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1 General properties

A complex (two-component) number has the form

c = a + jb

where j =
√
−1 is the imaginary unit. This form is equivalent to the polar form

Aejϕ , with A =
√

a2 + b2 and ϕ = tan−1 b

a
. (1)

Think of a rotation of a �phasor� along a two dimensional circle centered at zero1. a and

b (cos ϕ and sin ϕ) then correspond to the x and y projections of the phasor, as shown in

Figure 1. These are real and imaginary components of the complex exponential function

Figure 1: A point on a x− y plane is de�ned by a complex number, c.

1Young & Freedman, �University Physics�, Chapter 31.

1



(a unit vector of the complex plane), de�ned by the Euler relation2

ejx = cos x + j sinx.

Respectively, e−jx = cos x− j sinx corresponds to a phasor having a negative imaginary

(y) part.
For a stationary alternating current (ac) �owing through a circuit element, i(t) =

I0 cos ωt 3, the motion of the current phasor is a continuous rotation with instantaneous

angle ωt. The voltage across the element has generally a phase shift with respect to the

current4, v(t) = V0 cos(ωt + φ) . The same can be expressed in complex notations as

i(t) = Re
{
I0e

jωt
}

= I0 cos ωt (2)

and

v(t) = Re
{

V0e
j(ωt+φ)

}
= Re

{
V0e

jφejωt
}

= Re
{
V ejωt

}
. (3)

I0 and V0 above are real current and voltage amplitudes. V = V0e
jφ is complex voltage,

which now has two parts - an amplitude and a phase (as de�ned by Eq. 1).

2 Ohm's law

Ohm's law for a resistor carrying a direct current (dc) is

V0 = RI0,

where the resistance is real and, therefore, the current and voltage are in phase. For a

circuit carrying an ac, the Ohm's law must be modi�ed to re�ect the phase shift generally

present between i and v (Eqs. 2,3). This is done by introducing a complex analogue of

the resistance known as the impedance Z, such that the Ohm's law for ac becomes

V = ZI0.

What is the form of Z for the common circuit elements R, L, and C?

2Wiki: �Euler's formula was proven for the �rst time by Roger Cotes in 1714 in the form ln(cos(x) +
i sin(x)) = ix. It was Euler who published the equation in its current form in 1748, basing his proof on

the in�nite series of both sides being equal. Neither of these men saw the geometrical interpretation

of the formula: the view of complex numbers as points in the complex plane arose only some 50 years

later.�
3�Stationary alternating� here means that every next period is a repetition of the previous period.

Almost always �ac� means a cos or sin form - well behavied functions under di�erentiation, in contrast

to triangle or square waveforms.
4Following Y&F we choose the phase of the current to be the reference, i. e. φi = 0.
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3 Resistor

The voltage and current for a resistor of resistance R are in phase5, and related for any

instant in time by the Ohm's law

v(t) = Ri(t).

This means that

v = V ejωt = RIejωt or V = RI.

The resistive impedance is therefore

ZR = R.

4 Inductor

For an ideal inductor (R = 0) the current-voltage relation is a consequence of the Fara-

day's law

v = L
di

dt
.

Using Eqs. 2 and 3, this yields a linear relation of Ohm-type6 (again, with subscript �0�

dropped for brevity)

V = jωLI.

The inductive impedance is then

ZL = jωL

and has amplitude ωL and phase π
2 , directed along +y in Fig.1 for R along x. For an

inductor with a non-vanishing resistance of the wire

v = Ri + L
di

dt
= i(R + jωL),

so the total impedance of the inductor is

ZL = R + jωL.

This impedance is graphically shown in Fig. 2.

5Once again, subscript �0� refers to the fact that all phases are referenced to the phase of current. We

will keep this in mind and drop the subscript for brevity of notations.
6Recall that di

dt
.ejωt = jωejωt.
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Figure 2: Inductive impedance as a vector sum of resistance and reactance.

5 Capacitor

The charge on an ideal capacitor is

q = Cv.

Di�erentiating both sides yields

dq

dt
= i = C

dv

dt
= jωCv =

1
ZC

v,

and therefore V = ZCI with (1 ≡ −j2)

ZC =
1

jωC
= − j

ωC
. (4)

The graphical interpretation of the capacitive impedance is straightforward: it is along

the imaginary �j� axis (y axis in Fig. 1) and is opposite to the inductive impedance due

to the minus sign in Eq. 4.

The total complex impedance of a series R-L-C circuit,

Z = R + jωL +
1

jωC
= R + j

(
ωL− 1

ωC

)
,

is shown graphically in Fig. 3. The resistance R and reactance X correspond to the real

and imaginary components of the impedance:

R = Re {Z} and X = Im {Z} , Z = R + jX,

where the reactance is

X = ωL− 1
ωC

.

4



Figure 3: Impedance of a series R-L-C circuit with |ZC | = 1
2 |ZL|.

6 ac power

The instantaneous power delivered to a circuit element is7

p = vi = V cos(ωt + φ)I cos ωt = V I cos φ cos2 ωt− V I sinφ cos ωt sinωt.

It is convenient to characterize circuits by a time-independent average power. Averaging

p, with cos2 ωt = 1
2 and the second term vanishing, yields

Pav =
1
2
V I cos φ = VrmsIrms cos φ.

In complex notations, the average power is expressed as follows8:

Pav = Re
{

V I∗

2

}
= Re

{
V ej(ωt+φ)Ie−jωt

2

}
= Re

{
V ejφI

2

}
=

V I

2
cos φ. (5)

The product in the braces (Pav → P for brevity)

S =
1
2
V I∗ = VrmsI

∗
rms = ZIrmsI

∗
rms = ZI2

rms = (R + jX)I2
rms = P + jQ

is known the complex power, which has an active (P ) and reactive (Q) parts. The modulus

of the complex power is known as apparent power. To summarize, one distinguishes

complex, active, reactive, or apparent ac power:

S = P + jQ = ZI2
rms,

7See Y&F �31.4 for more details.
8A∗ denotes complex conjugation, which inverts the imaginary part of A.
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P = Re {S} = RI2
rms,

Q = Im {S} = XI2
rms,

|S| =
√

P 2 + Q2 = |Z|I2
rms.

From Eq. 5 it is clear that the actual power dissipated in a circuit is associated with the

active power (P ) since the cos φ (called the power factor) is zero for the reactive power

component (Q).

Power matching in electric circuits means minimizing Q and, therefore, minimizing

the reactance X. This is because for a given voltage, less current is needed to produce a

given amount of power if the load is purely resistive. For a non-resistive component the

current would �ow in the reactive channel without producing heat (power).

7 Kircho�'s laws

The Kirchho�'s circuit laws continue to apply in the ac case, with the following gener-

alizations: dc amplitudes are replaced with complex current amplitudes, In → Inejφn ,

and dc voltages are replaced with complex voltages, V → V ejφ. Thus, for example, the

voltage between points a and b of a circuit is related to the current by the element's

complex impedance:

Vab = ZabIab.

The generalized junction rule can be illustrated by a circuit with n elements of di�erent

resistance and reactance connected in parallel between points a and b (Vab is �xed in this

case). The total current is then a sum of the individual currents, which are phase shifted

with respect to each other as determined by the impedances Zn:

i =
∑

In cos(ωt + φn).

Performing trigonometric summations is cumbersome. In complex notations the total

current becomes a simple sum of complex numbers, I =
∑

Inejφn . Indeed,

Re
{
Iejωt

}
= Re

{∑
Inejφnejωt

}
=

∑
Re

{
Inej(ωt+φn)

}
=

∑
in(t) = i(t).

8 Filters

Filters are two-port circuits (signal in and out, Fig. 4) whose impedance is designed

to select (�lter) a certain frequency range out of a multi-frequency (broadband) signal.

Filters can be low-pass, high-pass, or ban-pass (band-stop). These terms refer to the

frequencies the �lter passes through. Thus, a low-pass �lter would transmit only low

frequency signals from the input to the output.

The above three �lter categories can be realized using RC, RL, and LC circuits. We

use complex notations below to describe some common �lter circuits.
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Figure 4: A general �lter with two ports, input and output, and an RC �lter.

8.1 R-C and C-R

A serial RC circuit is shown in Fig.4. Vi denotes a voltage source at the input and Vo a

voltage meter at the output of the �lter9. The series-RC impedance is

Z = R− j

ωC
.

The output voltage - the voltage across the capacitor - is given by the current in the

circuit multiplied by the impedance of the capacitor:

Vo = IZC =
Vi

Z
ZC =

Vi

R− j/(ωC)

(
− j

ωC

)
=

j

j − ωRC
Vi.

The transmission, or �lter coe�cient then becomes

T =
Vo

Vi
=

j

j − ωRC
,

and its amplitude

|TRC | =
∣∣∣∣Vo

Vi

∣∣∣∣ =

√
j

j − ωRC

(
j

j − ωRC

)∗
=

1√
1 + (ωRC)2

. (6)

For low frequencies, ω → 0, the signal is fully transmitted, |T | → 1. At high frequencies,

ω → ∞, the signal is completely suppressed, |T | ∝ ω−1 → 0. This is the action of a

low-pass �lter, used in electronics to �lter out high frequencies.

The cuto� frequency of the �lter is taken to be at the point where one half of the

power is transmitted,

Pcuto�(ωc) =
1
2
Pmax,

with Pmax in this case corresponding to P (ω → 0). Since P ∝ V 2, the cuto� frequency

is where |T | = 1/
√

2. From Eq. 6, this condition corresponds to ωcRC = ωcτRC = 1, or

fc =
1

2πRC
.

9The input impedance of the voltmeter is assumed to be in�nite - a excellent approximation in most

cases.
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The cuto� frequency de�ned this way is also known as the -3 dB point10

Exchanging the R and C in the series RC circuit, with Vo now measured across the

resistor, the circuit's frequency response becomes

|TCR| =
∣∣∣∣ R

R− j/(ωC)

∣∣∣∣ =

√
ωRC

ωRC − j

(
ωRC

ωRC − j

)∗
=

ωRC√
1 + (ωRC)2

.

For low frequencies, ω → 0, the signal is suppressed, |T | ∝ ω → 0. At high frequencies,

ω →∞, the signal is fully transmitted, |T | → 1. This is the action of a high-pass �lter,

used in electronics to �lter out dc.

Figure 5: T (ω): low- and high-pass �ltering using R-C and C-R circuits.

8.2 R-L and L-R

If the capacitor in Fig.4 (right) is replaced with an inductor, then the �lter factor becomes

|TRL| =

√
jωL

R + jωL

(
jωL

R + jωL

)∗
=

ωL√
R2 + (ωL)2

,

which represents a high-pass �lter, similar to the C-R circuit described above (red curve

in Fig.5). The di�erence is that the cuto� condition |T | = 1/
√

2 now corresponds to

ωc = R/L, so time constant

τRL =
L

R
.

10A voltage ratio in decibel is de�ned as XdB = 20 log10
X
X0

. In our case of the cuto� frequency,

20 log10
1√
2

= −3.01 dB.
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Exchanging the positions of the R and L in the circuit results obviously in a low-pass

�lter of the R-C type, with

|TLR| =

√
R

R + jωL

(
R

R + jωL

)∗
=

1√
1 + (ωL/R)2

.

8.3 LC in series

In the RC and RL circuits above only one element (C or L) had a frequency dependent

impedance (reactance, XC or XL). Therefore the circuit impedance either increased or

decreased with frequency. In LC circuits, on the other hand, one expects a competition

between a rising reactance of the inductor and diminishing reactance of the capacitor, as

the frequency is increased. This should result in a non-monotonic behavior of the �lter,

i.e. maxima or minima in current or voltage.

Figure 6: Series and parallel LC resonant circuits.

The left panel of Fig.6 shows a series RLC circuit. The current is given by the voltage

supplied by the source divided by the total impedance of the circuit,

I =
V

Z
=

V

R + j[ωL− 1/(ωC)]
. (7)

The current is maximum, I0 = V/R, when ω0L = 1/(ω0C), from which the LC resonance

frequency is

ω0 = (LC)−
1
2 .

The quality factor is de�ned as

Q ≡
√

L/C

R
= ω0

L

R
.

Using this de�nition, the current of Eq. 7 can be rewritten as

I = I0

[
1 + jQ

(
ω

ω0
− ω0

ω

)]−1

,

and its amplitude ∣∣∣∣ I

I0

∣∣∣∣ =

[
1 + Q2

(
ω

ω0
− ω0

ω

)2
]− 1

2

. (8)
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Figure 7: Normalized current of Eq.8 for a series LC circuit.

This function is plotted in Fig. 7 for Q = 1, 10. The cuto� frequencies de�ned by

T = 1/
√

2 correspond to

Q

(
ωc

ω0
− ω0

ωc

)
= ±1,

with the left and right cuto�

ωc∓
ω0

=

√(
1

2Q

)2

+ 1∓ 1
2Q

,

and the relative resonance width (∆ω = ωc+ − ωc−)

∆ω

ω
=

1
Q

.

The voltages across the individual circuit elements are obtained by multiplying the

total current (Eq. 7) by the respective impedance. For example, for the capacitor

VC = IZC =
I

jωC
.

Clearly, the sharply peaked current versus frequency (for high Q) results is a high voltage

across the capacitor only for a narrow band in frequency (ωC is a monotonous function).

This is the principle behind band-pass �ltering in great many electronic circuits and

systems we use today.
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8.4 LC in parallel

The analysis of the parallel LC circuit is very similar to the one we have just performed,

and is left as a home task. Consider the circuit layout shown in the right panel of Fig.6.

This layout is identical with your �lter layout in the LabVIEW lab.

Your model of the impedance and the quality factor should be adjusted to �t your

experimental data. Proceed by recognizing that the parallel connection of the L and

C branches is connected in series with R. Furthermore, the resistance of the inductor

wire (r) cannot be neglected, and forms a series connection with the inductive reactance.

Your output voltage is measured across C.

11


