Examination like tasks workshop 3 (Lecture 5 and 6)

Α/

Find the field from a quadropole by direct calculation of E from each charge. Work in the simplest nonvanishing-field direction.

B/

In a lab coupling we have a coaxial cable with capacitance C_{cable} , connected with a BNC contact in each end. The BNC connections have imperfect contact (most do actually), meaning that we have a resistive layer between the cores and between the shield conductors. How would you model the capacitance of the entire coupling?

C/

Find the force between two dipoles lined up: -+ distance=L -+ as function of L

D/

In an xyz coordinate system we have a grounded, conducting plane z=0 (i e the xy plane) and a rod along the z axis starting at z=a and ending at z=2a having a charge per length = λ .

E/

Calculate a numerical approximation (order of magnitude) on the maximum mechanical torque on monocrystal of 1 cm³ of a material with ε_r = 5 placed in a homogenous field E = 1 MV/m