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Abstract

This paper investigates how optimal portfolios of timber & forestry stocks perform
relative to the global S&P timber & forestry index when corporate social responsibil-
ity (CSR) is considered. We incorporate CSR in the construction of optimal portfolios
by utilizing environmental, social, and governance (ESG) scores. Historical as well
as copula-augmented predictive models and ESG-constrained optimization are used
to analyze out-of-sample performance of various portfolio strategies over the period
2018-2021. The results of copula-based portfolio strategies are better than of the his-
torical models. Another insight gained by this study is that socially responsible in-
vestments in forestry stocks are feasible without sacrificing risk-adjusted returns.
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1 Introduction

Total investment in the global forestry industry has increased tenfold since the early

2000s.1 Features like good prospects for risk-adjusted returns, high risk diversification

potential, and the ability to hedge inflation risks are considered to be main reasons for

the increased attractiveness of timberland & forestry stocks (Chudy & Cubbage 2020, Mei

2019, Wan et al. 2015).

In addition, the 2015 Paris Climate Agreement emphasizes the important role of for-

ests for climate change mitigation. Wood biomass has become an alternative renewable

energy source (Favero & Mendelsohn 2014), and forest-based building and construction

materials are attractive alternatives to carbon intensive materials. Sustainable forest man-

agement practices are also crucial for maintaining the vitality of the earth’s complex bi-

ological diversity by avoiding deforestation and forest degradation (Hunter & Hunter Jr

1999). This comes into play as investors become increasingly concerned with the envi-

ronmental, social, and governance (ESG) aspects of their investments. Companies aiming

for corporate social responsibility (CSR) are expected to be able to anticipate future risks

and opportunities, to be more disposed to longer-term strategic thinking, and to be more

focused on long-term value creation instead of short-term profit maximization.

The main purpose of this paper is to analyze the impact of incorporating CSR con-

cerns into portfolio construction using timber & forestry stocks. For the implementa-

tion of optimal portfolios we focus on stocks from the constituent list of the S&P Global

Timber & Forestry (GTF) index. This list entails 25 of the worldwide largest timber &

forestry stocks. A fundamental question related to investing based on CSR considera-

tions is the following: how does incorporating ESG target values (bounds) into the port-

folio construction affect the performance of (risk-return) optimal timber & forestry stock

portfolios? One common concern with ESG investing is the potentially lower portfolio

performance in terms of risk-adjusted returns of socially responsible investments (Boffo

& Patalano 2020, Lööf et al. 2021, Pedersen et al. 2020).

To improve the portfolios’ level of social responsibility, we propose a combined port-

folio optimization approach that includes (i) modeling the dependence structure between

1https://www.unpri.org/investment-tools/private-markets/infrastructure-and-other-real-
assets/forestry, retrieved on 22 June 2021.
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fat-tailed non-Gaussian asset returns2 and (ii) imposing boundaries (constraints) on the

portfolio stocks’ ESG ratings. In particular, we utilize vine copulas that have gained

popularity in portfolio optimization as they can describe multivariate conditional dis-

tributions capturing both symmetric and asymmetric tail dependence (see e.g. Low et al.

2013, Sahamkhadam 2021, Sahamkhadam et al. 2022). Using 29 timber & forestry stocks,3

we construct socially responsible copula-based portfolios with either risk minimization

or reward/risk maximization. The latter is used to obtain optimal portfolios in terms of

both expected return and risk.

To construct socially responsible portfolios, we apply the minimum risk and maxi-

mum reward/risk optimization and impose lower boundaries for the level of traditional

ESG ratings and upper boundaries for the recently developed ESG risk (ESGR) scores.

It is worth noting that while the traditional ESG rating lies in the range from 0 to 100,

where a higher ESG means a better rating, the newer ESGR rating uses the same range of

values, but a lower ESGR value implies less ESG risk, and is therefore better. As regards

the traditional ESG ratings, we obtain the ESG scores for each stock both from Sustain-

alytics (thereafter ESG I) and from Thomson Reuters Refinitiv Eikon (thereafter ESG II).

This enables us to analyze the consistency of ESG ratings from different providers. We in-

vestigate three portfolio methods, i.e. unconstrained, ESGR-constrained, and multi-ESG-

constrained. The latter includes constraints on all ESG scores available for this study,

i.e. ESGR, ESG I, and ESG II. The results for the multi-ESG-criteria portfolio strategy are

in particular valuable for investors as they demonstrate that a combination of consistently

top ESG-performing forestry stocks may also provide good reward-to-risk prospects.

The outcomes of the various portfolio strategies are evaluated in two steps. First, out-

of-sample backtesting is used and performance measures for each strategy are computed.

In a second step, regression models are applied to investigate whether there are signifi-

cant differences in copula-based portfolio strategies compared to historical ones, and also

whether there are significant differences with regard to imposing ESG constraints in the

portfolio optimizations. The regression results confirm the advantage of copula-based

portfolio strategies over historical ones, and also reveal that ESG-constrained portfolios

2For another application of dependence modeling using copulas, see Sun (2013).
3The number of stocks in the sample is higher than 25 because of past changes in the S&P GTF con-

stituents list.
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do, contrary to common belief, not imply significantly lower Sortino, Sharpe, or STARR

ratios. Thus, the results highlight that it is possible to improve the average ESG, and

thereby the sustainability of investments in forestry stocks, by using the proposed meth-

ods without sacrificing risk-adjusted returns.

The current study’s contribution is twofold. First, we construct and investigate sus-

tainable (socially responsible) portfolio investments in the timber & forestry industry us-

ing ESG scores. We provide evidence of the superiority of the proposed portfolio strate-

gies to achieve sustainable investments. Second, we incorporate dependence structure

modeling into the suggested socially responsible portfolio optimization. We extend pre-

vious, related work (for instance, Busby et al. 2020), by estimating returns’ predictive

multivariate distribution using vine copula modeling. In sum, this study documents the

advantages of imposing sustainability restrictions on copula-based portfolio optimiza-

tion, and to our knowledge, this is the first study to provide such a result. Third, to

obtain socially responsible optimal (reward/risk maximization) portfolios, we combine

fractional programming techniques with ESG constraints, which makes this study the

first to suggest and use such a method for socially responsible portfolios.

The rest of the paper is organized as follows. Section 2 presents the empirical method-

ology including portfolio optimization. Section 3 presents information on the data. Re-

sults are provided in Section 4. Section 5 concludes.

2 Methodology

In this section, we present and compare the copula-based approach with the historical

model. Furthermore, we introduce both unconstrained and ESG-constrained portfolio

optimization models.

2.1 Copula-based Portfolio Approach

The copula-based portfolios are comparable to the classical Markowitz’s mean-variance

type portfolios. In both approaches, we define the investor’s utility function as either risk

minimization or reward/risk maximization. Indeed, the portfolio optimization problem

is similar for both methods. However, the difference is how to obtain a predictive multi-
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variate distribution for asset returns denoted by r̂t. In the classical mean-variance analy-

sis, we use past observations and estimate expected portfolio return and variance. In the

copula-based approach, a copula-augmented risk model is used to estimate step-ahead

conditional multivariate distribution. In this paper, we refer to portfolios obtained via

the former approach as historical-based portfolios and provide an empirical compari-

son between the two approaches. In particular, we compare the two approaches when

constructing the socially responsible portfolios. A detailed comparison of the two ap-

proaches can also be found in Sahamkhadam et al. (2018).

In the copula-based approach, we first estimate the step-ahead expected returns and

standard deviations for individual assets and obtain their marginal distribution using the

VAR-GARCH model. Following that, we transform standardized residuals into uniform

marginals and estimate the dependence structure between asset returns using truncated

R-vine copula models. Then, we draw simulations from the step-ahead joint distribution,

and finally, perform portfolio optimization using returns’ forecasts. In Appendices A and

B, we present the R-vine copula model and steps involved in constructing copula-based

portfolios.

2.2 Portfolio Optimization Methods

For a portfolio that consists of d assets with excess returns r̂t = (r̂1t, r̂2t, ..., r̂dt), asset

weights ŵt = (ŵ1t, ŵ2t, ..., ŵdt), a d ˆ d positive-definite covariance matrix Σ̂t, and a d ˆ 1

vector of asset means µ̂t = (µ̂1t, µ̂2t, ..., µ̂dt) at time (out-of-sample iteration) t, Markowitz

(1952) suggests that the portfolio’s expected return and variance are ŵ⊺
t µ̂t and ŵ⊺

t Σ̂tŵt,

respectively. Furthermore, he proposes that an investor should invest in optimal portfo-

lios according to the mean-variance Efficient Frontier. Among these portfolios are the Min

Variance and Max Sharpe Ratio (SR). While the former is suitable for a risk-averse in-

vestor with the objective of reducing the portfolio risk, the latter, as suggested in Sharpe

(1966), is an alternative for a risk-averse investor who seeks a maximum reward/risk

ratio, which entails maximizing the compensation for any accepted unit of risk.

To extend the Markowitz-type portfolios, we also include the ESG (risk) scores. Let

ESGRt = (ESGR1t, ESGR2t, ..., ESGRdt), ESGI
t = (ESGI

1t, ESGI
2t, ..., ESGI

dt), and ESGI I
t =

(ESGI I
1t , ESGI I

2t , ..., ESGI I
dt) be d ˆ 1 vectors of assets’ ESGR, ESG I and ESG II scores, re-
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spectively. Then, the socially responsible multi-ESG-constrained Min-Variance portfolio

is obtained as:

minimize
ŵt

ŵ⊺
t Σ̂ŵt portfolio risk

subject to ŵ⊺
t ESGRt ď UESGRt

ŵ⊺
t ESGI

t ě LESGI
t

ŵ⊺
t ESGI I

t ě LESGI I
t

ŵ⊺
t 1 = 1 full investment

ŵjt ě 0, @j P t1, 2, .., du long position,

(1)

where ŵ⊺
t ESGRt and UESGRt denote the portfolio’s ESGR score and its upper boundary

at time t. To identify proper lower boundaries for portfolio ESG I and ESG II, we use

the third quartiles of these scores across assets s.t. LESGI
t
= Q3(ESGI

1t, ESGI
2t, ..., ESGI

dt)

and LESGI I
t
= Q3(ESGI I

1t , ESGI I
2t , ..., ESGI I

dt), where Qk(.) is the kth empirical quartile. We

set the upper boundaries for portfolio ESGR to the first quartile such that UESGRt =

Q1(ESGR1t, ESGR2t, ..., ESGRdt).4

For the Max-SR portfolio, the objective function ŵ⊺
t µ̂t?

ŵ⊺
t Σ̂tŵt

, is a non-linear term and

to obtain a convex optimization, we apply fractional programming (see e.g., Charnes &

Cooper 1962, Dinkelbach 1967).5

The risk measure in the Max-SR portfolio problem is the portfolio standard devia-

tion,
b

ŵ⊺
t Σ̂tŵt. Since the covariance matrix, Σ̂t, is positive semi-definite and portfolio

variance, ŵ⊺
t Σ̂tŵt, is strictly monotonic, the minimization of the portfolio variance corre-

sponds to the minimization of the portfolio standard deviation. Assuming (i) the portfo-

lio’s expected return, ŵ⊺
t µ̂t, is a (quasi-)concave function and strictly positive, and (ii) the

portfolio variance is convex (i.e., non-singular) and strictly positive, then the ratio ŵ⊺
t Σ̂tŵt
ŵ⊺

t µ̂t

is quasi-convex and its minimization corresponds to the maximization of ŵ⊺
t µ̂t?

ŵ⊺
t Σ̂tŵt

(see

Stoyanov et al. 2007, for more details). Therefore, the Max-SR optimization problem can

4This portfolio optimization problem is comparable to that in Qi & Li (2020), where equality constraints
are imposed on individual pillars, i.e. environmental, social, and governance scores.

5For both the Sharpe and STARR ratios, we use the 3-month US T-bill rate as the risk-free rate.
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be written as:

minimize
ŵt

ŵ⊺
t Σ̂tŵt

ŵ⊺
t µ̂t

subject to ŵ⊺
t 1 = 1 full investment

0 ď ŵjt ď 1, @j P t1, 2, .., du long positions only

(2)

To transform Problem (2) into a quadratic programming optimization, let w̃t be a vec-

tor of unbounded weights, ν be an auxiliary variable capturing the inverse of the denom-

inator of the objective function s.t. ν = [ŵ⊺
t µ̂t]

´1. Since the portfolio variance is a posi-

tively homogeneous function, by setting ŵt = w̃t/ν, we have
b

w̃⊺
t Σ̂tw̃t = ν

b

ŵ⊺
t Σ̂tŵt =

b

ŵ⊺
t Σ̂tŵt[ŵ

⊺
t µ̂t]

´1. Therefore, the Max-SR portfolio problem is equivalent to:

minimize
w̃t,ν

w̃⊺
t Σ̂tw̃t portfolio risk

subject to w̃⊺
t µ̂t ě 1 portfolio return

w̃⊺
t 1 = ν full investment

0 ď w̃jt ď ν, @j P t1, 2, .., du long positions only

ν ą 0,

(3)

where the portfolio return constraint, w̃⊺
t µ̂t ě 1, is equivalent to the condition that ν =

[ŵ⊺
t µ̂t]

´1, due to the positively homogeneous property of portfolio expected return, i.e.,

w̃⊺
t µ̂t = ν[ŵ⊺

t µ̂t] = [ŵ⊺
t µ̂t]

´1ŵ⊺
t µ̂t = 1. Since ŵjt =

w̃jt
ν , both the full investment and long

positions constraints are equivalent to those from Problem (2). The last constraint ensures

that the portfolio return is positive.

To construct a socially responsible multi-ESG-constrained optimal portfolio, we sug-

gest to add constraints for portfolio ESGR, ESG I, and ESG II scores. In this case, the

socially responsible Max-SR portfolio is defined as:
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minimize
w̃t,ν

w̃⊺
t Σ̂tw̃t portfolio risk

subject to w̃⊺
t µ̂t ě 1 portfolio return

w̃⊺
t ESGRt ď νUESGRt

w̃⊺
t ESGI

t ě νLESGI
t

w̃⊺
t ESGI I

t ě νLESGI I
t

w̃⊺
t 1 = ν full investment

0 ď w̃jt ď ν, @j P t1, 2, .., du long positions only

ν ą 0,

(4)

where ν denotes an auxiliary scaling variable, w̃t is a vector of the unconstrained weights

with the final optimal weights obtained as ŵjt =
w̃jt
ν .

To protect the investor from extreme losses during a bearish market, tail risk mea-

sures are widely applied in portfolio optimization (for an application, see Restrepo et al.

2020). Among these measures is the conditional Value-at-Risk (CVaR), also known as the

expected shortfall. CVaR is defined as average losses beyond VaR, and for a portfolio

it can be minimized by using linear programming (see Rockafellar & Uryasev 2000, for

more details on the linear transformation of CVaR).

Let f(ŵt, r̂mt) = ´ŵ⊺
t r̂mt be a loss function and set l = VaRα(ŵt). Let υt = (υ1t, υ2t, ..., υMt)

be an auxiliary variable that captures losses beyond the VaR s.t. υmt =
[

´ ŵ⊺
t r̂mt ´

VaRα(ŵt)
]+. The multi-ESG-constrained Min-CVaR portfolio can be imposed as a lin-

ear system:
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minimize
ŵt,l,υt

l +
1

M(1 ´ α)

M
ÿ

m=1

υmt portfolio tail risk

subject to ŵ⊺
t r̂mt + l + υmt ě 0, @m P t1, 2, .., Mu

ŵ⊺
t ESGRt ď UESGRt

ŵ⊺
t ESGI

t ě LESGI
t

ŵ⊺
t ESGI I

t ě LESGI I
t

ŵ⊺
t 1 = 1 full investment

ŵjt ě 0, @j P t1, 2, .., du long position,

(5)

where l is the VaR at α level, and M is the total number of simulated returns from the

step-ahead multivariate distribution.

Similar to the Max-SR optimization in Eq. (4), one could maximize the mean/CVaR

(also known as the stable tail-adjusted return ratio or STARR). Since the risk measure,

CVaR(ŵt), is convex, the maximization of STARR, i.e. µ̂tCVaR(ŵt)´1, corresponds

to the minimization of CVaR(ŵt)µ̂
´1
t . By setting ŵt = w̃t/ν, we have CVaR(w̃t) =

νCVaR(ŵt) = CVaR(ŵt)[ŵ
⊺
t µ̂t]

´1. We use υt as an auxiliary variable and define CVaR(w̃t) =

l + 1
M(1´α)

řM
m=1 υmt. In this case the optimization system is given by:

minimize
w̃t,l,υt,ν

l +
1

M(1 ´ α)

M
ÿ

m=1

υmt portfolio tail risk

subject to w̃⊺
t µ̂t ě 1 portfolio return

w̃⊺
t r̂mt + l + υmt ě 0, @m P t1, 2, .., Mu

w̃⊺
t ESGRt ď νUESGRt

w̃⊺
t ESGI

t ě νLESGI
t

w̃⊺
t ESGI I

t ě νLESGI I
t

w̃⊺
t 1 = ν full investment

0 ď w̃jt ď ν, @j P t1, 2, .., du long positions only

υmt ě 0

ν ą 0.

(6)

To estimate the ESGR-constrained portfolios, we remove the constraints for ESG I and
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ESG II from Eqs. (1), (4), (5), and (6).

3 Data

In this paper, we use international stocks that are constituents of the S&P GTF index

which represents the 25 largest global timber & forestry stocks. An investor has the pos-

sibility to participate in the development of the S&P GTF index by investing in the iShares

S&P GTF exchange traded fund (ETF). We will label this investment in the following as

the GTF ETF benchmark. Note that this benchmark represents a passive investment strat-

egy, in which the included stocks are weighted with their market capitalization as sug-

gested by the CAPM. The S&P GTF index updates its constituent list and their respective

weights twice each year. Since the historical constituents of S&P GTF have changed dur-

ing the sample period due to delisting of stocks or market capitalization changes, the

sample contains 29 stocks in total.

As we are particularly interested in socially responsible investments, we employ ESG

I and ESGR scores obtained from Sustainalytics, and also the ESG II scores obtained from

Refinitiv Eikon database. Only stocks which have data available on all ESG measures

are considered for the analysis. As mentioned above, we explore two different versions

of ESG measures retrieved from Sustainalytics. The first, which we refer to as ESG I, is

considered as the standard ESG measure, while the second, which is labeled as ESG Risk

(ESGR) rating, focuses on materiality and risk issues. This revised ESG was launched in

2018 by Sustainalytics as a new generation of ESG measurement. The ESGR approach

sorts companies into five risk categories: negligible, low, medium, high, severe. These

risk categories are absolute, meaning that a “high risk” assessment reflects a comparable

degree of unmanaged ESG risk across the economy, whether it refers to a manufacturing

company, an agriculture company, an utility company, or any other type of company. To

be considered relevant in the ESGR, an issue must have a potentially substantial impact

on the economic value of a company and, hence, the financial risk and return profile of

an investor. Compared to traditional ESG I and II measures, ESGR consists of one single

currency of risk. One point of risk is equivalent, no matter which company or which

issue it applies to, and points of risk add up across issues to create overall scores. The
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ESGR is composed of three building blocks that contribute to the overall rating score for

a company. These building blocks include Corporate Governance, material ESG issues,

and idiosyncratic issues. We also obtain the adjusted (total) daily returns and the 3-month

US T-bill rate from Thomson Reuters’s Eikon database from January 2015 to December

2021, resulting in 1,793 trading days.

Table A1 in the appendix presents the descriptive statistics of asset returns. Most

return series are positively skewed and show positive kurtosis. Considering the results of

Jarque–Bera’s normality test, we can conclude that all series have non-Gaussian empirical

distributions. The results of the ARCH test with one lag indicate volatility clustering and

autocorrelation in the squared residuals for most series. The test statistics for the Ljung–

Box test with ten lags suggest serial correlation for most of the series.

Not only do we estimate the copula-based portfolios, but we also take a simple his-

torical approach where we use the historical asset returns in the portfolio optimization

(as an example, see Redmond & Cubbage 1988). As the ESGR data is only available

from December 2018, we consider a three-year period, from December 2018 to Decem-

ber 2021, to investigate how CSR measures affect portfolio performance.6 To understand

the impact of CSR consideration on portfolio performance, we also show the results for

unconstrained portfolios. As benchmark for portfolio strategies, we compare the results

with the passive investment into the iShares S&P GTF ETF.

4 Results

In this section, we analyze the out-of-sample performance of optimal timber & forestry

portfolios, with and without imposing constraints on CSR measures, using the GTF ETF

as benchmark. Finally, we compare performance results between unconstrained and con-

strained historical and copula-based optimal portfolios.

6Our choice of the time period 2018-2021 is further motivated by the severe market turmoil caused by
the pandemic crisis, which made investors’ trade-off between risk and reward particularly challenging and,
therefore, important to study.
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4.1 ESG-constrained and unconstrained portfolios

Table 1 reports the results for the unconstrained, ESGR-constrained, and multi-ESG-

constrained timber & forestry portfolios during the 2018-2021 period. The GTF ETF

benchmark achieves a higher average return (0.098%) than the historical-based optimal

portfolios, and consequently, results in better risk-adjusted ratios. However, the ETF has

higher downside risk (6.95%) than the other portfolio strategies.

The CSR measures reported for the ETF, i.e. an ESG I of 63.6, indicates the average

level of social responsibility anticipated when investing in the timber & forestry stocks

using a passive diversification strategy following the S&P GTF index.

Panel (B) presents the results for historical-based optimized portfolios. In regard to

risk minimization, both Min Variance and Min-CVaR portfolios have lower volatility and

tail risk compared to the benchmark. In particular, the Min-CVaR portfolio results in a

CVaR of 4.02%. Considering the reward/risk maximization, both the Max-SR and Max-

STARR portfolios also reduce the tail risk but fail to increase the average return. Overall,

these unconstrained historical portfolios provide better downside risk than the bench-

mark portfolios and show similar levels of social responsibility as the GTF ETF.

As we can see in Panel (C), the ESGR constraint results in portfolios with better ESG

I and ESGR scores than the average values from the benchmark. Moreover, the ESGR

constraint leads to Min-Variance, Min-CVaR, and Max-STARR historical-based portfo-

lios with higher average returns. Panels (E) and (F) show that the Min-Variance and

Min-CVaR copula-based portfolios, i.e. ESGR-constrained and unconstrained, have lower

downside risk (CVaR) compared to the benchmark. In general, the copula-based port-

folios with risk minimization achieve lower downside risk, higher average return, and

better risk-adjusted performance compared to those from the historical approach. This

is due to incorporating tail dependency when modeling the predictive multivariate dis-

tribution for asset returns via vine copulas. For instance, the historical-based Min-CVaR

portfolio in Panel (B) results in an average return of 0.042% and a CVaR of 4.02%, while

its copula-based counterpart in Panel (E) has an average return of 0.087% and a CVaR of

3.83%. Although, the Max-SR and Max-STARR copula-based portfolios achieve higher

average returns, they fail to reduce both the volatility and downside risk compared to
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their historical counterparts. For instance, the Max-SR and Max-STARR portfolios in

Panel (E) result in the highest average returns, i.e. 0.17%, which is due to the VAR model

used in the mean equation, while achieving lower CVaR compared to the benchmark.

Panels (D) and (G) provide the results for constrained portfolios when imposing bound-

aries on all types of ESG scores. While imposing multi-ESG constraints for the Max-SR

and STARR portfolios in Panel (D) leads to higher average returns and higher CVaR, the

multi-ESG constraints in Panel (G) reduce both volatility and CVaR for these portfolios.

This indicates that multi-ESG constraints restrict investment only in assets with the best

CSR performance, and therefore, using these assets results in optimal portfolios with

lower risk compared to both the benchmarks. We notice all the multi-ESG-constrained

portfolios in Panels (D) and (G) achieve similar ESG I, ESGR, and ESG II scores. This

indicates that the optimization cannot find a solution with better scores than the upper

(lower) boundaries and better objective value. It is noteworthy that the average turnover

reported for the copula-based portfolios indicates a higher volume of trades required to

hold these strategies compared to those from the historical-based approach.7

In Table 2, we report the average weights for the top ten assets in the copula-based

timber & forestry portfolios. Daio Paper Co. has a high weight, in particular, in uncon-

strained portfolio strategies that minimize portfolio risk. However, it has a high ESGR

score, i.e. 35.1, and therefore, it is not among the top assets in the constrained portfo-

lios in Panels (B) and (C). Other examples of assets that are not included in the ESGR-

constrained portfolios include Holmen Aktiebolag and Oji Holdings Corporation. Most

of the assets included in Panel B have an average ESGR score below 20 (see Table C). For

instance, BillerudKorsnas AB and Mondi plc. are not included in the top ten assets of the

unconstrained portfolios and have an average ESGR score of 11.6 and 12.2, respectively.

Obviously, more weights are allocated to the assets with low ESGR when applying the

ESGR-constrained optimization. Although Sumitomo Forestry Co. is already among the

top ten assets in the unconstrained portfolios, it receives even more weight in the socially

responsible portfolios (ESGR-constrained) because its average ESGR score, i.e. 13.8, is

below the average of the timber & forestry industry.

To understand how the portfolios perform over the 2016-2021 sample period, we plot

7These results are following those in Sahamkhadam et al. (2018) and Sahamkhadam (2021).
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cumulative realized returns for the Max-SR and Min-CVaR portfolios. Figure 1 illustrates

the results for the Max-SR portfolios. Both the unconstrained and multi-ESG-constrained

historical-based Max-SR portfolios do not perform better than the benchmark ETF dur-

ing 2021. However, the copula-based portfolios achieve higher cumulative returns, in

particular, during the post Covid-19 market crash in March 2020. This result corresponds

to those in Table 1.

In addition to the cumulative returns, we also investigate short-term investments

with a holding period of 252 trading days. By rolling this holding period over the out-

of-sample, we record the realized SR and CVaR for the Max-SR and Min-CVaR portfolios

and compare them with those from the benchmarks. Figure 2 shows the realized SR

from the Max-SR portfolios. For most holding periods, both the constrained and uncon-

strained copula-based Max-SR portfolios achieve higher SR compared to the benchmark.

Figure 3 plots the realized CVaR for the different strategies. In general, the ETF results in

higher CVaR than the copula-based portfolios. For the Min-CVaR portfolios in Figure 3,

we see an increase in the realized CVaR due to the market crash in March 2020. Interest-

ingly, both the constrained and unconstrained Min-CVaR portfolio optimizations reduce

the extreme losses during the short-horizon holding periods during and after the market

crash.
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Table 1: Portfolio out-of-sample performance using S&P GTF stocks

Portfolio Ave. St.
CVaR Sortino SR STARR ESGR ESG I ESG II Wealth Turnover

Strategy Return Deviation

Panel A: Benchmarks

iShares S&P GTF index 0.098 1.48 6.95 0.082 0.066 0.014 19.5 63.6 62.9 199 0.000

Panel B: Historical-based unconstrained optimal portfolios

Min Variance 0.046 1.14 5.26 0.050 0.040 0.009 22.8 63.8 53.1 136 0.024

Min-CVaR 0.042 1.09 4.02 0.053 0.038 0.010 24.0 64.1 55.0 133 0.021

Max-SR 0.056 1.19 4.16 0.068 0.047 0.013 21.5 66.8 62.4 147 0.068

Max-STARR 0.030 1.15 4.27 0.037 0.026 0.007 22.2 66.5 61.4 120 0.137

Panel C: Historical-based ESGR-constrained optimal portfolios

Min-Variance 0.054 1.26 6.01 0.050 0.043 0.009 16.9 70.0 59.1 144 0.024

Min-CVaR 0.044 1.31 5.94 0.040 0.034 0.007 16.9 72.3 60.0 133 0.030

Max-SR 0.048 1.31 5.18 0.051 0.037 0.009 16.9 72.2 71.1 137 0.074

Max-STARR 0.037 1.39 5.67 0.036 0.027 0.007 16.9 72.5 74.1 124 0.131

Panel D: Historical-based multi-ESG-constrained optimal portfolios

Min-Variance 0.041 1.30 5.90 0.038 0.032 0.007 16.9 75.6 76.6 129 0.027

Min-CVaR 0.037 1.32 5.96 0.035 0.028 0.006 16.9 75.6 76.6 125 0.031

Max-SR 0.063 1.41 5.50 0.062 0.045 0.011 16.4 75.7 77.6 152 0.058

Max-STARR 0.057 1.43 5.67 0.054 0.040 0.010 16.4 75.8 77.4 145 0.084

Panel E: Copula-based unconstrained optimal portfolios

Min-Variance 0.050 0.971 3.41 0.074 0.052 0.015 22.6 63.4 53.0 144 0.279

Min-CVaR 0.087 1.04 3.83 0.113 0.084 0.023 22.1 64.2 52.3 190 0.688

Max-SR 0.173 1.74 5.58 0.147 0.100 0.031 21.9 63.4 52.8 351 1.615

Max-STARR 0.172 1.83 6.39 0.130 0.094 0.027 21.7 63.4 53.5 344 1.668

Panel F: Copula-based ESGR-constrained optimal portfolios

Min-Variance 0.065 1.17 4.82 0.071 0.056 0.014 16.9 69.6 57.2 159 0.247

Min-CVaR 0.096 1.22 4.99 0.101 0.079 0.019 16.9 70.0 56.4 202 0.586

Max-SR 0.152 1.58 5.87 0.133 0.096 0.026 16.8 71.0 55.8 303 1.303

Max-STARR 0.157 1.64 6.33 0.129 0.096 0.025 16.8 70.9 56.3 313 1.349

Panel G: Copula-based multi-ESG-constrained portfolios

Min-Variance 0.054 1.31 5.85 0.050 0.041 0.009 16.9 75.6 76.6 143 0.195

Min-CVaR 0.063 1.35 6.08 0.058 0.046 0.010 16.9 75.6 76.6 153 0.395

Max-SR 0.125 1.45 5.30 0.118 0.086 0.024 16.3 75.8 77.6 248 1.109

Max-STARR 0.127 1.51 6.08 0.114 0.084 0.021 16.2 75.8 77.5 250 1.168

Notes: This table reports out-of-sample performance measures for portfolios obtained based on a rolling window of 1,000 trading days with

an out-of-sample period from December 2018 to December 2021. Except for the average turnover and ESG scores, all performance measures

are obtained using daily out-of-sample portfolio returns and are expressed in percentages. ESG I and ESGR are based on the scores from

Sustainalytics. ESG II is based on scores from Refinitiv Eikon (Thomson Reuters) database. The CVaR is shown at the 1% level. The average

turnover is computed based on a proportional transaction cost of 1 basis point.

14



Table 2: Top asset weights (in %) for copula-based portfolio strategies

Stock
Min Min Max Max

Variance CVaR SR STARR

Panel (A): Unconstrained portfolios

Daio Paper Corporation 17.1 17.1 9.06 8.28

Nippon Paper Industries Co. 13.2 8.14 5.10 3.41

Klabin S.A. 13.0 16.7 6.60 7.34

Holmen Aktiebolag 6.97 4.27 3.97 2.74

Sumitomo Forestry Co. 6.86 8.13 9.34 9.53

CatchMark Timber Trust Inc. 6.48 6.45 5.79 5.57

Rayonier Inc. 6.39 4.79 3.21 2.93

Svenska Cellulosa Aktiebolaget 5.02 4.72 4.11 3.44

Sappi Limited 2.79 3.60 4.17 5.12

Oji Holdings Corporation 2.65 3.96 9.67 10.3
ř

80.5 77.9 61.0 58.7

Panel (B): ESGR-constrained portfolios

Sumitomo Forestry Co. 18.3 18.8 19.4 18.8

Klabin S.A. 17.8 23.0 12.7 14.8

Rayonier Inc. 10.2 7.73 6.34 5.90

BillerudKorsnäs AB 8.77 5.17 6.30 4.73

Mondi PLC 6.84 6.29 5.21 5.44

UPM-Kymmene Oyj 5.32 4.89 6.88 5.63

CatchMark Timber Trust Inc. 4.10 4.44 2.77 2.60

Smurfit Kappa Group PLC 3.76 5.25 5.13 6.59

Sappi Limited 2.75 3.54 4.37 5.32

Metsa Board Oyj 0.92 1.49 7.56 7.16
ř

78.8 80.6 76.7 77.0

Panel (C): multi-ESG-constrained portfolios

Klabin S.A. 19.7 25.7 17.3 21.1

UPM-Kymmene Oyj 13.7 14.0 16.4 14.2

Nippon Paper Industries Co. 13.0 11.3 5.18 4.10

Mondi PLC 12.2 10.6 13.1 13.6

BillerudKorsnäs AB 11.3 7.26 10.5 7.94

Metsa Board Oyj 7.21 6.65 6.84 6.29

Sappi Limited 4.20 6.07 4.45 5.87

Smurfit Kappa Group PLC 3.88 5.01 6.32 8.36

Svenska Cellulosa Aktiebolaget 2.15 1.69 5.89 4.76

West Fraser Timber Co. 2.07 3.06 1.90 2.39
ř

89.4 91.3 87.9 88.6

Notes: This table reports average weight (in %) for top ten assets in the

copula-based portfolio strategy in the respective column, see results reported

in Table 1. 15



Figure 1: Cumulative out-of-sample returns for the Max-SR portfolios.
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Figure 2: This figure illustrates the realized out-of-sample SR for the Max-SR portfolio
strategies computed for each holding period consisting of 252 days.
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Figure 3: This figure illustrates the realized out-of-sample CVaR for the Min- CVaR port-
folio strategies computed for each holding period consisting of 252 days.

4.2 Evaluation of portfolio strategies

Table 3 presents an evaluation of the outcomes of the various portfolio strategies pre-

sented in Table 1 and those that are obtained using only ESG I or ESG II scores. Using

dummy variables, the quantile regression models8 test whether outcomes differ signifi-

cantly between (1) copula-based vis-à-vis historical, (2) ESG-constrained vis-à-vis uncon-

strained portfolio strategies.9

The first column shows that portfolio strategies imposing constraints on ESG do not

have a statistically significant lower Sortino ratio. The results also show that the copula-

based approach yields portfolios with significantly better risk-adjusted performance than

the historical approach. Likewise, columns 2 and 3 consider additional measures that de-

8Quantile regression was preferred in this case as the sample is small and quantile regression is robust
with regard to outliers.

9Another application of this approach to evaluate different portfolio strategies can be found in Sa-
hamkhadam et al. (2018).
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scribe risk-adjusted returns. In accordance with column 1, no significant negative impact

from incorporating ESG constraints in the optimization can be found. Column 4 shows

that the inclusion of ESG constraints has no impact on the portfolio average turnover.

Similar to the risk-adjusted measures, the copula-based portfolios yield higher turnover

compared to the historical-based ones.

In Table 4 we investigate the impact of imposing constraints on the achieved aver-

age level of portfolios’ ESG outcomes. The three final columns show that using ESG

constraints significantly increases the level of social responsibility for each ESG measure.

Using the traditional ESG I and II measures, where higher score corresponds to better

performance, we notice a highly significant and positive estimate for the ESG-constrained

portfolios (columns (2) and (3)). This holds also for the new ESG risk measure in column

(1) (with reversed sign as it applies an inverted rank scale). One can also see the impact

from imposing a constraint on a different ESG measure, as those ESG measures are cor-

related. For instance in column (2) we can see that imposing the constraint regarding

ESG I also positively affects ESGR (reduces the score), though this effect is only weakly

significant. In columns (4) to (6) we investigate the effect of applying constraints on all

ESG measures at the same time in the optimization labeled multi-ESG-constrained. We

can see that by imposing this constraint we can improve all ESG measures, but the ef-

fect is most pronounced for ESG II followed by ESG I, and it is not significant for ESGR.

These results prove that by imposing constraints on the least acceptable level of portfolio

ESG the investor can achieve higher levels of social responsibility while using optimal

portfolio strategies.

In summary, our results indicate that (i) there are advantages of using optimal portfo-

lio strategies for investments in timber & forestry stocks, both in terms of portfolio returns

and risks, compared to the iShares GTF ETF reflecting a passive investment strategy, (ii)

the copula-based portfolios achieve higher returns and better risk-adjusted performance

compared to the historical strategies, (iii) the suggested combined approach, with both

copula modeling and ESG- or ESGR-constrained optimization, achieves higher social re-

sponsibility while providing the investors with the same level of risk-adjusted returns as

the unconstrained strategy.
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Table 3: Quantile regression models to evaluate portfolio strategies

(1) (2) (3) (4)
Sortino SR STARR Turnover

Copula-based 0.0530˚˚˚ 0.0400˚˚˚ 0.0110˚˚˚ 0.664˚˚˚

(4.84) (5.38) (5.19) (4.04)

ESG-constrained -0.0170 -0.0100 -0.00400 0.00800
(-1.28) (-1.11) (-1.56) (0.04)

Constant 0.0600˚˚˚ 0.0440˚˚˚ 0.0120˚˚˚ 0.0240
(4.74) (5.12) (4.91) (0.13)

N 41 41 41 41
pseudo R2 0.371 0.410 0.370 0.377
Notes: t statistics in parentheses. ˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01. Reference
categories are historical-based strategies for copula-based, and unconstrained for con-
strained portfolio strategies. In total, we estimate five types of portfolios including
unconstrained, ESG I-constrained, ESG II-constrained, ESGR-constrained, and multi-
ESG-constrained. Including the four portfolio optimizations and the ETF benchmark,
we have 41 portfolios.

Table 4: Quantile regression models to evaluate the impact of imposing ESG constraints
on average portfolio ESG

(1) (2) (3) (4) (5) (6)
ESGR ESG I ESG II ESGR ESG I ESG II

Copula-based -0.0880 0.001000 -2.885 -0.582 -0.163 -3.811
(-0.12) (0.00) (-0.73) (-0.55) (-0.09) (-0.87)

ESGR-constrained -2.594˚˚ 4.072˚ -2.890 — — —
(-2.58) (1.82) (-0.53)

ESG I-constrained -1.882˚ 7.811˚˚˚ -1.337 — — —
(-1.87) (3.50) (-0.25)

ESG II-constrained 0.0360 2.300 14.18˚˚ — — —
(0.04) (1.03) (2.61)

multi-ESG-constrained — — — -2.009 5.993˚˚ 15.20˚˚˚

(-1.50) (2.60) (2.74)

Constant 19.47˚˚˚ 66.84˚˚˚ 62.93˚˚˚ 18.91˚˚˚ 69.78˚˚˚ 62.42˚˚˚

(29.31) (45.28) (17.48) (24.18) (51.77) (19.21)

N 41 41 41 41 41 41
pseudo R2 0.289 0.292 0.354 0.108 0.289 0.338
Notes: t statistics in parentheses. ˚ p ă 0.10, ˚˚ p ă 0.05, ˚˚˚ p ă 0.01. See notes Table 3. Dependent
variables are the average ESG scores of the 41 portfolios including the benchmark.
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5 Conclusions

This paper examines the impact of corporate social responsibility (CSR) on stock market

investments in the global timber & forestry (GTF) industry, and tests how optimal portfo-

lios considering CSR perform relative to the S&P GTF index. We suggest a combined op-

timal portfolio approach that includes (both symmetric and asymmetric) tail dependence

and CSR. To construct the socially responsible portfolios, the paper utilizes ESG scores

from Sustainalytics and Refinitiv Eikon. We forecast asset returns using vine copula-

augmented risk models and perform both risk minimization and reward/risk maximiza-

tion, while imposing minimum threshold ESG constraints. We apply this empirical ap-

proach to 29 timber & forestry stocks which are current or past constituents of the S&P

GTF index and analyze the portfolios’ out-of-sample performance.

The overall results show a better performance of copula-based portfolio strategies in

comparison to historical ones, and provide evidence to financial investors that socially re-

sponsible investments in forestry stocks are feasible without sacrificing risk-adjusted re-

turns. This finding is important since forestry firms which focus on CSR can be expected

to better anticipate future risks and opportunities, and are more dedicated to long-term

value creation.

As more and better ESG information for companies becomes available, future studies

might be able to analyze even longer time periods for investments in GTF stocks. One

promising avenue for future research is to incorporate ESG information for predicting

returns’ multivariate distribution, which can be used for portfolio optimization. More-

over, ESG ratings typically also contain rich qualitative information about the respective

company. Future research should try to utilize this qualitative information as a form of

sentiment for the optimal portfolio construction.
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Appendices

A Regular vine copula

According to Sklar’s (1959) theorem, any multivariate cumulative distribution function F

for a random variable set (Z1, . . . , Zd) consists of a d-dimensional copula C and marginal

distributions F1, . . . , Fd, such that:

@z P Rd : F (z1, z2, . . . , zd) = C (F1 (z1) , F2 (z2) , . . . , Fd (zd)) = C (u1, u2, . . . , ud) , (7)

where zj = F´1
j

(
uj
)

, uj „ U [0, 1]d , @j P t1, 2, . . . , du.

Given that the marginals Fj are continuous, C is unique and defined as the joint dis-

tribution of (U1, ..., Ud) = (F1(Z1), ..., Fd(Zd)). Let Ω be the parameter set in the copula

multivariate distribution function C (u1, u2, . . . , ud|Ω), and f j be the derivative of the uni-

variate marginal distribution Fj. The d-dimensional joint distribution’s density function

is given as:

f (z1, z2, . . . , zd) =
BdC (F1 (z1) , F2 (z2) , . . . , Fd (zd) |Ω)

Bz1, Bz2, . . . , Bzd

= c (F1 (z1) , F2 (z2) , . . . , Fd (zd) |Ω) ˆ

d
ź

j=1

f j
(
zj
)

, (8)

where c is the copula density function, with the log-likelihood function:

L((z1, z2, ..., zd)|Ω) =
T

ÿ

t=1

[ d
ÿ

j=1

log f j(ztj) + log
[
c(ut1, ut2, ..., utd|Ω)

]]
. (9)

Drawing upon the idea of Joe (1996) to decompose the joint density function to sev-

eral pair-copula densities, Bedford & Cooke (2001) and Bedford & Cooke (2002) derive

a graphical representation of the pair-copula construction (PCC) in the form of nested

trees called vine copulas. See Joe (2014) and Czado (2019) for properties and statistical

inference of vine copulas.

For a d-dimensional set of continuous random variables, there exist d (d ´ 1) /2 pair-
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copulas, and the copula density c can be decomposed into a product of these pair-copulas’

densities. Using a sequence of i = 1, 2, . . . , d ´ 1 linked trees, the decomposition can be

presented in a graphical PCC, known as the regular vine (Rvine). Let e P Ei be the edge

between two nodes, ne and ke represent a pair-copula cne,ke;De conditioned on De, with the

copula parameter(s) Ωne,ke|De . Let uDe = tui|i P Deu be the variables in the conditioning

set De, and Cne|De is the conditional distribution of Une|UDe . The copula density for a

simplified Rvine copula is:

c (u|Ω) =
d´1
ź

i=1

ź

ePEi

cne,ke;De

(
Cne|De(une |uDe), Cke|De(uke |uDe)|Ωne,ke|De

)
, (10)

with the corresponding log-likelihood function:

L(Ω|u) =
d

ÿ

j=1

d´1
ÿ

i=1

ÿ

ePEi

ln
[
cne,ke;De

(
Cne|De(uj,ne |uj,De), Cke|De(uj,ke |uj,De)|Ωne,ke|De

)]
. (11)

Due to the complexity and computational difficulties in estimating the dependence

structure in high-dimensional settings, truncated and simplified vine structures have

been developed. Following Brechmann et al. (2012), a truncation can be applied to the

number of trees in the vine by setting an independence copula at each edge from a spe-

cific tree I P t1, 2, . . . , d ´ 1u to the final tree.10 In this case, the density of an I-level

truncated Rvine is given as:

cTruncated (u) =
I

ź

i=1

ź

ePEi

cne,ke|De

(
Cne|De (une |uDe) , Cke|De (uke |uDe) |Ωne,ke|De

)
. (12)

B Copula-based Portfolios

To construct copula-based portfolios, a step-ahead multivariate conditional return dis-

tribution is obtained through a copula-augmented forecasting model. To do so, set the

following parameters: L = the estimation window length (here 1,000 trading days), @ι P

[L + 1, T] : tι = out-of-sample iteration, M = the total number of drawings from the step-

10To select the truncation level I as well as the copula families in a mixed vine copula structure, we apply
the modified version of the Bayesian Information Criteria (BIC) for vine copulas as suggested by Nagler
et al. (2019).
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ahead multivariate conditional return distribution, and d = the total number of assets in

the portfolio. In the next step, repeat the following steps for all out-of-sample iterations

tι:

Step 1. Initialize by setting @t P [tι´L, tι´1]: rt = (r1t, r2t, ..., rdt), rjt = [
pjt

pj,t´1
´ 1] ˆ 100 as

the excess returns computed based on the observed adjusted total returns and

the risk-free rate.

Step 2. @j P [1, d] : obtain standardized residuals ẑj = (ẑjtι´L , ..., ẑjtι´1), conditional mean

µ̂jtι
, and volatility σ̂jtι

forecasts assuming, w.l.o.g., the returns follow an VAR-

GARCH process:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

rt = c + ϕ1rt´1 + ϵt

ϵjt =
a

hjtzjt

zjt « (iid),

σ2
jt = α0j + α1jϵ

2
j,t´1 + β1jσ

2
j,t´1,

α0j ą 0, α1j ě 0, β1j ě 0, α1j + β1j ă 1, @t P [tι´L, tι´1].

(13)

Step 3. Obtain uniform marginals ûjt = Fj(ẑjt), j P [1, d], t P [tι´L, tι´1] from the cumula-

tive marginal distribution function s.t. ûjt „ U[0, 1]d.

Step 4. Insert the estimated marginal uniform (Û1, ..., Ûd) of step 3 into the Rvine cop-

ula model in Eqs. (10)-(12) and estimate the copula parameter vector Ω̂ using

maximum likelihood estimation.

Step 5. Draw M uniform random numbers from the estimated multivariate Rvine copula

distribution in step 4. Convert the simulated random numbers into standardized

residuals ν̂t = tν̂mt, m = 1, ..., M, t = tιu using the inverse of the marginal

distribution for each asset.

Step 6. Obtain return forecasts as r̂jmtι
= µ̂jtι

+ σ̂jtι
ν̂jmtι

, @j P [1, d], @m P [1, M].

Step 7. Insert the return forecasts r̂tι = tr̂mtι , m = 1, ..., Mu into the chosen portfolio opti-

mization, Eqs. (1)-(6), and estimate optimal asset weights ŵtι = (ŵ1tι , ŵ2tι , ..., ŵdtι
).
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Step 8. Given the proportional transaction cost Γ and realization of asset returns from

observed prices, compute the portfolio return Rtι = [1 ´ Γ
řd

j=1(|ŵjtι
´ ŵ˚

jtι
|)](1+

ŵ⊺
tι

rtι)´ 1, where ŵ˚
jtι

denotes the realized asset weights at the end of the previous

re-balancing interval. 11

11We set the proportional transaction cost Γ to 1 basis point.
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C Tables

Table A1: Descriptive Statistics

Entity Name Country Ave. Return St. Dev. Skewness Kurtosis JB ARCH Ljung-Box ESGR ESG I ESG II

Smurfit Kappa Group PLC Ireland 0.125 2.08 0.408 5.11 2844*** 53.6*** 11.3 13.8 78.2 79.4

International Paper Company United States 0.051 1.78 0.159 8.14 6976*** 574*** 71.2*** 24.8 61.7 -

Packaging Corporation of America United States 0.093 1.71 0.205 9.00 8522*** 37.1*** 59.5*** 18.7 59.7 57.9

Weyerhaeuser Co United States 0.064 1.93 -0.088 30.6 98240*** 382*** 181*** 18.6 63.7 76.2

Plum Creek Timber Company Inc. United States 0.023 1.25 2.21 37.5 62060*** 0.300 6.70 - - 56.8

Potlatch Corporation United States 0.066 1.94 -0.073 33.4 117415*** 676*** 220*** 20.5 45.2 47.0

Rayonier Inc. United States 0.037 1.70 -0.160 34.1 122121*** 1028*** 151*** 17.3 43.9 43.6

Sappi Limited South Africa 0.061 2.53 0.347 5.17 2837*** 125*** 28.4*** 18.0 71.1 75.9

UPM-Kymmene Oyj Finland 0.090 1.79 0.055 5.72 3428*** 19.9*** 13.9 15.5 79.0 82.9

Svenska Cellulosa Aktiebolaget Sweden 0.107 1.58 0.699 8.14 7147*** 35.4*** 28.0*** 19.3 68.7 84.4

West Fraser Timber Co. Ltd. Canada 0.103 2.43 0.413 7.29 5640*** 183*** 19.0** 20.3 65.9 59.9

Stora Enso Oyj Finland 0.084 1.96 -0.178 3.36 1197*** 29.8*** 15.0 19.2 76.9 85.4

Western Forest Products Inc. Canada 0.083 2.68 0.396 4.80 2474*** 54.2*** 18.6** 22.9 54.2 33.9

Interfor Corporation Canada 0.131 2.80 0.265 6.19 4038*** 207*** 28.0*** 21.6 55.8 34.4

Holmen Aktiebolag (publ) Sweden 0.082 1.39 -0.017 5.63 3321*** 83.7*** 13.8 19.6 73.7 57.3

Suzano Papel e Celulose S.A. Brazil 0.147 2.83 0.515 6.09 1631*** 22.2*** 19.5** 20.6 70.5 63.8

Oji Holdings Corporation Japan 0.041 1.93 0.142 2.20 500*** 24.7*** 10.7 29.3 52.4 52.7

Canfor Corporation Canada 0.080 2.86 6.69 174 3172827*** 0.100 10.4 25.1 52.3 44.2

Daio Paper Corporation Japan 0.073 1.88 -0.100 5.75 3378*** 29.8*** 23.6*** 35.1 54.4 18.2
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. . . continued

Entity Name Country Ave. Return St. Deviation Skewness Kurtosis JB ARCH Box ESGR ESG I ESG I

Sumitomo Forestry Co., Ltd. Japan 0.074 1.84 0.442 4.28 1951*** 40.7*** 6.10 16.5 73.7 -

Klabin S.A. Brazil 0.071 1.92 -0.042 5.60 2569*** 74.7*** 32.5*** 15.5 75.4 65.1

BillerudKorsnäs AB Sweden 0.080 1.79 0.056 8.40 7396*** 12.2*** 24.0*** 11.6 84.2 81.8

Metsa Board Oyj Finland 0.108 2.07 -0.076 4.10 1765*** 42.9*** 17.6* 16.4 85.6 63.9

Nippon Paper Industries Co., Ltd. Japan 0.012 1.81 0.165 3.05 843*** 42.4*** 4.30 27.9 61.9 69.8

KapStone Paper And Packaging Corp United States 0.129 2.53 -0.046 30.3 65977*** 1.20 15.00 - - 56.8

CatchMark Timber Trust Inc United States 0.019 2.13 -0.761 30.6 79554*** 315*** 89.6*** 22.3 43.5 36.6

Domtar Corporation United States 0.050 2.25 1.44 18.8 37823*** 49.4*** 33.6*** 24.9 63.6 68.4

Mondi PLC United Kingdom 0.083 1.70 -0.242 2.66 771*** 34.9*** 14.7 12.2 79.3 87.8

WestRock Co. United States 0.026 2.42 -0.145 8.21 4635*** 305*** 61.2*** 17.9 63.6 51.3

Notes: This table provides the descriptive statistics for the daily returns of S&P GTF stocks. The sample period runs from February 2012 to March 2021. The average daily return is

expressed as a percentage. JB shows the result of Jarque–Bera’s normality test. The test statistic for the Ljung—Box Q test with 10 lags is presented. The ARCH test is reported with

1 lag. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. ESGR and ESG I have been obtained from Sustainalytics, while ESG II is taken from the Refinitiv

Eikon database (Thomson Reuters).

27



References

Bedford, T. & Cooke, R. M. (2001), ‘Probability density decomposition for conditionally

dependent random variables modeled by vines’, Annals of Mathematics and Artificial

Intelligence 32(1), 245–268.

Bedford, T. & Cooke, R. M. (2002), ‘Vines: A new graphical model for dependent random

variables’, Annals of Statistics pp. 1031–1068.

Boffo, R. & Patalano, R. (2020), ESG investing: Practices, progress and challenges, Tech-

nical report, OECD Paris.

URL: www.oecd.org/finance/ESG-Investing-Practices-Progress-and-Challenges.pdf

Brechmann, E. C., Czado, C. & Aas, K. (2012), ‘Truncated regular vines in high dimen-

sions with application to financial data’, Canadian Journal of Statistics 40(1), 68–85.

Busby, G. M., Binkley, C. S. & Chudy, R. P. (2020), ‘Constructing optimal global timber-

land investment portfolios’, Forest Policy and Economics 111, 102083.

Charnes, A. & Cooper, W. W. (1962), ‘Programming with linear fractional functionals’,

Naval Research Logistics Quarterly 9(3-4), 181–186.

Chudy, R. & Cubbage, F. (2020), ‘Research trends: Forest investments as a financial asset

class’, Forest Policy and Economics 119, 102273.

Czado, C. (2019), Analyzing Dependent Data with Vine Copulas. A Practical Guide With R,

Lecture Notes in Statistics, Springer, Cham.

Dinkelbach, W. (1967), ‘On nonlinear fractional programming’, Management Science

13(7), 492–498.

Favero, A. & Mendelsohn, R. (2014), ‘Using markets for woody biomass energy to

sequester carbon in forests’, Journal of the Association of Environmental and Resource

Economists 1(1/2), 75–95.

Hunter, M. L. & Hunter Jr, M. L. (1999), Maintaining biodiversity in forest ecosystems, Cam-

bridge university press.

28



Joe, H. (1996), ‘Families of m-variate distributions with given margins and m(m ´ 1)/2

bivariate dependence parameters’, Lecture Notes-Monograph Series pp. 120–141.

Joe, H. (2014), Dependence modeling with copulas, Chapman & Hall/CRC.

Lööf, H., Sahamkhadam, M. & Stephan, A. (2021), ‘Is corporate social responsibility in-

vesting a free lunch? the relationship between ESG, tail risk, and upside potential of

stocks before and during the COVID-19 crisis’, Finance Research Letters p. forthcoming.

Low, R. K. Y., Alcock, J., Faff, R. & Brailsford, T. (2013), ‘Canonical vine copulas in the

context of modern portfolio management: Are they worth it?’, Journal of Banking &

Finance 37(8), 3085–3099.

Markowitz, H. M. (1952), ‘Portfolio selection’, The Journal of Finance 7(1), 77–91.

Mei, B. (2019), ‘Timberland investments in the United States: A review and prospects’,

Forest Policy and Economics 109, 101998.

URL: https://www.sciencedirect.com/science/article/pii/S1389934119300048

Nagler, T., Bumann, C. & Czado, C. (2019), ‘Model selection in sparse high-dimensional

vine copula models with an application to portfolio risk’, Journal of Multivariate Analysis

172, 180–192.

Pedersen, L. H., Fitzgibbons, S. & Pomorski, L. (2020), ‘Responsible investing: The ESG-

efficient frontier’, Journal of Financial Economics p. in press.

URL: https://www.sciencedirect.com/science/article/pii/S0304405X20302853

Qi, Y. & Li, X. (2020), ‘On imposing esg constraints of portfolio selection for sustain-

able investment and comparing the efficient frontiers in the weight space’, SAGE Open

10(4), 2158244020975070.

URL: https://doi.org/10.1177/2158244020975070

Redmond, C. H. & Cubbage, F. W. (1988), ‘Portfolio risk and returns from timber asset

investments’, Land Economics 64(4), 325–337.

URL: http://www.jstor.org/stable/3146305

29



Restrepo, H., Zhang, W. & Mei, B. (2020), ‘The time-varying role of timberland in long-

term, mixed-asset portfolios under the mean conditional value-at-risk framework’, For-

est Policy and Economics 113, 102136.

URL: https://www.sciencedirect.com/science/article/pii/S1389934119306148

Rockafellar, R. T. & Uryasev, S. (2000), ‘Optimization of conditional Value-at-Risk’, Journal

of Risk 2, 21–42.

Sahamkhadam, M. (2021), ‘Dynamic copula-based expectile portfolios’, Journal of Asset

Management 22(3), 209–223.

Sahamkhadam, M., Stephan, A. & Östermark, R. (2018), ‘Portfolio optimization based on

garch-evt-copula forecasting models’, International Journal of Forecasting 34(3), 497–506.

Sahamkhadam, M., Stephan, A. & Östermark, R. (2022), ‘Copula-based black–litterman

portfolio optimization’, European Journal of Operational Research 297(3), 1055–1070.

Sharpe, W. F. (1966), ‘Mutual fund performance’, The Journal of Business 39(1), 119–138.

Sklar, A. (1959), ‘Fonctions de Répartition à n Dimensions et Leurs Marges’, Publications

de L’Institut de Statistique de L’Université de Paris .

Stoyanov, S. V., Rachev, S. T. & Fabozzi, F. J. (2007), ‘Optimal financial portfolios’, Applied

Mathematical Finance 14(5), 401–436.

Sun, C. (2013), ‘On the market risk of securitized timberlands’, Journal of Forest Economics

19(2), 110–127.

URL: http://dx.doi.org/10.1016/j.jfe.2012.11.002

Wan, Y., Clutter, M. L., Mei, B. & Siry, J. P. (2015), ‘Assessing the role of US timberland

assets in a mixed portfolio under the mean-conditional value at risk framework’, Forest

Policy and Economics 50, 118–126.

30


	Introduction
	Methodology
	Copula-based Portfolio Approach
	Portfolio Optimization Methods

	Data
	Results
	ESG-constrained and unconstrained portfolios
	Evaluation of portfolio strategies

	Conclusions
	Appendices
	Regular vine copula
	Copula-based Portfolios
	Tables

