent examiners of the EPO. In particular, we use

8Whilst the IPC has about 70,000 codes, the CPC has approximately 200,000.
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the Y02 scheme introduced in Veefkind et al. (2012), which greatly facilitates

the selection of solar energy technologies. Some examples of these codes are

Y02E10/52 (PV systems with concentrators) and Y02E10/46 (conversion of

thermal power into mechanical power). Table 17 at the end of the document

lists all solar energy codes used in the analysis.

To measure innovation we use a count of patents by application-earliest-

filing date,9 noting that filing date is much closer in time to the patent’s

preparation than the date granted. Patenting has many advantages over

other measures of innovation such as R&D expenditures. Firstly, extensive

disaggregation by technological groups and subgroups allows easy and pre-

cise targeting. Secondly, patent data are complete, readily available and

comparable across countries (Haščič and Migotto, 2015; Johnstone et al.,

2010) whilst R&D expenditures are not; for instance, SMEs are not always

required to report these expenditures. Thirdly, patent documents provide

valuable information on other parts of the invention process such as iden-

tification of inter- and intra-firm knowledge flows. Finally, patents are a

measure of intermediate innovation output, while R&D expenditures mea-

sure inputs (Acs and Audretsch, 2003) that do not necessarily capture the

success of the research process; nevertheless, there is a strong relationship

between the number of patents and R&D expenditures (Griliches, 1990).

The main drawback of a patent count is that it is a partial measure of in-

ventive activity because only a fraction of all inventions are patented, and

not all innovations are patentable (Arundel and Kabla, 1998; Griliches, 1990;

Horstmann et al., 1985). However, this problem is not homogeneous across

sectors (Cohen et al., 2000), and patent protection is still the desired mech-

anism for general and special purpose machinery, which is the focus of our

9This is the mainstream approach in the empirical literature (see Aghion et al., 2016;
Cincera et al., 1997; Dechezleprêtre et al., 2014; Hausman et al., 1984).
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approach. In addition, it is plausible to assume that the most valuable inven-

tions are patented since there are few examples of economically significant

inventions that have not been patented (Van Pottelsberghe et al., 2001).

Assessing the quality of inventions has been an important issue in the

literature that now can be better assessed through statistical methods and

other techniques (Haščič et al., 2015). We focus on “biadic” and “triadic”

patents. The former corresponds to Henderson and Cockburn (1996)’s orig-

inal characterization, i.e. patents filed in at least two of the three main

patent offices (EPO, JPO, USPTO); the latter considers patents that have

been filed in all three main patent offices, and it is widely used in the current

empirical literature.10 As other patent offices have recently gained interna-

tional importance, we extend patent categories and also consider “fouradic”

and “fiveadic” patents. The former corresponds to triadic patents that are,

in addition, filed either in the China Patent & Trademark Office (SIPO)

or in the Korean Intellectual Property Office (KIPO); the latter considers

patents filed in the five main patent offices (EPO, JPO, USPTO, SIPO,

KIPO). Proceeding this way, we consider the most valuable inventions as

it has been found that the greater the number of patent offices in which

a patent seeks protection, the higher the quality of the invention (de la

Potterie and Van Zeebroeck, 2008; Harhoff et al., 2003; Putnam, 1996).

Figure 2 depicts how the different patent categories have evolved over

time in the solar industry. This figure is divided in figures 2a, 2b and 2c

to improve readability of the y-axis. The reader might notice three things.

First, filtering by the quality of inventions is important since the sample is

substantially reduced and, thus, many low-quality inventions are discarded.

10See Aghion et al. (2016); Chang et al. (2013); Dechezleprêtre et al. (2014); Dernis
and Khan (2004); Filippetti et al. (2016); Guellec and Van Pottelsberghe de la Potterie
(2004).
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Second, regardless of patent category, the number of patents has increased

over time. Finally, there is truncation in the sample, 11 starting in 2010 for

“all patents”, and in 2009 for the rest of categories. These cut-off points

indicate the final year of the time period for our regression analysis.

[Figure 2 about here.]

A critical issue with PATSTAT is that data are not clustered by corpo-

rate groups, implying that a multinational firm, e.g. Canon, will be counted

(at least) as many times as subsidiaries it has. Not accounting for these

sources of duplication has pernicious effects as it inflates both the dimen-

sions of the regression panels and the measures of location-based knowledge

spillovers.12 Fortunately, the ECOOM-EUROSTAT-EPO PATSTAT Person

Augmented Table (EEE-PPAT) partially allows correcting for these prob-

lems. Another source of multiple counting is that spelling mistakes and

typographical errors may lead to the inclusion of the same individual under

different rubrics (e.g. personal identifications, psn id).

The EEE-PPAT table is the result of a joint project between EURO-

STAT, ECOOM and Sogeti, which developed an algorithm that achieves

patent-assignee name harmonization and assignee sector allocation.13 The

resulting unique patentee names are assigned a primary key, hrm l2 id, that

is used for empirical identification and which substantially reduces the num-

ber of duplicates, as may be seen in Table 2.

[Table 2 about here.]

11Patents are registered in PATSTAT with a delay. Thus, as we get closer in time to
the actual date, the count of patents drops despite of changes in the pace of innovation.

12For instance, Hashimoto Haruhisa, with three distinct person id’s (9687207, 10884972
and 11452652), would enter into the regression panel as three different units; also, his
inventions would be triple-counted in the spillover pool of Osaka, Japan.

13See Du Plessis et al. (2009), Magerman et al. (2006) and Peeters et al. (2010) for
more information on how the EEE-PPAT table is constructed and, also, for descriptive
statistics on patent assignees before and after harmonization.
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Table 3 displays patentees’ distribution across sectors for harmonized

applicants. Not filtering by quality of inventions, we observe that most ap-

plicants are individuals14 (76.64%), followed by companies (12.10%). These

two categories add up to approximately 90% of the sample. About 2% of

all patents are filed by universities and other governmental (research) insti-

tutions, and the rest have either unknown or non-allocated sectors.

[Table 3 about here.]

Table 4 reports applicants’ distribution across sectors conditioning on

quality of the invention. As expected, the number of applicants is a decreas-

ing function of patent jurisdictions. The majority of applicants within each

sample are still individuals, although the share of organizations increases

with quality of invention (from nearly 17% in biadic patents to about 40%

in fivadic patents). Organizations are mostly represented by private firms

(approx. 85%), and unknown or non-allocated data is of relatively little

importance (less than 1%).

[Table 4 about here.]

2.1.2 International Energy Agency (IEA)

Energy prices, taxes and R&D subsidies come from the IEA. The Energy

Prices and Taxes dataset provides annual, quarterly and monthly data for

34 OECD countries for a period that spans from 1978 to 2016. We focus

14In order not to inflate the number of applicants, we account for legal differences in
patent systems. In the US, for instance, inventors are required to be listed as applicants.
For this purpose, we implement an algorithm that counts inventors as applicants if and
only if they are applicants and no organization is involved in the filing process. When
inspecting the data, however, we note that individuals still constitute the majority of
the sample. We suspect that once inventors are listed as applicants in one patent office,
they are tacitly listed in all other jurisdictions in which the patent is filed. To correct for
this, and also because our main interest is on organizations, we exclude individuals for
regression analysis.
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on households, end-use tax-inclusive electricity prices and gasoline, diesel,

natural gas and coal prices are used for robustness checks.

Figure 3 depicts energy prices and taxes by energy group. The left panel

of the figure shows that energy prices have been steadily increasing since the

late 1970s until 2012, when they reached its maximum and started to decline.

This is true for all prices but for that of electricity, which violently boomed

in 2014. Similar patterns are observed in the right panel for taxation, except

in the case of coal, whose taxes, although increased over the sample period,

were very volatile.

[Figure 3 about here.]

Looking at energy prices and taxes at the country level, we observe

several interesting facts (see Figure 6 at the end of the document). First,

prices and taxes are more homogeneous at the beginning of the time period.

Second, given that some countries have much stricter environmental agendas

than others,15 heterogeneity in taxation is greater than in pricing. Third,

although the general tendency is that of sustained increases, taxation levels

are subject to abrupt changes over time.

R&D subsidies come from the Energy Technology RD&D database, which

provides information on annual R&D budgets by energy technology group

for 29 countries from 1974 to 2015. Figures of public sector research, devel-

opment and demonstration (RD&D) are obtained by applying the RD&D

15To give a sense of how countries rank in terms of taxation efforts, consider the fol-
lowing information. While Turkey applies the highest fuel tax, followed by Hungary and
the Slovak Republic, the United States, Mexico and Japan have the weakest taxation
agendas. As regards natural gas taxation, Italy and the Netherlands apply the strictest
policies while the United Kingdom, Luxembourg and Japan appear at the end of the list.
Data for steam coal have extremely low coverage and it is in general meaningless to in-
terpret; Denmark seems to tax this energy product more heavily than any other country.
As regards electricity, all countries has experienced heavy increases in taxation over time,
especially Germany and Denmark. A note of caution is due: the validity of inference is
conditional on available data.
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questionnaire in energy fields. As emphasized by the IEA, given the precise

technical terms used in the questionnaire, the quality of the data strongly

depends on the implication and information delivered by national data col-

lectors. R&D budgets are calculated by identifying the relevant components

of R&D activities and also by estimating R&D funding. R&D funding comes

from public bodies mainly at the central or federal level but also at the coun-

try’s first administrative subdivision level, i.e. state or regional government,

when it is significant. The main problem of R&D data is always to set the

cut-off point between allocations that really belong to these activities from

those that do not. Although the questionnaire encompasses seven energy-

related groups, we only focus on fossil fuels and renewable energy sources.

These two broad groups are used to construct ratios and to analyze how

much funding one sector receives in comparison to the other; our main in-

terest is in solar energy (group 31). RD&D budgets are retrieved in USD

using PPPs.

Figure 4 depicts sample average data. Figure 4a shows that fossil-fuel

subsidies increased until 1980, significantly dropping until 2000 when they

reached minimum levels; however, fossil-fuel subsidies have increased ever

since. Figure 4b pictures the increase in renewable energy subsidies in the

1970s, which have stagnated until the late 2000s, when they increased again.

Figure 4c portrays the evolution of solar subsidies, which have moved in line

with renewable energy subsidies. Figure 4d depicts the ratio of renewable

to fossil-fuel subsidies which, despite its general tendency to rise, has been

very volatile and unpredictable. Finally, Figure 4e displays subsidies to solar

energy which, in comparison to other renewables, have been decreasing since

the beginning of the sample period.

[Figure 4 about here.]
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Data at the country level is provided in Figure 7.The United States drives

the sample-average subsidy in all categories, subsidizing energy products

substantially more than any other country.16 In contrast, when comparing

relative measures such as the ratio of renewables to fossil-fuels R&D subsi-

dies, Sweden has the highest average ratio which assigns greater importance

to clean technologies. The share of R&D funds alloted to solar energy with

respect to all other renewable energies has been declining since the begin-

ning of the sample period, as shown in Figure 4e, although the speed and

consistency of the trend have been very unequal across countries.17

2.1.3 International Monetary Fund (IMF)

From the IMF we retrieve data on the newly introduced Index of Financial

Development (IFD), created as a response to the inadequacy of other finan-

cial measures18 that proxy for financial development (Svirydzenka, 2016).

The IFD, which builds on Čihák et al. (2012), takes a multi-dimensional

approach to assess the level of development of financial markets and insti-

tutions. The IFD is subdivided in two broad indexes, financial institutions

(FI) and financial markets (FM), which in turn have three components each:

depth, access and efficiency. The FI depth subindex considers private sector

credit, pension fund assets, mutual fund assets, and insurance premiums, all

as ratios to GDP. It is thus more comprehensive than the standard indica-

tors used in the literature. The FI access subindex takes into account bank

branches and ATMs per 100,000 adults. The FI efficiency subindex consists

16Note that subsidies are in absolute terms and, since we do not control for population
size, larger countries are expected to drive the average subsidy.

17Although one can hardly appreciate any pattern in Figure 7e, a country-by-country
graphical analysis, together with descriptive statistics, justifies this statement.

18Most empirical studies to date use measures of financial depth, such as the ratio of
private credit or stock market capitalization to GDP, to approximate financial develop-
ment.
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of net interest margin, lending-deposits spread, non-interest income to total

income, overhead costs to total assets, and returns on both assets and equity.

Indicators for financial markets mainly focus on stocks and debt securities.

The FM depth measure captures stock market capitalization, stocks traded,

international debt securities of the government, and total debt securities

of financial and non-financial corporations, all as ratios to GDP. The FM

access category considers the percent of market capitalization outside the

top 10 largest companies and the total number of debt issuers per 100,000

adults. Finally, FM efficiency is just measured as the stock turnover ratio.

The influence of the different subindices on the IFD is determined, at

all levels of disaggregation, by application of principal component analysis

(PCA), a statistical technique that assigns higher weights to the variables

that cause larger within and between variations in the data.19

Data are available at the country level on an annual frequency for 1980–

2013, with coverage over 183 countries. The main limitations of the dataset

are the following: i) when series are completely not available for a country,

it is assumed that there is no financial market for that country or that its

quality is very poor; ii) not all financial intermediaries are included in the

index; and iii) it does not include measures of regulatory or legal frameworks

as such. Despite these limitations, this dataset is still more comprehensive

and has better properties than any other alternative at hand.

2.1.4 The World Bank

All data for controls come from the World Bank. From the Sustainable-

Energy-for-All database we retrieve energy measures that provide informa-

tion on both the demand and supply side, e.g., electricity production from

19See Svirydzenka (2016) for more detailed information on weighting procedures, treat-
ment of missing data, normalization of variables, and so on.
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oil sources, renewable electricity, efficiency measures (transmission and dis-

tribution losses, energy intensity level, etc.), and electricity consumption.

Climate change data on emissions and macroeconomic controls such as GDP,

GDP per capita and population are taken from the World Development In-

dicators database.

3 Methodology

In this section we present the applied methodology, which builds on that of

Aghion et al. (2016). An important feature of this approach is the ability

to proxy for firms’ exposure to different markets. For instance, when a firm

i files a patent in country c, this firm gains access to the selected market,20

either at time t or at some future date t + p. How a firm is affected by a

given market depends on the relative number of patents that it has been

granted in this market, i.e. on the share of patents that firm i has in market

c as a share of its total patents. As noted earlier in section 1 we deviate

from Aghion et al. by introducing a dynamic weighting scheme that more

accurately calculates market exposures. Table 5 documents large differences

between these two methods.

[Table 5 about here.]

3.1 Energy Prices

The vector of tax-inclusive energy prices, EPit, is parameterized as follows:

EPit = β1 lnElectPit + β2 lnFPit + β3 lnNGPit + β4 lnSCPit (1)

20Giuri et al. (2007) find that more than fifty percent of filed patents are exploited for
commercial and industrial purposes. If not, 32% of the patents are either licensed or used
to block competitors, implying that the firm is already present in that market.
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where ElectPit, FPit, NGPit and SCPit are the electricity, fuel, natural

gas, and steam coal prices for each firm, respectively. This is a time-varying

weighted average of prices across the countries in which firm i operates. For

simplicity we just specify the construction of fuel prices,

ElectPit =
∑
c

ωPP
ict ElectPct

where ωPP
ict is a (dynamic) firm-specific weight that uses information on

firm’s i history of patenting for t = {1, 2, . . . , T}, i.e. for the first year of

the regression period, and then evolves according to how active firm i is in

country c. More specifically, the weight ωPP
ict is defined as the fraction of

firm i’s patents in country c at time t, and thus it may be easily thought of

as the firm’s patent portfolio in a given country at a specific point in time.21

This procedure allows us to identify the relative importance of markets.22

3.2 Stock of Knowledge

The stock of knowledge is the accumulated result of prior internal and ex-

ternal efforts to generate new ideas and technologies. This concept captures

the idea that firms stand on “the shoulders of giants”. In this paper, the

knowledge stock is defined as:

Ait = γ1 lnKSE,it + γ2 lnKNS,it+

γ3 lnGSPILLSE,it + γ4 lnGSPILLNS,it + γ5 lnRSPILLit︸ ︷︷ ︸
Knowledge Spillovers

(2)

21A firm’s exposure to a market is determined by considering all inventions patented
in that market. Therefore we do not only consider solar patents but all type of patents.

22Given that some patent jurisdictions are regional offices and may grant protection
in several markets, we construct artificial markets for these jurisdictions (See Appendix
A.1).
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where GSPILLSE,it and GSPILLNS,it, and RSPILLit, explained below,

together capture all knowledge spillovers from which firm i benefits.23 SE

denotes solar and NS non-solar technologies, respectively. Kx,it is the firm’s

own stock of innovation in technology x, calculated by applying the perpet-

ual inventory method suggested by Griliches and Mairesse (1984):

Kx,it = PATx,it + (1− δ)Kx,i,t−1

where δ ∈ (0, 1) is the depreciation rate of existing technology. The existing

literature often sets δ = 0.20 or higher (see Bloch, 2003; Chan et al., 2001;

Lev and Sougiannis, 1996; Sakai et al., 2016; Smith et al., 2004).

Knowledge spillovers in our setting should be understood as knowledge

flows (Collins and Wyatt, 1988) that result from different knowledge trans-

actions. Geographical spillovers, GSPILLx,it, originate from non-codified

knowledge transfers between inventors, either by employees’ turnover across

firms or by informal contacts between inventors. Let the knowledge spillovers,

in technology x, from which firm i benefits at time t be defined as:

GSPILLx,it =
∑
c

wIP
ictGSPILLx,ct

where ωIP
ict is the firm-specific inventors’ portfolio, i.e. the relative number

of firm’s i inventors in country c, and SPILLx,ct is the total spillover of

country c, defined as:

GSPILLx,ct =
∑
j 6=i

ωIP
jctKx,jt

23Previous empirical studies that have relied on patent data to construct measures
of knowledge spillovers are: Belenzon and Schankerman (2013); Cockburn et al. (2002);
Dechezleprêtre et al. (2014); Gomes-Casseres et al. (2006); Jaffe et al. (1993); Maurseth
and Verspagen (2002); Murata et al. (2014); Peri (2005); Thompson and Fox-Kean (2005),
to just name a few.
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so that the relevant spillover of country c for firm i depends on the exposure

of other firms’ inventors as well as the knowledge they have accumulated up

to the present time.24

Given the richness of personal data that is obtained from combining

PATSTAT with the EEE-PPAT table, we can obtain the exact geographical

location of inventors. To identify the geolocation (latitude and longitude)

of inventors we implement the following strategy. First, we maximize the

quality of information, i.e. when we detect several addresses in the same re-

gion for one individual, we keep the address that provides more information.

All addresses are queried in Google Maps Geocoding API ’s system, which

returns geographic coordinates. Figure 5 below depicts the geographical

distribution of inventors.

[Figure 5 about here.]

Research spillovers, RSPILLit, capture codified knowledge extracted

from patent documents and partly correspond with Griliches (1991)’s “pure

knowledge spillovers” formulation in which citations play a key role. How-

ever, citations are a noisy measure of knowledge spillovers (Jaffe et al., 2000)

that do not necessarily reflect true spillovers, as a considerable number of

citations are added by patent examiners,25 and inventors are, to a great

extent, unaware of them. Furthermore, a share of total citations does not

represent knowledge flows as they refer to patents filed by the same in-

ventor(s), i.e. self-citations. For these reasons, we characterize research

24Implicit in this approach, firm i’s inventors are assumed to interact with probability
one with the inventors of other firms and, also, to fully absorb their knowledge. Although
this is obviously far from perfect, it can still serve as an approximation to the knowledge
transfer process.

25Alcacer and Gittelman (2006)’s empirical study concludes that 40% of all patents
have all citations added by patent examiners; also, about two-thirds of citations in the
average patent are added by examiners.
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spillovers as knowledge flows that originate from direct surveying of other

firms’ relevant inventions for firm i’s invention, and parameterize them as

follows:

RSPILLit = NPLit + PLit × IC(x), where IC(x) =


0 x ∈ C

1 otherwise

where NPLit is the number of different non-patent literature documents

reviewed by firm i at time t, PL is the number of different patent documents,

and IC(x) is an indicator function that takes the value 1 when citations are

added by other than the patent examiner or by the same inventor, i.e. when

x /∈ C; and 0 otherwise. This approach thus controls for self-learning.26

3.3 Financial Markets

When firms file patents in certain jurisdictions they mainly aim to capture

and secure market demand. This is the reason why many firms seek for legal

protection in countries with large markets. Patenting in other countries may

also have additional advantages such as access to a wider pool of financial

resources. For instance, once a firm has been granted a patent it might be

eligible for governmental R&D subsidies, tax deductions, or may be able to

pledge the granted patent as collateral to obtain resources from country’s

c financial institutions (Amable et al., 2010; Hochberg et al., 2014; Munari

26Recent literature (Dechezleprêtre et al., 2014; Lukach and Lukach, 2007; Shaffer,
2011) uses measures, such as the PatentRank algorithm, to determine the relevance of
patent documents by examining quality and number of (backward- and forward-) citations.
Whilst this method proves fruitful for determining the importance of some inventions in
the development of a technological field, it is not clear that it is appropriate for the
construction of firm-specific research spillovers.
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et al., 2011). A priori, we expect firms exposed to stronger financial markets

to patent more intensively.

We compute the effect of financial systems, FSit, on firm i at time t as:

FSit =
∑
c

ωPP
ict IFDct (3)

where ωPP
ict is the patent portfolio of the firm in country c defined above, and

IFDct is the Index of Financial Development of country c, corresponding

with the newly-developed index in Svirydzenka (2016).

3.4 Controls

The set of controls include public R&D funding for the development of clean

technologies, a market size measure (i.e., the size of the renewable sector

compared to non-renewable energy), a measure of efficiency in solar tech-

nologies (a proxy for the technology frontier in the industry), climate change

regulation measures such as CO2 or greenhouse emissions, and macroeco-

nomic controls such as GDP, GDP per capita or population.

4 Empirical Strategy

4.1 Model

Consider the following structural-form model:

PATSE,it = exp (EPi,t−p +Ai,t−p + φFSi,t−p + ψmXit + λT ) ξi + uit (4)

where PATSE,it is the number of patents applied for in the solar industry

sector by firm i in year t; EPit is a vector of energy prices lagged p periods;

Ait is the firm’s knowledge stock, which depends on both past (firm-specific)
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innovation and knowledge spillovers from other institutions and inventors;

FSit is the strength of the representative financial system to which firm i is

exposed; Xit is a vector of controls; T is a set of time dummies; ξi are firm-

specific effects; and uit is the usual idiosyncratic error term in the regression.

Substituting equations (1) and (2) into equation (4) yields equation (5),

which is the baseline model for estimation:

PATSE,it = exp (β1 lnElectPi,t−p + β2 lnFPi,t−p + β3 lnNGPi,t−p

+ β4 lnSCPi,t−p + γ1 lnKSE,i,t−1 + γ2 lnKNS,i,t−1

+ γ3 lnGSPILLSE,i,t−1 + γ4 lnGSPILLNS,i,t−1

+γ5 lnRSPILLi,t−1 + φFSi,t−p + ψmXit + λT ) ξi + uit

(5)

Coefficient expectations are: (i) βi > 0 for i = {1, 2, 3, 4}, i.e. as energy

prices (electricity, fuel, natural gas and coal) increase the number of patents

in solar energy should increase given that clean energy generation becomes

cheaper in relative terms;27 (ii) γ1 > γ2 > 0, implying that the firms’ in-

ternal accumulated knowledge in solar energy is more important than other

internally accumulated knowledge; (iii) γ3 > γ4 > 0, assuming that exter-

nal knowledge spillovers from solar technology are more relevant than other

spillovers; (iv) γ5 > 0, so that organizations benefit from codified knowledge

embedded in patent documents outside the firm; and (v) φ > 0, indicating

that organizations with access to stronger financial markets benefit from

greater opportunities to finance their innovations and activities.

The number of lags p of energy prices is optimally determined by the

number of former periods which influence firms’ production decisions. If

firm i makes the decision to develop a new product in year t−3, the optimal

27In particular, we expect electricity prices to have a larger effect than any other energy
price on fostering solar-related innovations, i.e. β1 > β2, β3, β4, given that solar energy is
a direct substitute for electricity generation.
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number of lags should be three. However, given the large heterogeneity

between firms, it is in practice difficult to decide upon this number. Also,

the greater the number of lags, the larger the reduction in the dimensions of

the panel. Thus, it appears convenient to decide upon the optimal number

of lags by taking as a reference the time dimensions of the data. Finally,

as noted by Aghion et al., firms’ own stocks of innovation and spillovers are

lagged one period to be consistent with the path dependency hypothesis.

4.2 Estimation

From the set of nonlinear panel data models our preferred specification is the

Poisson fixed-effects model. The Poisson panel estimator is consistent pro-

vided that the conditional mean is correctly specified, even when the errors

are not distributed as Poisson. However, in the presence of overdispersion,

i.e. the conditional variance is larger than the conditional mean, the esti-

mated standard errors will considerably understate true standard errors. If

this is the case, there are two alternatives: (i) either to apply a more appro-

priate estimator that explicitly accommodates overdispersion, such as the

Negative Binomial; or ii) to use the Poisson estimator with cluster-robust

standard errors, which are roughly twice as large as default standard errors

(Cameron and Trivedi, 2013). The former has the advantage to bring effi-

ciency gains, whilst the latter relies on weaker distributional assumptions.

Since the Negative Binomial model brings only slight efficiency gains when

compared to the Poisson with cluster-robust standard errors, it is beneficial

to implement the Poisson fixed-effects estimator considering that is more

robust under uncertainty in distributional assumptions.
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5 Summary Statistics and Empirical Results

Our baseline results are estimated from the sample with biadic patents.

While the triadic region consisting of the United States Patent and Trade-

mark Office (USPTO), Japanese Patent Office (JPO), and European Patent

Office (EPO) accounted for the majority of global patent applications in the

1990s, their share decreased to less than 50% by 2013 (OECD 2015) sug-

gesting a trend towards decentralization of the regional areas for intellectual

property protection. To account for the possibility that this trend is rele-

vant also for solar inventions, we consider triadic patents as well as biadic

and patents filed in one or more regions. We also report results for fouradic

patents (triadic plus China or Korea). While the triadic sample contains

4,545 patent observations, the number is almost double in the biadic sam-

ple (8,849), and five times higher in the sample with all patents (22,664).

Assuming that a larger market for intellectual property protection can be

considered as a proxy for patent quality, we consider the biadic sample as

the most optimal tradeoff between quantity and quality. The result section

also include fouradic patents (triadic plus China or Korea).

We first present the descriptive statistics before estimating equation (5)

and conducting sensitivity tests. Summary statistics and correlations for

the sample consisting of biadic patents are reported in Table 6 and Table 7.

The baseline regression results appear in Table 8, and robustness checks are

presented in Tables 9–15.

5.1 Summary Statistics

Table 6 reports the summary statistics for biadic patents, the panel of which

is not balanced. The number of observations for solar patents, (PATSE,it)

is considerably larger than for any other variable because when patents are
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not registered, this number is set to zero, reflecting no patenting activity

in that year. Unfortunately this cannot be done for other variables as the

data would be arbitrarily modified. Also, the data for steam coal price

(ln SCit) are poor, which is the motivation why this variable is discarded for

analysis. The average number of biadic patents by firm-year is 0.37 with a

standard deviation of 2.07, indicating the presence of overdispersion. The

two variables for knowledge stocks shows that the log of firms’ average stock

of non-solar inventions is 1.51 (4.54 patents) compared to 0.33 (1.39 patents)

for solar inventions. Taking the antilog of the energy subsidies, the table

reveals that fossil fuel energy is four times more subsidized than solar energy.

[Table 6 about here.]

Table 7 below displays the correlation matrix. As expected, energy prices

are highly collinear, creating challenges for estimation. Instead of estimating

with a vector of energy prices, we focus on electricity prices, ln ElecPit, which

are a priori more important for innovation in solar energy than any other

energy price.28

[Table 7 about here.]

5.2 Baseline Results

Table 8 reports the results for the biadic sample. Column 1 shows the impact

of energy prices on solar patents, controlling for a time trend and fixed

effects. Column 2 adds firms’ own patent stocks to the model, while Column

3 also considers R&D subsidies. The full model is reported in Column 4, also

considering the impact of access to external financial sources. It should be

28To ensure that our results do not depend on electricity prices, robustness checks are
performed for the different energy prices.
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noted that energy prices are closely associated with carbon taxes, suggesting

that the former can be considered as a proxy for the latter.

Lagged values of energy prices in the first column are quite precisely

estimated at 3.293. The implication is this result is that a 1% increase in

price of electricity or carbon taxes is associated with about 3% more solar

patents. The corresponding estimate in Aghion et al. (2014) is around unity

when the dependent variable is patents in the electric car industry.

The estimated effect of our proxy for carbon taxes is reduced to 1.7 in

the second column that include lagged knowledge stocks in the regression.

Knowledge spillovers from prior inventions have a significant and positive

impact on current patenting activity in solar energy. The point estimate

is 0.436 and highly significant. The estimated effect is about the same for

prior patents in other technologies (0.365).

The point estimate for R&D subsidies to solar energy in the third column

is 0.133 and highly significant. In their study, Aghion et al (2014) find no

effect of research support to clean technology. Column 3 also report the effect

of fossil fuel energy subsidies, which are five times larger than subsidies to

solar energy. The estimate is -0.114, not distinguishable from zero.

The results for the full model are provided in Column 4. The regression

results suggest that 1% higher carbon taxes increase solar innovations with

2%, and that the impact of a 1% increase in knowledge stocks is 0.4% more

solar patents. The positive impact of research subsidies to renewable energy

in Column 3 is confirmed in Column 4. When estimating the full model, the

negative effect of subsidies to carbon-intensive energy is significant at the 5%

level. Contrary to expectations, stronger financial markets do not stimulate

solar innovations, with the estimated effect of the lagged financial variable

of -0.777. How can this be explained? First, the country index of Financial
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Development shows almost no within-variation in our sample, rendering the

fixed effects estimator inefficient. Second, as pointed out by Svirydzenka,

when financial indices are already high, having a larger index might reflect

stricter regulations rather than flexibility, so that being exposed to stronger

financial systems might not be beneficial.

[Table 8 about here.]

5.3 Robustness Checks

In this subsection we investigate whether the main results are sensitive

to model specifications, energy prices, the depreciation rates of knowledge

stocks, estimation techniques, patent families, and markets.

Table 9 tests different lag structures of the carbon taxes and finds that

they are positively related to solar innovation in lagged periods. The pa-

rameter estimate for the contemporaneous effect is 4.292, falling to 2.230

with four lagged periods. The baseline results are not sensitive to choice of

the lag structure of energy prices.

[Table 9 about here.]

Following Aghion et al. (2014) we use energy prices as a proxy for car-

bon taxes, and we consider electricity prices in the baseline model. Table 10

reports results for different energy prices. The table shows that solar tech-

nology is also an increasing function of lagged prices of both natural gas and

fuel. The only difference compared to electricity is that the highly significant

point estimates are smaller. This is in accordance with our assumption that

taxing electricity is more relevant for solar technology than taxing natural

gas prices or fuel prices, i.e. β1 > β3 > β2, although increasing taxation
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on all carbon-intensive energy sources stimulates the development of clean

energy, i.e. βi > 0.

[Table 10 about here.]

Next we check that the baseline results are not sensitive to depreciation

rates of the knowledge stocks (see Table 11). In the regression we change

the assumed depreciation rate from δ = 0.20 to δ = 0.15. As evidenced in

the table, our estimates are not affected by depreciation rates.

[Table 11 about here.]

Our baseline results are estimated by the nonlinear Poisson fixed effects

count data model, assuming the equidispersion property of the Poisson dis-

tribution. However, Table 6 reported that the equidispersion property is

violated as the mean value of the patent variable is 0.37 and its standard

error 2.070. An alternative estimator is the negative binomial (NB) model

which is more general than the Poisson model since is accommodates overdis-

persion of observations with zero patents. Table 12 compare the baseline

estimates with the fixed effects NB model. The table also presents random

effects estimates for the two models.

If we first look at Column 2 and the estimate from Poisson RE, we find

that the most significant difference to the baseline results relates to the

financial variable. It is not significant in the RE model, which suggests that

the result in the baseline model is driven by the low degree of variation in

the financial indexes we use. It can also be noted that the significance level

of the two subsidy estimates decreases from 5% in the FE model to 10% in

the RE model.

Column 3 and 4 reports the NB model’s results. The estimated impact

of carbon taxes is similar to the baseline results, with the exception that the
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point estimate for the financial markets variable is not distinguishable from

zero.

[Table 12 about here.]

We then estimate equation 5 for the four different samples, where Table

13 compares the results. The most divergent results are shown in the sample

of all patents in column (2), where the estimates are insignificant for both

firms’ own knowledge base in solar energy and subsidies for carbon-intensive

energy sources. Our interpretation of these estimated effects is that they are

data driven. The quality of the model’s estimates is lower when based on

our sample with all patents.

[Table 13 about here.]

An important robustness check is whether our results are sensible to dif-

ferent weighting schemes, which express firms’ exposure to different markets.

In table 14, we report these results. Column (1) displays our baseline esti-

mates. Column (2) uses static weighting from the last year of the pre-sample

period (1989), as in Aghion et al. (2016)’s approach, so that only exogenous

sources of variation are exploited in the data. Column (3), using semi-static

weighting, updates weights once every six years. Column (4) uses placebo

(dynamic) weights that are randomly selected from a normalized uniform

distribution.29

There is obviously a trade-off between weighting schemes. On the one

hand, dynamic weighting introduces semi-endogenous sources of variation

in the data, as firms may vary their market exposures in accordance to the

29Note that the number of observations more than doubles in comparison to our baseline
estimates. This is explained by the imposed restrictions in the randomization process,
namely, in order to take advantage of all information in the sample we randomize across
the set of countries for which full data are available.
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underlying socioeconomic processes in these markets, but correctly iden-

tifies exposures to markets. Static weighting, on the other hand, makes

variables exogenous but at the high cost of miscalculating market exposures

(see Table 5). We believe that dynamic weighting presents more advantages

than limitations in comparison to the static scheme. As regardless of the

weighting scheme that is used, th einterpretation of coefficients seems more

reliable when market exposures are accurately computed. Columns (3) and

(4) present further robustness checks. Especially important is column (4),

which utilizes placebo weighting and tests for model overfitting. Although

all variables are significant, the results are generally not in line with prior

results and coefficient expectations. For instance, non-solar related stocks

become more important than solar-related (own) stocks of innovation. Most

surprisingly, fossil-fuel subsidies spur innovation in solar technologies while

solar subsidies hinder it. As these coefficients do not conform with prior

results and a priori expectations, we may conclude that placebo weight-

ing renders, as expected, inadequate results, and that there is no model

overfitting.

[Table 14 about here.]

In the final robustness check, we test for sensitivity of organizations such

as universities and governmental non-profits being included in the sample.

Columns (1) and (2) in table 15 report our baseline results for organiza-

tions with depreciation rates, δ, of twenty and fifteen percent, respectively.

Columns (3) and (4) report the same results for only firms. Interesting

results emerge: on the one hand, firms are more sensitive to government in-

tervention when it comes to taxation and financial markets. Governmental

non-profit organizations or universities, on the other hand, rely more heav-

ily on subsidies as it is more difficult for them to internally finance their
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activities since they are not primarily focused on commercialization of their

inventions.

[Table 15 about here.]

6 Conclusion

Recent literature on economic growth and directed technical change ad-

dresses climate change by endogenous market-based approaches in which

profit-maximizing firms can decide whether to innovate in environmental-

friendly or carbon-intensive technologies.

Empirical tests of predictions from endogenous models on the transport

sector confirm that regulations and subsidies may alter relative returns on

investments and redirect firms’ innovations from conventional vehicles to

hybrid or electric vehicles (Aghion et al. (2016)).

Relying on building blocks from the automotive study, this paper studies

how directed technical change affects innovation in patenting in solar ther-

mal and solar cells. Using a panel data with micro and macro observations

from nearly 200 countries over a 20-year period, we find that carbon taxes,

R&D subsidies to solar technology, and the size of firms’ own knowledge

stocks have significant positive effects on solar innovations. R&D subsidies

to fossil energy have the adverse effect, while the role of financial markets

and financial institutions are negligible. The results are robust to a number

of sensitivity tests.

Despite explosive growth over the recent decade, solar electricity ac-

counts for less than 1% of world energy supply. To be compatible with the

2015 Paris Agreement and the U.N. Sustainable Energy goal, this fraction

must increase tenfold by 2040. Further research should address whether
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current policy interventions and commercial activities are sufficiently com-

prehensive for this ambition to be achievable.
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A Appendix

A.1 Regional patent offices and other application authorities

Although there are several regional patent offices,30 Table 16 lists only those

offices that have registered at least one patent from our sample. Given

that there is no correspondence between these offices and macroeconomic

units, an identification hassle emerges. We solve this problem by creating

aggregated macroeconomic variables. For instance, the African Regional

Intellectual Property Organization (ARIPO) has 19 member states31, each

of them influencing the aggregated macroeconomic variables from earliest

date of membership (in this case determined by the Lusaka Agreement)

onwards. The same approach is followed for all other regional offices.

[Table 16 about here.]

Aggregated macroeconomic variables are mostly population-weigthed

(e.g., GDP per capita, energy prices and taxes, energy efficiency measures,

financial indexes, etc.), capturing the general conditions to which firms with

patents in those jurisdictions are exposed. However, in the case of popula-

tion and R&D subsidies, we simply sum over member states of the regional

patent office in question. This choice is motivated by the fact that when

firms file patents in regional offices they secure larger markets and, also,

because having access to a greater number of markets makes firms eligible

for subsidies in more countries.

Finally, there is an additional complication with patent offices that, if

not properly accounted for, could bias the calculation of market exposures,

namely: some patent offices that were in place in the past either no longer

operate today or have changed names.32 On the one hand, and in order to

be consistent with our weighting scheme, where patent offices were renamed,

30Access http://www.wipo.int/directory/en/urls.jsp to see the full list.
31See https://goo.gl/DwU3Tb.
32Examples of patent offices that changed names are the African Intellectual Property

Organization (OAPI), which was renamed African Regional Intellectual Property Organi-
zation (ARIPO) in 2005; and also, the patent office associated to the German Democratic
Republic which, after the unification with the Federal Republic of Germany, became part
of the German Patent and Trade Mark Office (DPMA). Examples of patent offices that
ceased operations when their countries broke apart are USSR Gospatent and those linked
to the former Socialist Federal Republic of Yugoslavia (SFRY) and Czechoslovakia.
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we added the weights of the office’s former and current name by applicant-

year. On the other hand, despite having tagged some patent offices as “no

longer operative”, we still (artificially) followed them over time. This is so

because, by construction, granted patents enter into firms’ patent portfolios

not only at the year of filing but also in all future periods, implying that

the market(s) associated with a given jurisdiction will always affect those

firms with at least one invention in that jurisdiction. Assuming that firms

keep on innovating, extinguished jurisdictions’ relative importance in patent

portfolios will decline proportionally to firms’ patenting intensity, in most

cases becoming negligible.

Auxiliary figures and tables

[Figure 6 about here.]

[Figure 7 about here.]

[Table 17 about here.]

[Table 18 about here.]

[Table 19 about here.]

[Table 20 about here.]
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Figure 1: Number of patents by family size, 1990–2012.

(a) Family size “1 and greater”

(b) Family size “2 and greater”

Notes: SOLAR is the summation of solar thermal energy, solar photovoltaic (PV) energy
and solar thermal-PV hybrid patents. Family size “1 and greater” considers all patent
priorities, including many low-value inventions. Family size “2 and greater” encompasses
patents that sought protection in at least two jurisdictions, i.e. high-value inventions.
Source: Science, Technology and Patents database, OECD Statistics.
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Figure 2: Patent count by category-year

(a)

(b)

(c)

Notes: When an invention, i.e. same docb familiy id, is filed in several jurisdictions (e.g.
USPTO and EPO) at different points in time it is counted as “biadic” by earliest filing
year but not at all afterwards. This holds true for all patent categories. Note that the x-
axis range differs between subfigures given that distinct patent offices started operating in
different years (the EPO, for instance, was not in place until the late 1970s and therefore
“triadic” patents cannot be operationalized until then). Source: PATSTAT.
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Figure 3: Energy prices and taxes by energy group

(a) Average fuel price (b) Average fuel tax

(c) Average natural gas price (d) Average natural gas tax

(e) Average steam coal price (f) Average steam coal tax

(g) Average electricity price (h) Average electricity tax

Notes: Fuel prices are calculated as the arithmetic mean of fuel oils, diesel, gasoline prices,
and LPG. Source: IEA.
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Figure 4: R&D energy subsidies

(a) Average fossil-fuels subsidy (b) Average renewable energy subsidy

(c) Average solar energy subsidy (d) Renewables to fossil fuels

(e) Solar to renewables

Source: IEA.
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Figure 5: Geographical distribution of inventors

(a) World

(b) United States

(c) Europe
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Figure 6: Country-level energy prices and taxes by energy group

(a) Fuel prices (b) Fuel taxes

(c) Natural gas prices (d) Natural gas taxes

(e) Steam coal prices (f) Steam coal taxes

(g) Electricity prices (h) Electricity taxes

Notes: Fuel prices are calculated as the arithmetic mean of fuel oils, diesel, gasoline prices,
and LPG. Source: IEA.
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Figure 7: Country-level R&D energy subsidies

(a) Fossil-fuels (b) Renewable energies

(c) Solar energy (d) Renewables to fossil fuels

(e) Solar to renewables

Source: IEA.
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Table 1: Gross electricity production from renewable sources (GWh)

Avg. annual
% change

1990 2000 2010 2013 2015 2000-2015
Total Electricity 1335269 1545370 1937524 2315785 2469884 3.2
Hydro 1185210 1348969 1343279 1410026 1364237 0.1
Geothermal 23190 25752 32377 34735 38885 2.8
Solar PV 18 718 30738 115342 172165 44.1
Solar thermal 663 526 1644 5787 8502 20.4
Tide, wave, ocean 529 539 506 919 1033 4.4
Wind 3844 28505 267096 442050 556090 21.9
Solid biofuels 94192 81990 148329 164120 173187 5.1
Biogases 3562 13093 44843 71296 78414 12.7

Source: .

Table 2: Units of analysis before and after harmonization

Applicants Inventors

Non harmonizing 32,139 34,460
Harmonizing 23,541 25,962

Sample size reduction 26.75% 24.66%

Table 3: Applicants’ distribution across sectors, all patents

Sector Number of applicants Percentage

Individual 18,042 76.64
Company 2,849 12.10
None 2,098 8.91
University 327 1.39
Gov Non-Profit 147 0.62
Unknown 58 0.25
Company Gov Non-Profit 18 0.08
Gov Non-Profit University 2 0.01

Total 23,541 100
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Table 4: Applicants’ distribution by quality of inventions

Patent Category Biadic Triadic Fouradic Fivadic
Sector

Individual 83.07% 78.66% 78.47% 60%
Company 13.88% 17.63% 18.05% 30%
University 1.82% 2.35% 2.35% 10%
Gov Non-Profit 0.75% 0.76% 0.79% −
Unknown 0.28% 0.38% 0.35% −
None 0.11% 0.08% − −
Company Gov Non-Profit 0.07% 0.14% − −
Gov Non-Profit University 0.02% − − −
Applicants 8,581 2,638 1,147 10

Table 5: Weighting schemes: Dynamic vs. Static

Dynamic vs. Static
Our approach Aghion et al. (2016)

US JP KR US JP KR

Murata Manufacturing
1989 (t = 0) 0.97 0 0 0.97 0 0
2000 0.71 0.01 0.09 0.97 0 0
2010 0.38 0.39 0.11 0.97 0 0

Samsung Electronics
1989 (t = 0) 0.03 0 0.94 0.03 0 0.94
2000 0.06 0 0.85 0.03 0 0.94
2010 0.07 0 0.91 0.03 0 0.94

Sanyo Electric
1989 (t = 0) 0.34 0.03 0.32 0.34 0.03 0.32
2000 0.14 0.13 0.85 0.34 0.03 0.32
2010 0.09 0.24 0.32 0.34 0.03 0.32

Seiko Instruments
1989 (t = 0) 0.76 0 0.07 0.76 0 0.07
2000 0.85 0.10 0.03 0.76 0 0.07
2010 0.65 0.15 0.13 0.76 0 0.07

Velcro Industries
1989 (t = 0) 0.2 0 0.1 0.2 0 0.1
2000 0.8 0 0.03 0.2 0 0.1
2010 0.84 0 0.03 0.2 0 0.1

Notes: t = 0 denotes the last year of the presample regression period, i.e. 1989.
Since not all markets were listed, weights do not necessarily add up to one. The
three markets and five companies listed in this table were arbitrarily selected.
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Table 6: Summary statistics, biadic sample

Variable Obs. Mean Sd. Min Max
Solar patents (PATSE,it) 28,380 0.371 2.070 0.000 67.000
Electricity price (ln ElecPit) 13,046 4.544 0.156 3.911 5.549
Fuel price (ln FPit) 13,083 -0.748 0.402 -1.268 0.569
Natural gas price (ln NGPit) 12,749 3.36 0.313 2.707 4.698
Steam coal price (ln SCit) 85,000 5.689 0.195 5.151 5.909
Own stock solar innovation (ln K20seit) 28,380 0.330 0.636 0 5.135
Own stock non-solar innovation (ln K20nsit) 28,303 1.512 2.175 -3.223 10.840
Solar energy subsidies (ln SEsubsit) 12,738 4.842 0.591 -0.434 6.211
Fossil-fuels subsidies (ln FFsubsit) 12,745 6.271 0.886 -1.234 8.221
Financial System (ln FDit) 14,093 -0.232 0.171 -1.137 -0.076

Notes: Descriptive statistics correspond to the 1,419 organizations in the biadic
sample for the regression period 1990-2009.
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Table 8: Baseline results, biadic sample

Regressand: PATse (1) (2) (3) (4)

ln ElectPt−1 3.293∗∗∗ 1.716∗∗ 1.977∗∗∗ 1.994∗∗∗

(0.695) (0.738) (0..672) (0.677)

ln K20set−1 0.436∗∗∗ 0.401∗∗ 0.403∗∗

(0.156) (0.164) (0.164)

ln K20nst−1 0.365∗∗∗ 0.384∗∗∗ 0.385∗∗∗

(0.102) (0.109) (0.109)

ln SEsubst−1 0.133∗∗ 0.154∗∗

(0.067) (0.068)

ln FFsubst−1 -0.114 -0.174∗∗

(0.079) (0.079)

ln FDt−1 -0.777∗∗

(0.381)

Time dummies Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes

Observations 9,109 9,045 8,879 8,879
Organizations 761 759 747 747
AIC 12,075 11,127 10,830 10,827
BIC 12,131 11,199 10,915 10,919

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Lagged electricity prices, biadic sample

Regressand: PATse (1) (2) (3) (4) (5)

ln ElectPt 4.293∗∗∗

(0.655)

ln ElectPt−1 3.293∗∗∗

(0.695)

ln ElectPt−2 2.824∗∗∗

(0.581)

ln ElectPt−3 2.571∗∗∗

(0.776)

ln ElectPt−4 2.320∗

(1.312)

Time dummies Yes Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes Yes

Obs. 9,036 9,109 8,019 7,109 6,184
Organizations 749 761 691 625 565
AIC 11,991 12,075 10,792 9,831 9,001
BIC 12,048 12,131 10,848 9,886 9,055

Notes: Estimation is by the Poisson panel estimator. All regressions include
controls for population size, a measure of market size for the renewable sector
and GDP per capita. Standard errors are cluster-robust at the organization
level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Estimates for different energy prices, biadic sample

Regressand: PATse (1) (2) (3) (4) (5) (6)
ln ElectPt−1 3.293∗∗∗

(0.695)

ln ElectPt−2 2.824∗∗∗

(0.581)

ln Natural gas pricet−1 1.839∗∗∗

(.381)

ln Natural gas pricet−2 1.529∗∗∗

(.290)

ln Fuel pricet−1 1.619∗∗∗

(0.211)

ln Fuel pricet−2 1.255∗∗∗

(0.214)

Time dummies Yes Yes Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes Yes Yes

Observations 9,109 8,019 8,919 7,862 9,153 8,060
Organizations 761 691 749 681 762 692
AIC 12,075 10,792 12,102 10,911 11,923 10,666
BIC 12,132 10,848 12,159 10,967 11,980 10,722

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Reestimated results for δ = 0.15, biadic sample

Regressand: PATse (1) (2) (3) (4)

ln ElectPt−1 3.293∗∗∗ 1.779∗∗ 2.031∗∗∗ 2.048∗∗∗

(0.695) (0.769) (0.700) (0.701)

ln K15set−1 0.369∗∗ 0.332∗∗ 0.334∗∗

(0.162) (0.171) (0.171)

ln K15nst−1 0.397∗∗∗ 0.418∗∗∗ 0.420∗∗∗

(0.109) (0.116) (0.116)

ln SEsubst−1 0.142∗∗ 0.162∗∗

(0.067) (0.067)

ln FFsubst−1 -0.119 -0.180∗∗

(0.081) (0.080)

ln FDt−1 -0.789∗∗

(0.516)

Time dummies Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes

Observations 9,109 9,045 8,879 8,879
Organizations 761 759 747 747
AIC 12,075 11,223 10,918 10,915
BIC 12,132 11,294 11,003 11,007

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 12: Assessment of results by alternative estimation techniques

Regressand: PATse (1) (2) (3) (4)
Main Results Negative Binomial Negative Binomial Poisson RE
Poisson FE FE Exch. correlations

ln ElectPt−1 1.994∗∗∗ 1.953∗∗∗ 1.542∗∗∗ 1.468∗∗∗

(0.677) (0.371) (0.333) (0.598)

ln K20set−1 0.403∗∗ 0.314∗∗∗ 1.058∗∗∗ 0.676∗∗∗

(0.164) (0.039) (0.043) (0.146)

ln K20nst−1 0.385∗∗∗ 0.197∗∗∗ 0.081∗∗∗ 0.206∗∗∗

(0.109) (0.018) (0.023) (0.0378)

ln SEsubst−1 0.154∗∗ 0.111∗ 0.130∗ 0.124∗

(0.068) (0.066) (0.073) (0.0785)

ln FFsubst−1 -0.174∗∗ -0.131∗ -0.038 -0.105∗

(0.079) (0.078) (0.066) (0.0846)

ln FDt−1 -0.777∗∗ -0.048 0.281 -0.273
(0.381) (0.669) (0.577) (0.470)

Observations 8,879 8,879 11,505 11,505
Organizations 747 747 1,169 1,169
AIC 10,827 10,827 − 15,599
BIC 10,919 9,793 − 15,709

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Comparison of results across samples

Regressand: PATse (1) (2) (3) (4)
All patents Biadic Triadic Fouradic

ln ElectPt−1 1.825∗∗∗ 1.994∗∗∗ 1.788∗∗ 1.827∗

(0.491) (0.677) (0.772) (1.027)

ln K20set−1 -0.082 0.403∗∗ 0.663∗∗∗ 0.725∗∗∗

(0.142) (0.164) (0.157) (0.197)

ln K20nst−1 0.425∗∗∗ 0.385∗∗∗ 0.278∗∗∗ 0.209∗

(0.104) (0.109) (0.091) (0.108)

ln SEsubst−1 0.198∗∗∗ 0.153∗∗ 0.184∗∗ 0.177∗

(0.041) (0.068) (0.077) (0.097)

ln FFsubst−1 -0.005 -0.174∗∗ -0.266∗∗∗ -0.326∗∗∗

(0.091) (0.079) (0.081) (0.096)

ln FDt−1 -0.789∗∗ -0.777∗∗ -0.662∗ -0.476
(0.403) (0.381) (0.400) (0.470)

Time dummies Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes

Observations 22,664 8,879 4,545 1,957
Panel units 3,249 747 345 156

Notes: All regressions are estimated by Poisson fixed-effects and include controls
for population size, a measure of market size for the renewable sector and GDP
per capita. Standard errors are cluster-robust at the organization level and are
expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 14: Main results, different weighting schemes

Regressand: PATse (1) (2) (3) (4)
Dynamic Static Semi-static Placebo

ln ElectPt−1 1.994∗∗∗ 1.560∗∗ 1.358∗ 1.873∗∗∗

(0.677) (0.621) (0.732) (0.421)

ln K20set−1 0.403∗∗ 0.714∗∗∗ 0.495∗∗∗ 0.386∗∗∗

(0.164) (0.126) (0.164) (0.097)

ln K20nst−1 0.385∗∗∗ 0.336∗∗∗ 0.371∗∗∗ 0.471∗∗∗

(0.109) (0.088) (0.103) (0.065)

ln SEsubst−1 0.153∗∗ 0.190∗∗ 0.334∗∗∗ -0.176∗∗

(0.068) (0.085) (0.081) (0.086)

ln FFsubst−1 -0.174∗∗ -0.197∗∗ -0.153∗ 0.228∗∗∗

(0.079) (0.092) (0.083) (0.088)

ln FDt−1 -0.777∗∗ -1.327∗∗ -0.605 0.333
(0.381) (0.658) (0.468) (0.484)

Time dummies Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes

Observations 8,879 5,884 7,644 23,610
Organizations 747 317 659 1,246

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

59



Table 15: Organizations vs. firms

Regressand: PATse (1) (2) (3) (4)
Orgs. Orgs. Firms Firms
δ = 0.20 δ = 0.15 δ=0.20 δ=0.15

ln ElectPt−1 1.994∗∗∗ 2.048∗∗∗ 2.101∗∗∗ 2.152∗∗∗

(0.677) (0.706) (0.739) (0.771)

ln Kset−1 0.403∗∗ 0.333∗∗ 0.456∗∗∗ 0.394∗∗

(0.164) (0.171) (0.170) (0.178)

ln Knst−1 0.385∗∗∗ 0.420∗∗∗ 0.378∗∗∗ 0.406∗∗∗

(0.109) (0.116) (0.116) (0.121)

ln SEsubst−1 0.154∗∗ 0.163∗∗ 0.135∗ 0.141∗

(0.068) (0.067) (0.079) (0.077)

ln FFsubst−1 -0.174∗∗ -0.180∗∗ -0.183∗∗ -0.188∗∗

(0.079) (0.081) (0.093) (0.096)

ln FDt−1 -0.777∗∗ -0.789∗∗ -0.968∗∗ -0.962∗∗

(0.381) (0.380) (0.433) (0.427)

Time dummies Yes Yes Yes Yes

Organization fixed effects Yes Yes Yes Yes

Observations 8,879 8,879 7,237 7,237
Organizations 747 747 613 613

Notes: All regressions include controls for population size, a measure of market
size for the renewable sector and GDP per capita. Standard errors are cluster-
robust at the organization level and are expressed in parentheses:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 16: Regional patent offices and number of member states

Regional Patent Office Code Member States

International Bureau of WIPO IB 188
European Patent Office EP 38
African Regional IP Organization AP 19
USSR Gospatent SU 15
Eurasian Patent Organization EA 11
Coop. Council for the Arab States of the Gulf GC 6
Yugoslavian Patent Office YU 6
Czechoslovak Patent Office CS 2

Source: World Intellectual Property Organization (WIPO).
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Table 17: CPC codes for identifying solar energy technologies

Code Description

Y02E10/40 Solar thermal energy
Y02E10/41 Tower concentrators
Y02E10/42 Dish collectors
Y02E10/43 Fresnel lenses
Y02E10/44 Heat exchange systems
Y02E10/45 Trough concentrators
Y02E10/46 Conversion of thermal power into mechanical power
Y02E10/465 Thermal updraft
Y02E10/47 Mountings or tracking
Y02E10/50 Photovoltaic [PV] energy
Y02E10/52 PV systems with concentrators
Y02E10/54 Material technologies
Y02E10/541 CuInSe2 material PV cells
Y02E10/542 Dye sensitized solar cells
Y02E10/543 Solar cells from Group II-VI materials
Y02E10/544 Solar cells from Group III-V materials
Y02E10/545 Microcrystalline silicon PV cells
Y02E10/546 Polycrystalline silicon PV cells
Y02E10/547 Monocrystalline silicon PV cells
Y02E10/548 Amorphous silicon PV cells
Y02E10/549 Organic PV cells
Y02E10/56 Power conversion electric or electronic aspects
Y02E10/563 For grid-connected applications
Y02E10/566 Concerning power management inside the plant
Y02E10/58 Maximum power point tracking [MPPT] systems
Y02E10/60 Solar thermal-PV hybrids
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Table 17: Top 15 inventors in solar energy

(a) Year: 2010

Name Solar patents Non-solar patents Total patents

Shunpei Yamazaki 84 1115 1199
Stephen R. Forrest 63 52 115
Philipp Stoessel 56 18 74
Bulent M. Basol 45 27 72
Benyamin Buller 44 4 48
Roland Winston 42 20 62
Stanford R. Ovshinsky 41 195 236
Masahiro Kanai 40 58 98
Christoph Brabec 37 17 54
Arne Buesing 37 10 47
Holger Heil 36 10 46
Mehrad M. Moslehi 35 21 56
Seung-Yeop Myong 35 1 36
Subhendu Guha 35 12 47
Susanne Heun 34 10 44

(b) Year: 2005

Name Solar patents Non-solar patents Total patents

Shunpei Yamazaki 61 785 846
Masahiro Kanai 40 57 96
Stephen R. Forrest 35 44 79
Kimitoshi Fukae 34 6 40
Stanford R. Ovshinsky 33 183 216
Katsumi Nakagawa 32 13 45
Prem Nath 31 15 46
Roland Winston 30 16 46
Isamu Shimizu 29 17 74
Ichiro Kataoka 28 45 28
Akiharu Takabayashi 28 0 30
Nobuyoshi Takehara 27 2 42
Shigenori Itoyama 27 15 29
Hidenori Shiotsuka 27 2 28
Satoru Yamada 26 1 26

Notes: Inventors were identified by hrm l2 id from the EEE-PPAT table. Numeric
entries represent the cumulative count of unique inventions.
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