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Abstract 

Innovation networking has become both more feasible with improved telecommunication and 

more important as it usually produces research of higher quality. However, the spatial distribution 

of academic networks and innovative networks are not uniform. Despite overwhelming evidence 

on the benefits of collaboration, patent data from 1994-2001 in Sweden demonstrate that 

innovation networks are not very common. In addition, the pattern of innovative networks is very 

fragmented. Our results indicate that innovation networks are more likely to exist in densely 

populated areas with a diversified industry. Face-to-face contacts in such areas seem to promote 

networking. Moreover, science-oriented industries appear to benefit more from proximity to 

universities when it comes to collaboration. However, the size of the market does not matter at all 

when it comes to collaboration, more important is the density and diversity of the market. 
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1. Introduction 

Policy makers have always been faced with problems about how to promote growth and enhance 

regional economic development. Twenty years ago, Romer (1986) in a seminal paper stressed the 

importance of human capital on economic growth. However, the precise linkage between 

academic research, knowledge and economic growth is unclear. A number of studies have 

focused on the role of higher education and innovation as the key “transport mechanism.” (e.g. 

Andersson et al, 2004).  On the other hand, Storper and Venables (2004), and Owen-Smith and 

Powell (2004) argued that innovation networks are a way of transferring knowledge.  

Collaboration and co-authorship within academic research has become more feasible as 

telecommunication has improved over the years. For example, Gaspar and Glaeser (1998) 

reported that the proportion of co-authored articles in four well-established economic journals has 

increased from less than five percent in the early 1960s to above 50 percent in the early 1990s. 

Moreover, Andersson and Persson (1993) reported that the number of internationally co-authored 

articles has increased by almost 15 percent per year. The proportion of co-authored articles is also 

high in a journal such as The Annals of Regional Science. In the middle of 2000, the share of co-

authored articles was around 60 percent compared to around 50 percent in the beginning of 1990.  

Innovative networks have also become more important as they normally produce research of 

superior quality. For example, Stephan (1996) shows that innovation networks do produce 

“better” research. According to Acs (2000), networks are also associated with a greater degree of 

innovation. Thus, innovative networks generate more new knowledge, better innovations and 

therefore more wealth. Henceforth, there has been a growing interest in innovation networks and 

its implications for the creation of new knowledge.  



 - 3 - 

The spatial distributions of academic and innovative networks are not uniform. For example, 

Andersson and Persson (1993) explain the spatial pattern of academic collaboration across 

national borders vis a vis the size of the academic environment, its proximity to other academic 

venues and language similarity. Even within a country, we can observe regional differences in 

network density.  

What in the regional context can explain differences in innovation network density? The purpose 

of this paper is among other things to investigate this question. An essential issue for policy 

makers is to understand what explains and enhances regional networking. Thus, the aim of this 

research is to contribute to a better understanding of how important innovative networks are for 

the efficiency of research and what factors in the regional context promote scientific networking. 

In particular, we want to analyze existing innovative networks in Sweden over the period 1994-

2001 and consider such questions as:  is it more likely that urbanized areas have more networks 

compared to less urbanized areas or can networks be seen as substitutes for agglomeration 

economies? A key point here is that face-to-face communication within agglomerations seems to 

encourage changes of ideas and networking (see, for instance, Saxenian, 1994 and Fujita and 

Thisse, 2002).  Moreover, concentration of firms appears to facilitate networking and appears to 

increase the state of knowledge in the industry (Porter, 1990). Hence, we want to relate 

innovation networks to measures of localization and urbanization, to the industrial composition 

and size distribution of firms, and to the regional distribution of human capital.  

The main objective in this paper is twofold: (1) to perform a descriptive analysis of innovation 

networks and (2) to analyze the regional determinants of the existence of innovation networks. 

The first objective will be analyzed by using social network analysis, which will give us 
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measurements concerning network density. The second objective will be handled by relating 

network density to regional labor market characteristics. 

The rest of the paper is organized as follows: Section 2 presents a literature review concerning the 

economic growth model, human capital, innovation, networks and agglomeration economies. In 

Section 3 we will discuss the methods used in the paper, including the social network analysis; 

and in Section 4, we present the data together with a descriptive analysis. In Section 5, the 

econometric analysis is presented; and in Section 6, the paper is ended with conclusions and a 

discussion of policy implications. 

2. A Literature Review 

Externalities flowing from human capital in regional development had a scientific revival with 

endogenous growth models starting with Romer (1986, 1990), Lucas (1988) and Grossman and 

Helpman (1991).  

Griliches (1979, 1998), Jaffe (1986, 1989), Anselin, Varga and Acs (1997), Acs (2002) and 

Andersson et al (2004) have all modeled this effect of externalities in a production-function 

framework using industrial and/or university research as inputs. They found significant and 

positive effects from university research on output, which they interpreted as evidence of 

knowledge transfers arising from the existence of a university. 

However, the precise linkages between academic research, knowledge transfers and economic 

growth remain unclear. In the words of Jaffe et al (2002), the “transport mechanism” is not well 

understood. Empirical studies have attempted to quantify these knowledge transfers from 

research to innovating firms through various proxies, such as investigate the patenting of 
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university innovations, examine the impact of university science parks and determine whether 

spin-off activities have taken place.  

Others, such as Storper and Venables (2004) and Owen-Smith and Powell (2004) argue that 

innovation networks are a way of transferring knowledge. From empirical studies, the conclusion 

is reached that research-collaboration networks are an important mechanism for firms to use in 

order to engage in industry-science relations (Henderson, Jaffe and Trajtenberg, 1993). Empirical 

findings also indicate that performance is better among companies that collaborate (see 

e.g.Rothwell et al, 1974, Hagedoorn and Schankenraad, 1994, Shan et al, 1994, Walker et al, 

1997, Stuart, 2000, Fritsch and Franke, 2004, Owen-Smith and Powell, 2004). Moreover, some 

results indicate that collaborating companies are tend to be likely to be more innovative compared 

to non-collaborative companies and are more likely to  be engaged in a greater number of 

projects. 

As said, statistics on patents have been used to study quantitative changes of inventive activities 

over time and space as a proxy for knowledge spillovers (see Jaffe, 1986, Jaffe and Trajtenberg, 

2002). The number of patent applications and patents granted is considered to be an important 

indicator of competitiveness, since patents are the primary instruments used to protect the 

commercial value of innovations. For example, Jaffe investigated American- approved patents 

with regard to the companies’ research and development (R&D). He found that a transfer of 

knowledge occurs among companies in regions with a high production of patents. Companies 

performing research in areas where a considerable amount of research is carried out by other 

companies will, in general, receive more approved patents per dollar spent on R&D than 

companies in areas where relatively little research is carried out by other companies. Thus, 

clusters of companies performing R&D will produce knowledge spillover effects. 
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In Andersson et al (2005b) the spatial distribution of new knowledge production is studied. 

Commercial patents granted in Sweden during 1994-2001 are analyzed using a panel of (100) one 

hundred labor market areas. Patent activity is related to measures of localization and 

urbanization, to the industrial composition and size distribution of firms, and to the regional 

distribution of human capital. The analysis confirms the importance of human capital and 

research facilities in stimulating regional patent output. Importantly, the results also document the 

importance of agglomeration and spatial factors in influencing patent activity: Patent activity 

increases in larger and denser labor markets and in regions in which a larger fraction of the labor 

force is employed in medium-sized firms. The results also indicate that patents activity is greater 

in labor markets with more diverse employment bases and in those, which contain a larger share 

of national employment in certain industries, confirming the importance of urbanization and 

localization economies in stimulating patent activity. 

The notion that the concept of agglomeration is important in the spatial economies is well known. 

For example, Alfred Marshall focused on factors determining regional growth such as 

‘agglomeration effects’ and ‘spillover effects’. In the agglomeration model, industrial clustering 

occurs because, in the words of Hoover (1937), there are external economies of localization and 

urbanization. The reason for these external economies, according to Marshall (1925), is that in an 

agglomeration, firms are able to share labor and other inputs (better matching); and in an 

agglomeration, knowledge is spread more efficiently. A number of empirical analyses support the 

importance of urbanization economies for enhancing the information of new knowledge—that is, 

Rosenthal and Strange (2004) and Hanson (2001). For example, Hanson’s results indicate the 

presence of “localized human-capital externalities.” 
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There is nothing in the agglomeration model that says that collaboration between firms or 

inventors within a firm is more frequent in areas where, for example, we exhibit agglomeration 

economies. Nevertheless, knowledge is more efficiently spread within a network, which indicates 

that networking could be more common in agglomerations. However, Johansson and Quigley 

(2004) argue that “networks among economic actors dispersed over space may act as a substitute 

for agglomerations of actors at a single point.” This means that agglomeration may not be as 

important for networking as one might believe. Innovative networking may take place because of 

a lack of agglomeration. Thus, networks can be thought of as a substitute for agglomeration. 

Gordon and McCann (2000) describe industrial clustering from three different theories/models, 

namely: traditional agglomeration theories, industrial-complex systems and social network 

theories. Their argument is that clustering can arise from different reasons; and when it comes to 

policy recommendations, it is important to be aware of this in the investigation of a particular 

labor market. As Gordon and McCann say, the spatial dimension in social-network models is not 

clear. However, their conclusion is that the social-network model predicts more networking in an 

area with less agglomeration. Specifically, investing in networks is more important for firms 

outside the big agglomerations. Therefore, networking, and especially cross-border networking, 

should be more common in labor markets that lack agglomeration economies. Hence, innovation 

networks, which include members across labor markets and national borders, are more likely to 

be developed in areas where agglomeration economies are weaker. For example, Gordon and 

McCann's empirical study concerning London, England shows that the spatial distribution of 

innovation collaboration has no relationship to the industrial clustering in the areas. 

In a theoretical article, Meagher and Rogers (2004) set up a very interesting and compelling 

model demonstrating how networking affects innovativeness. Their model is based on 
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organizational theory, and their simulation results show that “network density can effect 

innovativeness but only when there are heterogeneous firms.” Specifically, it seems that both 

agglomeration and industrial diversity play a role in explaining innovation networking and 

potential outcomes. The authors' results concerning the size of the market show that the size per 

se does not play an important role in fostering innovativeness. It is the density that matters.  

How about geographical proximity? How important is closeness? For example, will face-to-face 

contact be less important in the future, as information technology is improved? Gasper and 

Glaeser's (1998) results indicate the opposite. Improved communication technology makes some 

face-to-face contacts unnecessary; but it will also increase the frequency of contacts between 

individuals, which will result in more face-to-face contacts in other respects. The argument is that 

telecommunication technology and face-to-face contacts are not substitutes but complements. 

Storper and Venables (2004) even argue that face-to-face contact is “a missing aspect of 

mechanisms that are considered to generate agglomeration.”  This is in the line of our argument 

that the network (which facilitates face-to-face contacts) is an important part of the transfer 

mechanism. Their game theoretical analysis with two researchers, and has three Nash equilibria. 

One involves both researchers putting in exactly the same amounts of effort. The other two are 

equilibria where one researcher put in all the effort, and the other put in no effort at all. Storpers 

and Venables' argument is that face-to-face contacts guarantee that we do not end up in a solution 

with free-riders, that is, where only one researcher puts in all the effort. 

3. Methodology and Models 

Our proposition is that innovation networks can, to a high degree, be explained by regional and 

local factors such as agglomeration, density and industrial composition, together with the 

educational level of the workforce. Moreover, our proposition is that innovation collaboration 
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varies by industry and is more important in industries close to the sciences, such as 

biotechnology. Furthermore, our proposition is that distance matters in the sense that researchers 

are more likely to collaborate with other inventors within the same labor market, but that 

proximity has become less important over time. 

Two very distinct methods are in this paper. First, we are going to use the toolbox of social 

network analysis. Here, only a limited descriptive part of the toolbox is used. By utilizing social 

network analysis, our aim is to construct a number of measures or indexes that characterize 

innovative networks and their variation in space. The second method is that of econometric 

analysis. One model will be estimated, analyzing the following question: ”can the variation in 

space when it comes to networking be explained by urban economic determinants by using a 

negative binomial regression model”? 

Social Network Analysis 

Social network analysis is not very common in the regional economic literature. However, the 

method has become more and more popular. Examples using empirical social analyses within  

Economics are Owen-Smith et al ( 2002), Balconi et al (2004), Ejermo and Karlsson (2006) and 

Cantner and Graf (2006). 

The basic social network analysis, which will be used partly here, examines the nodes and the 

links, and the relationship between them. In the context of innovation networks, the nodes are the 

inventors and the links are the relationship between the inventors. The links (or egdges, ties) 

show the interconnectedness and the distance between the innovators. Details concerning the 

methodology can be found in Wassermann and Faust (1994). A short description can also be 

found in Balconi et al (2004) and Cantner and Graf (2006). 
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A number of different measures can be used to characterize a network. Here we will especially 

use measures such as: Network Density, Geodesic Distance, Network Centrality, Isolates, 

Components and Size of the Largest Component (see Marsden, 1990)1. 

The network density is defined as the number of existing links between nodes in a region divided 

by the maximum possible number of links in that region: 
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where l is equal to observed number of links in region i, year t and product type k.  The letter n is 

equal to the number of inventors in the same region, period and product type. If d increases, the 

density of the networks in the region is higher.  

For example, assume that there are three inventors in the region. Two of them collaborate and 

have one patent. The other does not collaborate with anybody and has one patent. That means that 

we have two links between two nodes. The total number of links is six, that is, the density of the 

network is equal to one third. The number of components is equal to two; hence, two 

disconnected networks exist. The size of the largest component is equal to the number of nodes, 

in this case two. The geodesic distance between two nodes in a component is the minimum 

number of links between them. The diameter of the largest component is estimated as the largest 

geodesic distance in that component. In our example, we have one isolate, that is, one one-

inventor patent. Centrality of the network is a measurement of how much the network revolves 

around a node. For example, we can expect that in some regions with a strong employer, the 

networks are more centralized.  

                                                 
1  Ucinet has been used as software for the social network analysis (see Borgotti et al, 2004). 
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We are using three different measurements to estimate the degree of networking. The first two 

measurements focus on the nodes, explicitly, the inventors. The first measurement is estimated by 

dividing the number of inventors by the number of patents; and the second measurement by the 

number of inventors minus the isolates by the number of patents. Both these measures quantify 

the average size of the networks. Lastly, the third measurement is focused on the links (ties) 

between the nodes and is called in the social network literature the network density, and defined 

as in Equation 1 above. 

Some recent empirical studies investigating innovative networks and partly using the social 

network analysis methods are Simmie et al (2002), Balconi et al (2004), Kaufmann (2007), and 

Ejermo and Karlsson (2004). Balconi et al investigate the role of academia in innovation 

networks. They do that by performing a social network analysis of Italian patent data. Their 

conclusion is that the formation of networks is very scattered and fragmented in Italy. The 

exception is science-oriented technology fields, such as within the chemical industry. Mansfields' 

(1995) results are thereby supported by their findings. His results also indicate that a substantial 

portion of the innovations within high-technology sectors is a result of academic- research 

collaboration.  

Semmie et al (2002) investigate innovation in five West-European cities. Their main objective is 

to find answers as to why some cities or regions are more successful when it comes to innovation 

rates. As do Gordon and McCann, they first identify the theories that explain why innovations are 

concentrated in space and then compare these theories with the outcome from the survey. 

Findings in the survey seem to confirm that networks in the forms of business networks are 

important. However, the authors conclude that the theories seem to enlarge the importance of 

local networks. International and regional networks seem to be more important. 
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Kaufmann (2007) analyzed innovation networks within the Vienna urban area. His conclusion 

seems to indicate that there is a difference between firms located in the city and those in the 

suburban areas, and that the urban area cannot be described as one single metropolitan innovation 

system. Earlier, Catner and Graf (2006) investigated research collaboration within an urban area. 

Their study is carried out on Jena in Germany and is an application of social network analysis and 

network regression. Their results indicate, for example, that a shared knowledge base is vital 

when it comes to joint research projects.  

In a recent paper by Ejermo and Karlsson (2006), the interregional structure of inventor networks 

in Sweden was investigated. They measure how close the relationship is between two regions. 

This measure is called affinity, and it is defined as the difference between the number of observed 

links from one region to another and the number of potential links. Hence, it measures how 

closely related two labor markets are when it comes to collaboration in research. The data they 

are using are all the patent applications with at least one inventor from Sweden and filed at the 

European Patent Office (EPO). They found out that when it comes to inventor networks, the 

relationship between two labor markets is highly influenced by the distance between the two 

labor markets. However, the variation in distance sensitivity is large, across different 

technologies. Inventors in a region with R&D resources are less likely to collaborate with 

inventors in other regions that lack similar resources. Moreover, their results indicate that 

inventors in large agglomerations are less likely to collaborate with inventors in small labor 

markets. Fritsch (2001) also emphasized in his study in Germany that spatial proximity is 

important for collaboration among firms.  

Econometric Analysis 
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We will use a number of models to be able to answer the research questions. The basic model is a 

negative binomial regression model that will be used to analyze the spatial distribution of 

network density and other network measures that vary in space. The reason we are using the 

count model is that we have zero counts, that is, in some labor markets the number of innovation 

networks is equal to zero. 

Albeit there is not much in the theory that indicates that networking should vary in space, 

empirically, the findings show that the degree of innovative networking does vary in space. The 

coefficient of variation is substantial. In our explanation model, we are trying to relate the spatial 

variation in network density by measures such as agglomeration, diversity, industrial composition 

and education level of the workforce. 

Many of the independent variables are themselves correlated, and a simple univariate comparison 

may be highly misleading. We can relate for example, network counts,itη , by labor market, i,  

and year, t,  to these factors by estimating a count model.  

( ) ( )
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βµλ Xitit =+ log log ,    (3) 

where the probability that the count itη  is equal to ity
   is expressed in equation (2).   

The vector X represents characteristics of the labor market i at time t, and β is a vector of 

parameters.  If itµ  = 1, the mean and the variance of the count distribution are equal, and 

equation (2) is a straightforward Poisson model.  If the mean and variance of the count 

distribution are unequal, parameters of the model may be represented as a straightforward 
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negative binomial count model.2 The coefficients of the count model are estimated by maximum 

likelihood methods.  The method has earlier been utilized in for example, Andersson et al 

(2005b). 

4. Data and Descriptive Analysis 

Data 

During the last few decades, data on patents have come to play an important role as a basis in 

investigating the innovation-producing process. Griliches' surveying paper (1990) evaluates 

patent statistics as economic indicators. He emphasizes that a patent represents “a minimal 

quantum of invention that has passed both the scrutiny of the patent office as to its novelty and 

the test of the investment of effort and resources by the inventor.” However, of the patents 

granted, many “reflect minor improvements of little economic value,” while some of them “prove 

extremely valuable.” Furthermore, he points out that a data set on patents is only a subset of all 

inventions, since not all valuable inventions are patented. However, it is not unreasonable to 

believe that approved patents are a better proxy for economic value and the quality of the 

innovation, than the ones not approved. 

For the purposes of this study, (since) as patents have the advantage that they can be measured, 

innovation is defined as the commercial patent applications or awarded patents in Sweden. The 

data is based upon applied or approved patents registered to the Swedish Patents and Registration 

Board (PRV) or the European Patent Office (EPO) during the period 1994-20013.  

                                                 
2 This  follows,  for  example,  if  it  is  assumed  that  itµ   follows  a  gamma  distribution,   itµ ~ 

( )αα ,1Gamma .  If α=0, the model is poisson. If α >0, the model is negative binomial. 
3 Ejermo and Karlsson (2006) are using a similar data set concerning Sweden. The difference in this study compared 
to their study is that we do not use patent applications, but approved patents, and not only patents from EPO.   
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Each patent in our database has information on the application firm and its address, plus all the 

inventors with their addresses. As in Balconi et al (2004), Ejermo and Karlsson (2006), and 

Cantner and Graf (2006), we implicitly assume that inventors on the patent application know 

each other and share knowledge with each other. We also have a code indicating the product type 

of the patent. Here we will use the same classification as in Andersson et al (2005a), which is a 

classification that is more closely related to economic activities4. 

Two different data sets are constructed. The first data set includes all approved patents over the 

years 1994 to 2001 and is an inventor data set. To be precise, it includes all the inventors to one 

and each of the approved patents. Each inventor is considered to be an observation5. The patents 

are the way of identifying the research networks.  Each observation is classified as a particular 

product type and as to whether it is a publicly traded corporation or a large firm (based on market 

capitalization on the Stockholm stock market) supplemented. The data set is used in the social 

network analysis. The second data set utilizes the first one in the construction of a labor market 

data set. A key variable is a measurement concerning the innovative networking used. This 

measure has been estimated for each labor market and time period. The data set has been 

supplemented with a number of variables describing the labor market level (see Andersson et al, 

2005b). 

TABLE 1 IN HERE 

                                                 
4 The product type definition is original based upon the International Patent Classification system created in 1997. 
The classification we are using can be found in the appendix. 
5 The total number of inventors is not the unique number of inventors. The unique number of inventors has been 
identified by using the name of the inventors. If the inventor has a unique name, she/he is considered to be a unique 
inventor. If two inventors with the same name have different job and home addresses, they are considered to be 
unique. If they have the same job address and/or home address, they are not considered to be unique.  
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The inventor data set consists of around 22,000 inventors. Almost 40 percent of them are one-

inventor patents6. Some of the inventors have been involved in more than one patent. In the data 

set there are almost 14,000 unique inventors (or 63 percent). The number of patents is equal to 

13,631 patents. If we exclude the isolates, only 4,961 patents (or 36 percent) is a result of 

collaboration. Out of the networking patents, almost half are collaboration across labor market 

borders. Around 2,000 collaborations are between individual inventors in different labor markets. 

More than every fifth of each of the inventors comes from the group”Performing Operations.” 

This group includes such procedures as polishing; cleaning; separation; and work with cement, 

clay, plastic, hand tools, pressing, and printing, etc. The next largest group is Mechanical 

Engineering and Information Technology. 

The second data set, the labor market data set, is presented below. The labor market areas are 

defined by the Swedish Labor Ministry on the basis of commuting patterns, using methods 

analogous to those used to define MSAs in the United States. Most, but not all, of Sweden’s one 

hundred labor market areas contain a central city and a number of surrounding jurisdictions.  

TABLE 2 IN HERE 

The variable market size is measured as the number of employment in the non-agricultural sector. 

Density is used as a measure of agglomeration and is measured as employment per squared 

kilometer. Diversity is estimated as the Hirfindahl-index7. The share of employment within the 

manufacturing sector measures the specialization in the labor market, and the two measures of 

human capital are the proportion of PhD's and the number of researchers at the university, 

respectively. 
                                                 
6 Here a one-inventor patent is used as a synonym to ”isolate”, which may or may not be true. 
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On average (across labor markets and over time), there is slightly more than one inventor per 

patent (NW-1). If we are excluding the isolates, the average number of inventors per patents (NW-

2) is equal to 1.3. The maximum number of inventors per patent in one labor market is almost ten 

inventors and the minimum is zero (with zero patents). In other words, there is quite a large 

variation among the labor markets. The third measure, the density of network (NW-3), is the 

measure that has the largest variation around its mean. The average number of 0.12 can be 

interpreted as a percentage. Hence, on average the observed network size is around 12 percent of 

the potential network size8.  

Descriptive Statistics 

If we turn our attention to the first data set, it can be observed that more than 80 percent of the 

inventors originate from corporations and half of them from large firms. The researcher very 

seldom comes from small firms or is a private person. This pattern is especially clear in the Pulp 

and Paper industry and in the Electricity industry.  

TABLE 3 IN HERE 

It can be observed that collaboration is not common. Almost 65 percent of the approved patents 

are a result of one-inventor research.  In other words, out of 13,600 patents, almost 8,700 are 

isolates. If we consider the collaborations, that is, the approved patents with more than one 

inventor, we can conclude that many of the collaborations are based on networks with innovators 

residing in different labor markets. Around 40 percent of the networks cross-border labor markets 

and seven percent cross national borders. However, very few of the patents are a result of 

                                                 
8 As we are using the measure on labor markets, some labor markets will have a network density larger than 1. In 
other words, they have more observed links than potential links. Observed links are estimated as all links including 
links to other labor markets, but potential links are only measured within the labor market. 
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research between different firms9. The international collaboration is frequent in less than 10 

percent of the patents and has been stable over the studied period. Approximately three percent of 

the inventors (or 700) work in other countries than Sweden. Near 200 of them work in one of the 

other Scandinavian countries and more than 300 from other West-European countries. 

Collaborations are more prevalent in the Chemistry/Metallurgy group. This is also the product 

type where the most collaboration is found across labor market and national border. In the Fixed 

Construction group, collaborations are more seldom, and if the patent is a result of a research 

network, it is most likely formed with researchers within the same labor market.  

The labor market data set reveals that networking varies in space. We know that the spatial 

distribution of new knowledge can be explained to a large degree by agglomeration, together with 

diversity and the regional distribution of human capital (Andersson et al, 2005b). The question is 

whether innovative networking in itself can be explained by agglomeration economies or by the 

lack of agglomeration economies. 

Social Network Analysis 

The social network analysis presented in the present paper is fairly limited. Our main objective is 

to estimate a measure of networks. As said, three different measures of networking will be used. 

Two simple ratio measures relating the number of inventors to the number of patents will be 

estimated (measuring the average size of the networks). The third measure comes from the social 

network analysis literature and is defined in Equation 1 as the network density. In the table 

below, some network statistics are presented. 

TABLE 4 IN HERE 

                                                 
9 What we do not identify in our data base is joint ventures between firms resulting in the formation of new research 
corporations. 
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The average number of patents per labor market and year is almost 17 patents, and the total 

number of patents is equal to 13,630 over the period. The standard deviation is very high, and the 

maximum number of patents is equal to 680 patents, whereas the lowest number is equal to zero. 

The standard deviation is lower if we only look at the patents resulting from collaboration. Now, 

the average number of patents per labor market and year is around 11 patents. The number of 

nodes is equal to almost 26 on average. Here the variation around its mean value is even higher. 

The observed number of links is equal to 38 per labor market and year. If we look at the number 

of links over the period and across all labor markets, we can observe that the number of links or 

ties is equal to more than 30,000. This can be compared to the potential number of links, which is 

equal to 485,298,870 links. This indicates that the average network density is relatively low but 

comparable to the number Balconi et al (2004) present concerning networks of Italian inventors. 

The network density is much higher on average per year and per labor market. We can also 

observe that the density is rather stable over time (see figure below). 

FIGURE 1 IN HERE 

In the table below, some network statistics have been estimated for five labor markets in Sweden. 

The first three are the three largest metropolitan areas in Sweden (Stockholm, Gothenburg and 

Malmö). The fourth labor market represents an area with a highly specialized industrial sector 

(compared to the more diversified labor markets for the first three). The fifth labor market 

represents a small labor market containing a university. 

TABLE 5 IN HERE 

The number of patents in Stockholm over the eight-year time period is 4,154 patents. It is more 

than twice as much as in Gothenburg and more than four times as many as in Malmö. The 

number of inventors equals 6,708 in Stockholm. To a large extent, the patents are one-inventor 
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patents. The number of isolates is equal to 2,628. Nearly 1,500 of the patents are a result of 

collaboration between two or more inventors. The number of components (networks) is equal to 

2,513. Around 750 have more than one inventor, and around 300 are components with three or 

more inventors. The size of the largest component is equal to 55 nodes, and the network density 

is only equal to 0.0001. In Stockholm, the fragmentation (including the isolates) is equal to 99.9 

percent (99.7 if we exclude the isolates). In other words, only 0.3 percent of the inventors (nodes) 

in Stockholm can reach each other. The number of inventors per patent in all metropolitan 

regions is close to 1. The number of innovators per component is equal to 1.7 in Stockholm. The 

network density is low, but we can observe that it decreases by the size of the labor market. The 

network density in Västerås is higher compared to Stockholm, and the fragmentation is high in all 

labor markets except in Västerås. The figures also show that the network centralization is much 

higher in Västerås, indicating that the networks to a higher degree cluster to a node or a small 

number of nodes. This can also be seen in that the number of components with more than three 

inventors is very frequent. One reason could be that Västerås is a very specialized city with ABB 

as the major employer, and that a number of the innovative networks revolve around a few 

inventors at ABB. 

Proximity 

The average geographical distance between nodes has almost doubled over the years 1994 to 

2002. In 1994, the average distance between two inventors was less than 60 kilometers compared 

to more than 120 kilometer in 200110. Hence, proximity seems to be less important today 

compared to ten years ago. Across labor markets and over the years, the average distance 

between inventors is around 90 kilometers. Researchers within the industries of Metallurgy, 

                                                 
10 The distance to international inventors has not been estimated. 
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Information Technology, Electricity, and Paper and Pulp are all above the average, that is to say, 

collaboration is more distant in these sectors. The sectors Mechanical Engineering and Sports 

and Amusements are very local in the sense that the inventors in the network have close proximity 

to each other. 

 

 

5. Econometrics Analysis 

 The Regional Network Density Model 

We analyze the systematic relationship between the network density in the one hundred labor 

market areas and the four broad classes of determinants: agglomeration, human capital, diversity 

and industrial structure. As seen in the literature review, the link between these four groups and 

the innovative networks is not obvious, but our hypothesis is that they all can explain to some 

degree the density of innovation networks.  

The base model concerning the regional network density explanation model is presented below. 

As a dependent variable, three different measures of network density are used; and as 

independent variables, market size, measures of agglomeration and diversity are used. We also 

use the specialization in the labor market by share of employment within the manufacturing 

sector and two measures of human capital. The preferred model is the negative binomial one, as 

the over-dispersion parameter (α), is significantly different from zero,  

TABLE 6 IN HERE 

The overall results indicate that diversity matters positively, together with a larger share 

employment within the manufacturing sector, while market size affects the number of innovative 
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collaborations negatively. Regardless of measures concerning network density, the results are 

robust. We also observe a strong indication that employment density matters in a positive way, 

specifically, if employment density is greater, network density is more common. Higher 

education seems to have a positive effect on networking, but the number of researchers at a 

university does not affect it. Even though the parameters concerning the time effects are 

significantly different from zero in some cases (not presented in the table), the estimates 

concerning employment density, scope, diversity and so on are almost constant compared with a 

model without fixed time effects. The fixed time effects pick up a significant effect in the models 

where NW-1 and NW-2 are used as a measure of size of the networks. The density of networks 

measured as NW-3 cannot be explained by time, that is, the network density is not stronger or 

weaker over the studied period.  

In some sense, our results appear to confirm the theoretical results by Meagher and Rogers 

(2004). In other words, it seems that both agglomeration, measured as population density, and 

industry diversity play a role in explaining networking. Our results do not support what Gordon 

and McCann (2000) and Johansson and Quigley's (2004) conclusion holds, that is,  that 

networking should be more important in less dense area. On the other hand, market size has a 

negative impact on networking since we can detect that innovation networks are less common in 

large metropolitan areas. Hence, networks can be thought of as a substitute for market size and as 

a complement to density and diversity. 

There is no reason to believe that the relationship between the existence of research networks and 

regional determinants is equal across industries. Contrarily, it seems likely, for example, that 

science-oriented sectors are more dependent on a highly educated workforce compared to less 

science-oriented industries.  
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Below, the date set has been split into three subsets, namely, the sectors Medical Science, 

Transporting and Information Technology.  

TABLE 7 IN HERE 

One important observation is that the variation is not very large in the three subsets. However, 

there seems to be a difference concerning the formation of innovative networks and the 

determinants that explain the regional variation. Within the Information Technology sector, 

employment density is not very important in explaining network density. Moreover, it seems that 

the diversity and educational level of the workforce is of central importance in the Transportation 

sector. Diversity does not play a crucial role in the sector Medical Science; instead specialization 

within the manufacturing sector is indispensable. The market size measured is of no importance 

in any of the sectors presented here.  

Regional Network Proximity Model 

Given that you are networking, is it more likely that your network is within the same labor market 

if you are working in a labor market with high density? This is the question the next model aims 

to answer. In other words, to what degree is proximity important in the formation of innovative 

networks? Earlier results (Fritsch, 2001, and Ejermo and Karlsson, 2006) have shown that 

proximity is important in the formation of innovative networks in countries such as Sweden and 

Germany. In our data, the correlation between the density of networking and distance between 

nodes is positive, that is to say, if networking is more common in a labor market, inventors are 

also more likely to collaborate across labor market borders. In the model below, we are relating 

the average distance between inventors across labor markets and over time, and the same regional 

determinants utilized earlier. We have estimated four different models.  First, a model is 

controlling for fixed time effects and another model controlling for both fixed time effects and 
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labor market specific effects. The reason for using the latter is due to the fact that given 

collaboration across labor markets, northern regions will always have longer “collaboration 

distance.” By including fixed regional effects, some of the spatial effect will be controlled for 

(model D2 and D4). Second, we have estimated the models using the average distance between 

nodes (D1 and D2) with and without isolates (D3 and D4). 

TABLE 8 IN HERE 

The results indicate that proximity can be explained very well by regional specific determinants. 

Regardless of model, if employment density increases in the labor market, the average distance 

between inventors will rise. In other words, researchers in dense areas will not only collaborate 

more, they will also collaborate over longer distance. The size of the market works the other way 

around, as well. Larger markets (given the density and all the other variables) will reduce the 

average distance linking the nodes.  

A third result that seems clear is that as the proportion of PhD's in the labor market increases, 

collaboration distances also increase. In the model in which we are controlling for fixed labor 

market effects, the estimates concerning diversity are significantly different from zero. The 

estimate is negative, indicating that diversity is a substitute for proximity. Hence, distance 

between researchers seems to increase if the home-market lacks diversity. If the home-market is 

much diversified, the inventors do not need to collaborate across labor markets borders. 

6. Conclusion and Policy Implication 

How does knowledge spillover? One way of knowledge transfer is within the innovation network. 

We examined patent data from 1994-2001 in Sweden. Even with strong evidence on the benefits 

of collaboration, innovation networks are not very frequent. Our results appear to verify the 
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theoretical results of Meagher and Rogers (2004) and indicate that innovation networks are more 

likely to be present in densely populated areas with diversified industry. It appears that 

agglomeration measured both as employment density and as industry diversity, plays a role in 

explaining networking. In other words, face-to-face contacts (or at least a possibility of face-to-

face contacts) do seem to promote networking. Market size has a negative impact on networking 

in that we can observe that innovation networks are less common in large metropolitan areas, 

ceteris paribus. Hence, networks can be thought of as a substitute for market size, and as a 

complement to density and diversity, as argued in Gordon and McCann (2000) and Johansson 

and Quigley (2004).  

In the model explaining the differences in network proximity, the results indicate that 

employment density increases the average distance between inventors. Researchers in dense areas 

not only will collaborate more, they will also collaborate over longer distances. The size of the 

market works the other way around as well. Moreover, as the proportion of PhD's in the labor 

market increases, collaboration distances increase. Workforces with higher educational degrees 

will not only be more likely to collaborate, but they will also collaborate over longer distances. 

Diversity seems to be a substitute to proximity. These results are in some sense in contradiction 

with Ejermo and Karlsson (2006) who argue that regions with R&D resources are less likely to 

collaborate with inventors in regions lacking similar resources. Their results also indicate that 

inventors in large markets are less likely to collaborate with inventors in small markets. Our 

conclusion is that they are less likely to collaborate all together. 

What are our policy implications? One implication from our results is that innovation hubs can 

play an important role, both in increasing the quality of research and in increasing innovativeness 

as density and diversity increase. However, as Meagher and Rogers (2004) point out, it can be 
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hard to duplicate the success of Silicon Valley with innovation hubs, as network density seems 

only to have an affect if the industry in question already has a significant spillover effect. Another 

result that appears significant is that distance matters. Cross-border research collaboration is not 

that common, especially over national borders. Andersson and Persson's (1993) and Gaspar and 

Glaeser's (1998) results concerning co-authorship indicate that distance has become less 

important over time. Our estimates support their results. Cross-border collaboration is much more 

common in 2001 compared to 1994, even as the geographical distance of the links are longer, and 

this development should be encouraged since it seems to promote innovativeness.
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Appendix: Classification 

Industry New-code IPC-code 
Human necessities C1 A-A61-A63+C05 
Medical or veterinary science; 
hygiene 

C2 A61 

Sports, games; amusements C3 A63 
Performing operations C4 B-B60-B61-B62-B63-B64-B82 
Transporting C5 B60 to B64 
Nanotechnology C6 B82 
Chemistry; metallurgy C7 C-C05-C07-(C12M to C12S) 
Organic chemistry C8 C07 
Biochemistry C9 C12M to C12S 
Textiles; paper C10 D 
Fixed constructions C11 E 
Mechanical engineering; 
lighting, heating; weapons 

C12 F 

Physics C13 G-G05-G02-G06-G09C-G11 
Information technology C14 G02+G06+G09C+G11+H04 
Controlling; regulating C15 G05 
Electricity C16 H-H04 
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Table 1. The Inventor Data Set 

Variable Definition Statistics  
Inventor Name of the inventor 22,030  
Patent-id Patent identification number Na  
LA Labor market code Na  
Applied The year the patent were applied 1995  
Approved The year the patent were approved 1998  
Isolates 1 if one-inventor patent 8,670 40 % 
Time No. of years between applied and approved patent 2.5 years  
Firm 1 if joint-stock company, else 0 18,018 81 % 
Cap 1 if large market capitalization publicly traded 

company, else 0 
9,267 42 % 

C1 1 if Human Necessities 1710 8 % 
C2 1 if Medical science; hygiene 1818 8 % 
C3 1 if Sport; games; amusements 175 <0 % 
C4 1 if Performing Operations  4657 21 % 
C5 1 if Transporting 1547 7 % 
C6 1 if Nanotechnology 0 0 % 
C7 1 if Metallurgy 865 4 % 
C8 1 if Organic chemistry 94 <0 % 
C9 1 if  Biochemistry 57 <0 % 
C10 1 if Textiles, Paper 908 4 % 
C11 1 if Fixed Constructions 1569 7 % 
C12 1 if Mechanical Engineering 2422 11 % 
C13 1 if Physics 1622 7 % 
C14 1 if Information Technology 2481 11 % 
C15 1 if Controlling; regulating 61 <0 % 
C16 1 if Electricity 2043 9 % 
Unique Identification number: unique inventor 13,877 63 % 
Cross-LA Cross-border collaboration over LA 2,039 15 % 
Cross-Inter Co-operation over national borders 341 3 % 
Cross-Firm Co-operation between companies 48 <1 % 
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Table 2. The Labor Market Data Set 

Variable Definition Mean Standard 
deviation 

NW-1 Networking (=inventor per patent) 1.097 0.637 
NW-2 Networking (=inventor per patent excluding 

isolates) 
1.341 1.182 

NW-3 Networking (=network density) 0.117 0.361 
Emp Total employment (0000) 3.861 10.866 
Higher ed Proportion of employees with post graduate 

education 
0.065 0.024 

R&D Univ.research Researchers at universities 0.004 0.024 
Density-emp Employment per square kilometers in the labor 

market area 
11.029 13.594 

Diversity Hirfindahl-index for 24 business sectors 0.117 0.0222 
Share-manuf. 
industry 

Proportion of employees working in the 
manufacturing industry 

0.224 0.102 

Labor market’s share of employment in the industry divided by its share of total employment. The labor market area 

data are available annually from Statistics Sweden.
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Table 3. Inventor origination and product types. 

Product Inventors Corp.  Large 
Cap 

Patents Isolates Collaborations Cross-border  Distance 

       LA Inter  
 No. No. No. No. % No. No. No. Kilometer 
Human Necess. 1710 1103 238 1220 76 325 51 10 75 
Medical science 1818 1458 798 1075 57 464 61 9 62 
Sport; games 175 64 4 144 81 27 3 0 36 
Perf. Oper. 4657 3793 1431 3091 68 983 137 22 52 
Transporting 1547 1171 682 1088 72 308 53 5 47 
Metallurgy 865 758 337 468 49 240 46 10 117 
Organic chem. 94 76 22 41 37 26 4 2 79 
Biochemistry 57 44 8 21 38 13 1 1 74 
Textiles, Paper 908 869 578 431 44 243 37 10 116 
Constructions 1569 999 153 1181 77 273 42 2 42 
Mech. Engin. 2422 2008 1059 1609 67 527 69 8 33 
Physics 1623 1311 596 982 60 392 54 5 61 
IT 2481 2379 1910 1192 50 597 51 16 305 
Controlling 61 56 40 39 64 14 4 1 153 
Electricity 2043 1928 1411 1049 50 613 77 12 101 
Total 22030 18018 9267 13631 64 4961 690 113 91 
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Table 4.  Networks statistics for approved patents in Sweden 1994-2001 and average per year and 

labor market. 

 Total Average Standard 
deviation 

Max 

Patents 13,630 16.85 58.31 680 
Patens-isolates 4,961 10.64 36.18 407 
Nodes 22,030 26.66 96.32 1144 
Nodes-isolates 13,360 10.64 36.18 407 
Links 31,747 38.01 170.21 2511 
NW1 1.6163 1.0969 0.6372 5.4048 
NW2 2.6930 1.3412 1.1824 9.4091 
Networks 
Density (NW3) 

0.0006 0.1171 0.3605 4.0000 
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Figure 1. The density of networks over time and across labor markets 
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Table 5. Social network analysis over the period 1994-2001 in five labor markets. 
 

 Descriptive Statistics Stockholm Gothenburg Malmö Västerås Umeå 
1 Patents 4,154 1,797 834 517 112 
2 Nodes (innovators) 6,708 3,063 1,391 1,097 154 
3 Unique Nodes 4,258 1,764 932 541 119 
4 Prop. Unique nodes (3)/(2) 0.63 0.58 0.67 0.49 0.77 
5 Isolates (= one-inventor 

patents) 
2,628 1,038 260 235 84 

6 Nodes minus isolates (2)-(5) 4,080 2,025 884 862 70 
7 Patents minus isolates (1)-

(5) 
1,526 759 327 282 28 

8 Components 2,513 990 557 245 95 
9 Components w. three or 

more nodes 
304 129 62 93 5 

10 Size 55 100 26 43 3 
11 Network density 0.0001 0.0003 0.0005 0.0017 0.0017 
12 Fragmentation 99.9% 99.5% 99.7% 96.6% 99.6% 
13 Network centralization 0.06% 0.24% 0.52% 1.56% 1.38% 
14 (3)/(1) 1.02 0.98 1.11 1.04 1.06 
15 (3)/(8) 1.69 1.78 1.67 2.21 1.25 
Note: Here is isolates defined as one-inventor patents. However, even if an inventor has a patent by himself, he could 
be included in a network (component).
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Table 6. Negative Binomial Estimates of Innovation Network Counts. 

 NW1 NW1 NW2 NW2 NW3 NW3 
Density-emp 0.0050 0.0043 0.0077 0.0064 0.0379 0.0420 
 (3.10) (1.14) (2.97) (2.13) (2.71) (2.10) 
Diversity -1.3529 -1.4147 -6.4704 -6.7490 -2.7936 -2.6570 
 (-1.94) (-0.93) (-4.77) (-4.27) (-0.83) (-0.68) 
Emp -0.0045 -0.0052 -0.0055 -0.0074 -0.2790 -0.2612 
 (-3.61) (-1.30) (-2.86) (-2.39) (-6.54) (-2.85) 
Higher Ed 9.3373 11.4876 16.3756 22.0056 0.5741 -5.6542 
 (6.84) (4.31) (8.57) (9.32) (0.08) (-0.46) 
R&D Univ. research 2.1189 -1.4583 -1.3104 -10.2307 -41.1089 -32.4992 
 (0.58) (-0.15) (-0.24) (-1.26) (-1.30) (-0.63) 
Share-manuf. 
industry 

2.0327 2.1750 3.1947 3.6068 2.2156 1.8984 

 (9.08) (5.56 (3.86) (9.67) (2.36) (1.55) 
Fixed time effects No Yes No Yes No Yes 
Log likelihood -906.38 -904.61 -1086.48 -1075.31 -273.67 -270.88 

Note: t-ratio within parentheses. Estimates concerning fixed time effects are not included in the table.
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Table 7. Negative Binomial Estimates of Innovation Network Counts (NW3) and different industry 

sectors. 

 Medical Science Transportation Information 
Technology 

Density-emp 0.0213 0.0361 0.0119 
 (1.47) (1.79) (0.71) 
Diversity -4.6053 -23.2096 -50.3000 
 (-0.60) (-1.98) (-1.98) 
Emp -0.0378 -0.0840 -0.0470 
 (-1.46) (-1.54) (-1.43) 
Higher Ed 37.2009 22.4278 52.2786 
 (3.46) (2.05) (3.98) 
R&D Univ. research -47.8050 -3.4622 -25.6066 
 (-1.14) (-0.09) (-0.60) 
Share-manuf. industry 3.2538 -0.0003 -5.0881 
 (1.71) (-0.00) (-1.15) 
Fixed time effects Yes Yes Yes 
Log likelihood -163.10 -174.27 -92.82 

Note: t-ratio within parentheses. Estimates concerning fixed time effects are not included in the table.
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Table 8. Negative Binomial Estimates of Average Network Distance. 

 D1 D2 D3 D4 
Density-emp 0.0169 0.0510 0.0122 0.0531 
 (2.25) (6.12) (2.07) (6.59) 
Diversity 1.9946 -19.3692 -5.2302 -18.7734 
 (0.47) (-5.16) (-1.28) (-5.00) 
Emp -0.0113 -0.0237 -0.0116 -0.0215 
 (-1.82) (-3.71) (-2.02) (-3.45) 
Higher Ed 13.5557 25.2395 21.4536 24.0587 
 (1.91) (4.10) (3.44) (4.11) 
R&D Univ. research -37.4942 33.0281 -56.3206 26.6941 
 (-2.41) (1.73) (-3.85) (1.44) 
Share-manuf. industry -0.6815 2.0646 0.2190 1.7504 
 (-0.65) (2.45) (0.22) (2.14) 
Fixed time effects Yes Yes Yes Yes 
Fixed LA effects No Yes No Yes 
Isolates included Yes Yes No No 
Log likelihood -3166.07 -2254.2824 -3471.41 -2510.47 

Note: t-ratio within parentheses. Estimates concerning fixed time and labor market (LA) effects are not included in 

the table. 

 

 
 


